Finite Elements for the Quasi-Geostrophic Equations of the Ocean

Erich L Foster

28 May 2013
In collaboration with: Traian Iliescu (VT), Zhu Wang (IMA), and Dave Wells (VT)

- National Science Foundation Grant DMS-1025314
- Institute for Critical Technology and Applied Science (ICTAS) fund 118709
In collaboration with: Traian Iliescu (VT), Zhu Wang (IMA), and Dave Wells (VT)

National Science Foundation Grant DMS-1025314

Institute for Critical Technology and Applied Science (ICTAS) fund 118709
In collaboration with: Traian Iliescu (VT), Zhu Wang (IMA), and Dave Wells (VT)

National Science Foundation Grant DMS-1025314

Institute for Critical Technology and Applied Science (ICTAS) fund 118709
Large Scale Ocean Surface Currents

Quasi-Geostrophic Equations

Argyris Finite Element

Optimal Error Estimates

Time Dependence

Future Work
1. Large Scale Ocean Surface Currents

2. Quasi-Geostrophic Equations

3. Argyris Finite Element

4. Optimal Error Estimates

5. Time Dependence

6. Future Work
1 Large Scale Ocean Surface Currents

2 Quasi-Geostrophic Equations

3 Argyris Finite Element

4 Optimal Error Estimates

5 Time Dependence

6 Future Work
1 Large Scale Ocean Surface Currents

2 Quasi-Geostrophic Equations

3 Argyris Finite Element

4 Optimal Error Estimates

5 Time Dependence

6 Future Work
1. Large Scale Ocean Surface Currents

2. Quasi-Geostrophic Equations

3. Argyris Finite Element

4. Optimal Error Estimates

5. Time Dependence

6. Future Work
1. Large Scale Ocean Surface Currents

2. Quasi-Geostrophic Equations

3. Argyris Finite Element

4. Optimal Error Estimates

5. Time Dependence

6. Future Work
The large scale surface currents of the ocean, Haidvogel 1999.
Characteristics of large scale oceanic surface currents

- Driven by forces such as
 - Wind
 - Coriolis Force, i.e. the deflection of moving objects due to the rotation of the Earth.
- Large scale gyres
- Strong western boundary currents
- Scales

\[L = O(10^6 \text{m}) \quad U = O(10^{-2} \text{m/s}) \]
\[T = \frac{L}{U} = O(3 \text{yr}) \quad D = O(10^3 \text{m}) \]

Vallis 2006
Characteristics of large scale oceanic surface currents

- Driven by forces such as
 - Wind
 - Coriolis Force, i.e. the deflection of moving objects due to the rotation of the Earth.

- Large scale gyres
- Strong western boundary currents
- Scales

\[
L = O(10^6 m) \quad U = O(10^{-2} m/s)
\]

\[
T = \frac{L}{U} = O(3 yr) \quad D = O(10^3 m)
\]

Vallis 2006
Characteristics of large scale oceanic surface currents

- Driven by forces such as
 - Wind
 - Coriolis Force, i.e. the deflection of moving objects due to the rotation of the Earth.

- Large scale gyres
- Strong western boundary currents
- Scales

\[
L = O(10^6 m) \quad U = O(10^{-2} m/s)
\]

\[
T = \frac{L}{U} = O(3 yr) \quad D = O(10^3 m)
\]

Vallis 2006
Characteristics of large scale oceanic surface currents

- Driven by forces such as
 - Wind
 - Coriolis Force, i.e. the deflection of moving objects due to the rotation of the Earth.

Demonstration of the Coriolis force.

- Large scale gyres
- Strong western boundary currents
- Scales
Characteristics of large scale oceanic surface currents

- Driven by forces such as
 - Wind
 - Coriolis Force, i.e. the deflection of moving objects due to the rotation of the Earth.
- Large scale gyres
 - Strong western boundary currents
- Scales

\[
L = O(10^6 \text{m}) \quad U = O(10^{-2} \text{m/s})
\]

\[
T = \frac{L}{U} = O(3 \text{yr}) \quad D = O(10^3 \text{m})
\]

Vallis 2006
Characteristics of large scale oceanic surface currents

- Driven by forces such as
 - Wind
 - Coriolis Force, i.e. the deflection of moving objects due to the rotation of the Earth.
- Large scale gyres
- Strong western boundary currents

- Scales

\[L = O(10^6 \text{m}) \]
\[U = O(10^{-2} \text{m/s}) \]
\[T = \frac{L}{U} = O(3\text{yr}) \]
\[D = O(10^3 \text{m}) \]

Vallis 2006
Characteristics of large scale oceanic surface currents

- Driven by forces such as
 - Wind
 - Coriolis Force, i.e. the deflection of moving objects due to the rotation of the Earth.

- Large scale gyres
- Strong western boundary currents
- Scales

\[
L = O(10^6 \text{m}) \quad \quad \quad \quad \quad \quad U = O(10^{-2} \text{m/s})
\]

\[
T = \frac{L}{U} = O(3\text{yr}) \quad \quad \quad \quad \quad \quad D = O(10^3 \text{m})
\]

Vallis 2006
How do we model the Large Scale Currents?
Modeling Large Scale Currents

- Assumptions and Simplifications
 - Ocean width is much larger than the depth, i.e. \(L \gg D \).
 - The Coriolis force varies only in the \(y \)-direction.
 - Quasi-Geostrophic balance, i.e. the pressure gradient force is nearly balanced by the Coriolis force.

- Streamfunction
 \[
 u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}
 \]
Modeling Large Scale Currents

- Assumptions and Simplifications
 - Ocean width is much larger than the depth, i.e. $L \gg D$.
 - The Coriolis force varies only in the y-direction.
 - Quasi-Geostrophic balance, i.e. the pressure gradient force is nearly balanced by the Coriolis force.

- Streamfunction

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$
Modeling Large Scale Currents

Assumptions and Simplifications

- Ocean width is much larger than the depth, i.e. $L \gg D$.
- The Coriolis force varies only in the y-direction.
- Quasi-Geostrophic balance, i.e. the pressure gradient force is nearly balanced by the Coriolis force.

Streamfunction

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$
Modeling Large Scale Currents

- Assumptions and Simplifications
 - Ocean width is much larger than the depth, i.e. $L \gg D$.
 - The Coriolis force varies only in the y-direction.
 - Quasi-Geostrophic balance, i.e. the pressure gradient force is nearly balanced by the Coriolis force.

- Streamfunction
 \[u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \]
Quasi-Geostrophic Equations

- The QGE are a simplified model for planet-scale flows.

Streamfunction-Vorticity Formulation

\[
\frac{\partial q}{\partial t} + J(\psi, q) = -Re^{-1} \Delta q + F \tag{1}
\]

\[
q = -Ro \Delta \psi + y \tag{2}
\]

where \(Ro, Re \) are the Rossby and Reynolds numbers, and the Jacobian

\[
J(\xi, \eta) = \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial x}
\]

- The Jacobian is associated with \((u \cdot \nabla) u\) in the Navier-Stokes Equations
Quasi-Geostrophic Equations

- The QGE are a simplified model for planet-scale flows.
- Streamfunction-Vorticity Formulation

\[
\frac{\partial q}{\partial t} + J(\psi, q) = -Re^{-1} \Delta q + F
\]

(1)

\[q = -Ro \Delta \psi + y \]

(2)

where \(Ro, Re \) are the Rossby and Reynolds numbers, and the Jacobian

\[J(\xi, \eta) = \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial x} \]

The Jacobian is associated with \((u \cdot \nabla) u\) in the Navier-Stokes Equations
The Rossby number is the ratio of inertial and Coriolis forces

\[Ro = \frac{U}{\beta L^2} \]

- Low Rossby number, rotation is important
- High Rossby number, rotation is not important

The Reynolds number is the ratio of the inertial and viscous forces

\[Re = \frac{UL}{A} \]

- High Reynolds number, inertial forces dominate
- Low Reynolds number, viscous forces dominate

Oceans have large \(Re \) and small \(Ro \).
The Rossby number is the ratio of inertial and Coriolis forces

\[Ro = \frac{U}{\beta L^2}, \]

- Low Rossby number, rotation is important
- High Rossby number, rotation is not important

The Reynolds number is the ratio of the inertial and viscous forces

\[Re = \frac{UL}{A}, \]

- High Reynolds number, inertial forces dominate
- Low Reynolds number, viscous forces dominate

Oceans have large \(Re \) and small \(Ro \).
The Rossby number is the ratio of inertial and Coriolis forces

$$Ro = \frac{U}{\beta L^2},$$

- Low Rossby number, rotation is important
- High Rossby number, rotation is not important

The Reynolds number is the ratio of the inertial and viscous forces

$$Re = \frac{UL}{A},$$

- High Reynolds number, inertial forces dominate
- Low Reynolds number, viscous forces dominate

Oceans have large Re and small Ro.
The Rossby number is the ratio of inertial and Coriolis forces

\[Ro = \frac{U}{\beta L^2}, \]

- Low Rossby number, rotation is important
- High Rossby number, rotation is not important

The Reynolds number is the ratio of the inertial and viscous forces

\[Re = \frac{UL}{A} \]

- High Reynolds number, inertial forces dominate
- Low Reynolds number, viscous forces dominate

Oceans have large \(Re \) and small \(Ro \).
The Rossby number is the ratio of inertial and Coriolis forces

\[Ro = \frac{U}{\beta L^2}, \]

- Low Rossby number, rotation is important
- High Rossby number, rotation is not important

The Reynolds number is the ratio of the inertial and viscous forces

\[Re = \frac{UL}{A}, \]

- High Reynolds number, inertial forces dominate
- Low Reynolds number, viscous forces dominate

Oceans have large \(Re \) and small \(Ro \).
The Rossby number is the ratio of inertial and Coriolis forces

\[Ro = \frac{U}{\beta L^2}, \]

- Low Rossby number, rotation is important
- High Rossby number, rotation is not important

The Reynolds number is the ratio of the inertial and viscous forces

\[Re = \frac{UL}{A}, \]

- High Reynolds number, inertial forces dominate
- Low Reynolds number, viscous forces dominate

Oceans have large \(Re \) and small \(Ro \).
• The Rossby number is the ratio of inertial and Coriolis forces

\[\text{Ro} = \frac{U}{\beta L^2}, \]

• Low Rossby number, rotation is important
• High Rossby number, rotation is not important

• The Reynolds number is the ratio of the inertial and viscous forces

\[\text{Re} = \frac{UL}{A}, \]

• High Reynolds number, inertial forces dominate
• Low Reynolds number, viscous forces dominate

• Oceans have large \(\text{Re} \) and small \(\text{Ro} \).
Brief History of the QGE

(Courtesy of Peter Lynch, University college, Dublin)

- Developed by Charney in 1948
- The first one day forecast was made in April 1950, on ENIAC.
- Von Neumann, Charney, Fjørtoft, Smagorinksy, and more.
- Took longer than 24 hours to predict the weather 24 hours in the future.
Brief History of the QGE

Developed by Charney in 1948
- The first one day forecast was made in April 1950, on ENIAC.
- Von Neumann, Charney, Fjørtoft, Smagorinsky, and more.
- Took longer than 24 hours to predict the weather 24 hours in the future.

(Courtesy of Peter Lynch, University college, Dublin)
Brief History of the QGE

Developed by Charney in 1948

The first one day forecast was made in April 1950, on ENIAC.

Von Neumann, Charney, Fjørtoft, Smagorinsky, and more.

Took longer than 24 hours to predict the weather 24 hours in the future.
Brief History of the QGE

(Brief History of the QGE)

Developed by Charney in 1948

The first one day forecast was made in April 1950, on ENIAC.

Von Neumann, Charney, Fjørtoft, Smagorinksy, and more.

Took longer than 24 hours to predict the weather 24 hours in the future.
Brief History of the QGE

(Courtesy of Peter Lynch, University college, Dublin)

- Developed by Charney in 1948
- The first one day forecast was made in April 1950, on ENIAC.
- Von Neumann, Charney, Fjørtoft, Smagorinksy, and more.
- Took longer than 24 hours to predict the weather 24 hours in the future.
Further simplification by substituting (2) into the (1).

\[\frac{\partial q}{\partial t} + J(\psi, q) = -Re^{-1} \Delta q + F \]

\[q = -Ro \Delta \psi + y \]

Pure Streamfunction Formulation

\[-\frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

(3)

<table>
<thead>
<tr>
<th>Pro</th>
<th>Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Variable “Simpler”</td>
<td>Fourth-Order PDE</td>
</tr>
<tr>
<td>Requires (C^1) FE to be Conforming</td>
<td></td>
</tr>
</tbody>
</table>
Further simplification by substituting (2) into the (1).

\[
\frac{\partial q}{\partial t} + J(\psi, q) = -Re^{-1} \Delta q + F
\]

\[
q = -Ro \Delta \psi + y
\]

Pure Streamfunction Formulation

\[
- \frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \quad (3)
\]

<table>
<thead>
<tr>
<th>Pro</th>
<th>Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Variable “Simpler”</td>
<td>Fourth-Order PDE Requires C^1 FE to be Conforming</td>
</tr>
</tbody>
</table>
Further simplification by substituting (2) into the (1).

\[\frac{\partial q}{\partial t} + J(\psi, q) = -Re^{-1}\Delta q + F \]

\[q = -Ro\Delta\psi + y \]

Pure Streamfunction Formulation

\[-\frac{\partial [\Delta\psi]}{\partial t} + Re^{-1}\Delta^2\psi + J(\psi, \Delta\psi) - Ro^{-1}\frac{\partial\psi}{\partial x} = Ro^{-1}F \] \hspace{1cm} (3)

<table>
<thead>
<tr>
<th>Pro</th>
<th>Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Variable</td>
<td>Fourth-Order PDE</td>
</tr>
<tr>
<td>“Simpler”</td>
<td>Requires (C^1) FE to be Conforming</td>
</tr>
</tbody>
</table>
QGE is not Navier-Stokes

\[
\begin{align*}
\text{NSE} & \quad \frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) = F, \\
\text{QGE} & \quad \frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F
\end{align*}
\]

\begin{align*}
\text{NSE} & \quad Ro = 1 \\
\text{QGE} & \quad Ro = 0.1 \\
\text{QGE} & \quad Ro = 0.01 \\
\text{QGE} & \quad Ro = 0.001
\end{align*}

Time Averaged, \(t = [0, 10], \ dt = 1 \times 10^{-3}, \ Re = 200, \ F = \sin \pi y \)
Stationary Quasi-Geostrophic Equations

- Pure Streamfunction Form of Stationary QGE

\[
Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F
\]

\[
\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega
\]

- Weak Form

Find \(\psi \in X \) such that \(\forall \chi \in X \)

\[
Re^{-1} (\Delta \psi, \Delta \chi) + b(\psi; \psi, \chi) - Ro^{-1} (\psi_x, \chi) = Ro^{-1} (F, \chi)
\]

\[
b(\zeta; \xi, \eta) = [(\Delta \zeta \cdot \xi_y, \eta_x) - (\Delta \zeta \cdot \xi_x, \eta_y)]
\]
Stationary Quasi-Geostrophic Equations

- Pure Streamfunction Form of Stationary QGE

\[
Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F
\]

\[
\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega
\]

- Weak Form

Find \(\psi \in X \) such that \(\forall \chi \in X \)

\[
Re^{-1} (\Delta \psi, \Delta \chi) + b(\psi; \psi, \chi) - Ro^{-1} (\psi_x, \chi) = Ro^{-1} (F, \chi)
\]

\[
b(\zeta; \xi, \eta) = [(\Delta \zeta \cdot \xi_y, \eta_x) - (\Delta \zeta \cdot \xi_x, \eta_y)]
\]
Weak Formulation

Space

\[X = H^2_0(\Omega) = \left\{ \psi \in H^2(\Omega) \mid \psi = 0, \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega \right\} \]

Bounds on forms

\[(\Delta \psi, \Delta \chi) \leq |\psi|_2 |\chi|_2 \quad \forall \psi, \chi \in X \]
\[b(\zeta; \psi, \chi) \leq \Gamma_1 |\zeta|_2 |\psi|_2 |\chi|_2 \quad \forall \zeta, \psi, \chi \in X \]
\[(\psi_x, \chi) \leq \Gamma_2 |\psi|_2 |\chi|_2 \quad \forall \psi, \chi \in X \]
\[(F, \chi) \leq \|F\|_{-2} |\chi|_2 \quad \forall \chi \in X \]

Stability bound

\[|\psi|_2 \leq \text{Re} \, Ro^{-1} \|F\|_{-2} \]
Weak Formulation

- **Space**

\[X = H^2_0(\Omega) = \left\{ \psi \in H^2(\Omega) \mid \psi = 0, \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega \right\} \]

- **Bounds on forms**

\[(\Delta \psi, \Delta \chi) \leq |\psi|_2 |\chi|_2 \quad \forall \psi, \chi \in X \]

\[b(\zeta; \psi, \chi) \leq \Gamma_1 |\zeta|_2 |\psi|_2 |\chi|_2 \quad \forall \zeta, \psi, \chi \in X \]

\[(\psi_x, \chi) \leq \Gamma_2 |\psi|_2 |\chi|_2 \quad \forall \psi, \chi \in X \]

\[(F, \chi) \leq \|F\|_{-2} |\chi|_2 \quad \forall \chi \in X \]

- **Stability bound**

\[|\psi|_2 \leq Re Ro^{-1} \|F\|_{-2} \]
Weak Formulation

- Space

\[X = H^2_0(\Omega) = \left\{ \psi \in H^2(\Omega) \mid \psi = 0, \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega \right\} \]

- Bounds on forms

\[(\Delta \psi, \Delta \chi) \leq |\psi|_2 |\chi|_2 \quad \forall \psi, \chi \in X \]

\[b(\zeta; \psi, \chi) \leq \Gamma_1 |\zeta|_2 |\psi|_2 |\chi|_2 \quad \forall \zeta, \psi, \chi \in X \]

\[(\psi_x, \chi) \leq \Gamma_2 |\psi|_2 |\chi|_2 \quad \forall \psi, \chi \in X \]

\[(F, \chi) \leq \| F \|_2 |\chi|_2 \quad \forall \chi \in X \]

- Stability bound

\[|\psi|_2 \leq \text{Re} \text{ Ro}^{-1} \| F \|_2 \]
Finite Element Formulation

- Conforming Finite Element Space

\[X^h \subset X = \left\{ \psi^h \in H^2(\Omega) \mid \psi^h = 0, \frac{\partial \psi^h}{\partial n} = 0 \text{ on } \partial \Omega \right\} \]

- FE Form

Find \(\psi^h \in X^h \) such that \(\forall \chi^h \in X^h \)

\[
Re^{-1}(\Delta \psi^h, \Delta \chi^h) + b(\psi^h; \psi^h, \chi^h) - Ro^{-1}(\psi^h_x, \chi^h) = Ro^{-1}(F, \chi^h)
\]

(6)

- Stability bound

\[
|\psi^h|_2 \leq Re Ro^{-1}\|F\|_2
\]
Finite Element Formulation

- Conforming Finite Element Space

\[X^h \subset X = \left\{ \psi^h \in H^2(\Omega) \mid \psi^h = 0, \frac{\partial \psi^h}{\partial n} = 0 \text{ on } \partial \Omega \right\} \]

- FE Form

Find \(\psi^h \in X^h \) such that \(\forall \chi^h \in X^h \)

\[
Re^{-1}(\Delta \psi^h, \Delta \chi^h) + b(\psi^h; \psi^h, \chi^h) - Ro^{-1}(\psi^h_x, \chi^h) = Ro^{-1}(F, \chi^h)
\]

(6)

- Stability bound

\[
|\psi^h|_2 \leq Re Ro^{-1}\|F\|_{-2}
\]
Finite Element Formulation

- Conforming Finite Element Space

\[X^h \subset X = \left\{ \psi^h \in H^2(\Omega) \mid \psi^h = 0, \frac{\partial \psi^h}{\partial n} = 0 \text{ on } \partial \Omega \right\} \]

- FE Form

\[
\text{Find } \psi^h \in X^h \text{ such that } \forall \chi^h \in X^h \quad \Re^{-1}(\Delta \psi^h, \Delta \chi^h) + b(\psi^h; \psi^h, \chi^h) - \Ro^{-1}(\psi^h_x, \chi^h) = \Ro^{-1}(F, \chi^h)
\]

(6)

- Stability bound

\[
|\psi^h|_2 \leq \Re \Ro^{-1} \|F\|_{-2}
\]
Examples of C^1 Finite Elements

- Bogner-Fox-Schmit Rectangle

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 DoFs, Affine</td>
<td>Rectangle</td>
</tr>
</tbody>
</table>
Examples of C^1 Finite Elements

- Bogner-Fox-Schmit Rectangle

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 DoFs, Affine</td>
<td>Rectangle</td>
</tr>
</tbody>
</table>

- Clough-Tocher Triangle

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>30 DoFs, Not Affine</td>
</tr>
</tbody>
</table>
Examples of C^1 Finite Elements

- Bogner-Fox-Schmit Rectangle

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 DoFs, Affine</td>
<td>Rectangle</td>
</tr>
</tbody>
</table>

- Clough-Tocher Triangle

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>30 DoFs, Not Affine</td>
</tr>
</tbody>
</table>

- Bell Triangle

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>Complicated Polynomial Space</td>
</tr>
<tr>
<td>18 DoFs</td>
<td>Not Affine</td>
</tr>
</tbody>
</table>
Examples of C^1 Finite Elements

- **Bogner-Fox-Schmit Rectangle**

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 DoFs, Affine Rectangle</td>
<td></td>
</tr>
</tbody>
</table>

- **Clough-Tocher Triangle**

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>30 DoFs, Not Affine</td>
</tr>
</tbody>
</table>

- **Bell Triangle**

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>Complicated Polynomial Space</td>
</tr>
<tr>
<td>18 DoFs</td>
<td></td>
</tr>
</tbody>
</table>

- **Argyris Triangle**

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>21 DoFs, Not Affine</td>
</tr>
</tbody>
</table>
The Argyris Finite Element is C^1

- Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
- Interpolation Error Bounds for Argyris

$$\|u - P^h u\|_p \leq C h^{4+\sigma} |u|_p \quad \text{for} \quad \sigma = 0, 1, 2$$

- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)

- https://github.com/VT-ICAM/ArgyrisPack
The Argyris Finite Element is C^1

- Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris
 \[
 \|u - I^h u\|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2
 \] (7)
- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)

https://github.com/VT-ICAM/ArgyrisPack
The Argyris Finite Element is C^1
- Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris
 \[\|u - I^h u\|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2 \] (7)
- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)
- https://github.com/VT-ICAM/ArgyrisPack
The Argyris Finite Element is C^1
- Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris
 \[
 \|u - I^h u\|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2
 \] (7)
- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)
- https://github.com/VT-ICAM/ArgyrisPack
The Argyris Finite Element is C^1
- Conforming Finite Element for fourth-order problems

Fifth-order basis functions
- Interpolation Error Bounds for Argyris
 \[
 \|u - I_h u\|_{2-s} \leq C h^{4+s} |u|_6 \quad \text{for } s = 0, 1, 2
 \]

21 degrees of freedom
- Function values at each vertex (3 values total)
- First derivative values at each vertex (6 values total)
- Second derivative values at each vertex (9 values total)
- Normal derivative values at the midpoints (3 values total)

https://github.com/VT-ICAM/ArgyrisPack
The Argyris Finite Element is C^1
- Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris
 $$\|u - I^h u\|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2$$
- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)
- https://github.com/VT-ICAM/ArgyrisPack
The Argyris Finite Element is C^1
- Conforming Finite Element for fourth-order problems

Fifth-order basis functions
- Interpolation Error Bounds for Argyris
 \[\|u - I^h u\|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2 \] \((7) \)

- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)

https://github.com/VT-ICAM/ArgyrisPack
First Derivative Values of Argyris Triangle

- The Argyris Finite Element is C^1
 - Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris
 \[\|u - I^h u\|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2 \]
- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
- Normal derivative values at the midpoints (3 values total)

https://github.com/VT-ICAM/ArgyrisPack
Second Derivative Values of Argyris Triangle

- The Argyris Finite Element is C^1
 - Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris
 \[\|u - I^h u\|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2 \]
- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)

https://github.com/VT-ICAM/ArgyrisPack
Second Derivative Values of Argyris Triangle

- The Argyris Finite Element is C^1
 - Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris
 \[\| u - I_h u \|_{2-s} \leq C h^{4+s} |u|_6 \quad \text{for } s = 0, 1, 2 \] (7)
- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)

https://github.com/VT-ICAM/ArgyrisPack
The Argyris Finite Element is C^1
- Conforming Finite Element for fourth-order problems
- Fifth-order basis functions
 - Interpolation Error Bounds for Argyris

$$\| u - I^h u \|_{2-s} \leq C h^{4+s} |u|_6 \text{ for } s = 0, 1, 2$$ (7)

- 21 degrees of freedom
 - Function values at each vertex (3 values total)
 - First derivative values at each vertex (6 values total)
 - Second derivative values at each vertex (9 values total)
 - Normal derivative values at the midpoints (3 values total)
- https://github.com/VT-ICAM/ArgyrisPack
Pros/Cons

- **Cons:**
 - 21 Degrees of Freedom
 - Normal Derivatives

- **Pros:**
 - High Order of Convergence
 - C^1

Normal derivatives aren’t respected by the affine transformation

\[
F(\hat{x}) = B\hat{x} + x_1 = \begin{bmatrix}
 x_2 - x_1 & x_3 - x_1 \\
 y_2 - y_1 & y_3 - y_1
\end{bmatrix} \begin{bmatrix}
 \hat{x} \\
 \hat{y}
\end{bmatrix} + \begin{bmatrix}
 x_1 \\
 y_1
\end{bmatrix}
\]

- Need a transformation C that will take us from the reference triangle \hat{K} to any general triangle K.
Pros/Cons

- **Cons:**
 - 21 Degrees of Freedom
 - Normal Derivatives

- **Pros:**
 - High Order of Convergence
 - C^{1}
 - Normal derivatives aren’t respected by the affine transformation

\[
F(\hat{x}) = B\hat{x} + x_1 = \begin{bmatrix}
 x_2 - x_1 & x_3 - x_1 \\
 y_2 - y_1 & y_3 - y_1
\end{bmatrix}
\begin{bmatrix}
 \hat{x} \\
 \hat{y}
\end{bmatrix} + \begin{bmatrix}
 x_1 \\
 y_1
\end{bmatrix}
\]

- Need a transformation C that will take us from the reference triangle \hat{K} to any general triangle K.
Pros/Cons

- **Cons:**
 - 21 Degrees of Freedom
 - Normal Derivatives

- **Pros:**
 - High Order of Convergence
 - C^1

Normal derivatives aren’t respected by the affine transformation

$$F(\hat{x}) = B\hat{x} + x_1 = \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} + \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

Need a transformation C that will take us from the reference triangle \hat{K} to any general triangle K.
Pros/Cons

- **Cons:**
 - 21 Degrees of Freedom
 - Normal Derivatives

- **Pros:**
 - High Order of Convergence
 - C^1

Normal derivatives aren’t respected by the affine transformation

$$F(\hat{x}) = B\hat{x} + x_1 = \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} + \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

Need a transformation C that will take us from the reference triangle \hat{K} to any general triangle K.
Pros/Cons

- **Cons:**
 - 21 Degrees of Freedom
 - Normal Derivatives

- **Pros:**
 - High Order of Convergence
 - \(C^1 \)

Normal derivatives aren’t respected by the affine transformation

\[
F(\hat{x}) = B\hat{x} + x_1 = \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} + \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}
\]

Need a transformation \(C \) that will take us from the reference triangle \(\hat{K} \) to any general triangle \(K \).
Pros/Cons

- **Cons:**
 - 21 Degrees of Freedom
 - Normal Derivatives

- **Pros:**
 - High Order of Convergence
 - C^1

Normal derivatives aren’t respected by the affine transformation

$$F(\hat{x}) = B\hat{x} + x_1 = \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} + \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

- Need a transformation C that will take us from the reference triangle \hat{K} to any general triangle K.

E. L. Foster (BCAM)
Transformation?

Reference triangle, \hat{K}, to general triangle, K?

$C = \hat{DE}$, (8)

from V. Dominguez and F. J. Sayas 2006.
Transformation?

Reference triangle, \hat{K}, to general triangle, K?

$$C = \hat{D}E,$$

from V. Dominguez and F. J. Sayas 2006.
First some notation.

\[p_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \]

\[p_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} \]

\[p_3 = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix} \]

\[n_2 = \frac{1}{\ell_2} R \cdot v_2 \]

\[v_2 = p_3 - p_1 \]

\[v_1 = p_3 - p_2 \]

\[n_3 = \frac{1}{\ell_3} R \cdot v_3 \]

\[n_1 = \frac{1}{\ell_1} R \cdot v_1 \]

\[v_3 = p_2 - p_1 \]

Notation corresponding to the Dominguez transformation.
What to do about the derivatives?

- Relationship between ∇_x and $\nabla_{\hat{x}}$

$$\nabla_{\hat{x}}(\varphi \circ F) = B^T \nabla_x(\varphi) \circ F$$

- Relationship between $H_x = [\partial_{xx}, \partial_{xy}, \partial_{yy}]^T$ and $H_{\hat{x}} = [\partial_{\hat{x}x}, \partial_{\hat{x}y}, \partial_{\hat{y}y}]^T$

$$H_{\hat{x}}(\varphi \circ F) = \Theta H_x(\varphi) \circ F,$$

where

$$\Theta = \begin{bmatrix}
B_{11}^2 & 2B_{11}B_{21} & B_{21}^2 \\
B_{12}B_{11} & B_{12}B_{21} + B_{11}B_{22} & B_{21}B_{22} \\
B_{12}^2 & 2B_{22}B_{12} & B_{22}^2
\end{bmatrix}$$
What to do about the derivatives?

- Relationship between ∇_x and $\nabla_{\tilde{x}}$

$$\nabla_{\tilde{x}}(\varphi \circ F) = B^T \nabla_x(\varphi) \circ F$$

- Relationship between $H_x = [\partial_{xx}, \partial_{xy}, \partial_{yy}]^T$ and $H_{\tilde{x}} = [\partial_{\tilde{xx}}, \partial_{\tilde{xy}}, \partial_{\tilde{yy}}]^T$

$$H_{\tilde{x}}(\varphi \circ F) = \Theta H_x(\varphi) \circ F,$$

where

$$\Theta = \begin{bmatrix}
B_{11}^2 & 2B_{11}B_{21} & B_{21}^2 \\
B_{12}B_{11} & B_{12}B_{21} + B_{11}B_{22} & B_{21}B_{22} \\
B_{12}^2 & 2B_{22}B_{12} & B_{22}^2
\end{bmatrix}$$
What about the normal derivatives?

- Rotation matrix (CCW 90°)

\[
R = \begin{bmatrix}
0 & -1 \\
1 & 0 \\
\end{bmatrix}
\]

\[
f_i = \frac{1}{\ell_i^2 |\hat{v}_i|} R \hat{v}_i \cdot B^T R v_i,
\]
\[
g_i = \frac{1}{\ell_i^2 |\hat{v}_i|} R \hat{v}_i \cdot B^T v_i
\]

- Let

\[
Q = \begin{bmatrix}
f_1 & f_2 & f_3 & g_1 & g_2 & g_3 \\
\end{bmatrix}
\]

\[
D = \text{diag}[I_3, B^T, B^T, B^T, \Theta, \Theta, \Theta, Q]
\]
What about the normal derivatives?

- Rotation matrix (CCW 90°)

\[
R = \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
\]

\[
f_i = \frac{1}{\ell_i^2 |\hat{v}_i|} R\hat{v}_i \cdot B^T R v_i, \quad g_i = \frac{1}{\ell_i^2 |\hat{v}_i|} R\hat{v}_i \cdot B^T v_i
\]

- Let

\[
Q = \begin{bmatrix}
f_1 & g_1 \\
f_2 & g_2 \\
f_3 & g_3
\end{bmatrix}
\]

\[
D = \text{diag}[I_3, B^T, B^T, B^T, \Theta, \Theta, \Theta, Q]
\]
What about the normal derivatives?

- **Rotation matrix (CCW 90°)**

\[
R = \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
\]

- \[
f_i = \frac{1}{\ell_i^2 |\hat{\mathbf{v}}_i|} R \hat{\mathbf{v}}_i \cdot B^T R \mathbf{v}_i, \quad g_i = \frac{1}{\ell_i^2 |\hat{\mathbf{v}}_i|} R \hat{\mathbf{v}}_i \cdot B^T \mathbf{v}_i
\]

- **Let**

\[
Q = \begin{bmatrix}
f_1 & g_1 \\
f_2 & g_2 \\
f_3 & g_3
\end{bmatrix}
\]

\[
D = \text{diag}[I_3, B^T, B^T, B^T, \Theta, \Theta, \Theta, Q]
\]
What about the normal derivatives?

- Rotation matrix (CCW 90°)

$$R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- Let

$$f_i = \frac{1}{\ell^2_i |\hat{v}_i|} R\hat{v}_i \cdot B^T Rv_i, \quad g_i = \frac{1}{\ell^2_i |\hat{v}_i|} R\hat{v}_i \cdot B^T v_i$$

- Let

$$Q = \begin{bmatrix} f_1 & | & g_1 \\ f_2 & | & g_2 \\ f_3 & | & g_3 \end{bmatrix}$$

$$D = \text{diag}[I_3, B^T, B^T, B^T, \Theta, \Theta, \Theta, Q]$$
\[E = \begin{bmatrix} I_{18} & 0 \\ 0 & L \\ T & 0 \end{bmatrix} \quad L = \text{diag}[\ell_1, \ell_2, \ell_3] \]

\[T \text{ is composed of the three sub blocks} \]

\[\frac{15}{8} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}, \quad -\frac{7}{16} \begin{bmatrix} v_1^T & v_1^T & 0 \\ v_2^T & 0 & v_2^T \\ 0 & v_3^2 & v_3^T \end{bmatrix}, \]

\[\frac{1}{32} \begin{bmatrix} -w_1^T & w_1^T & 0 \\ -w_2^T & 0 & w_2^T \\ 0 & -w_3^2 & w_3^T \end{bmatrix} \]

where \(w_i^T = [(v_i^x)^2, 2v_i^x v_i^y, (v_i^y)^2] \).

https://github.com/VT-ICAM/ArgyrisPack
Pitfalls
Caveat to always rotating CCW 90°

Discretized Domain
Caveat to always rotating CCW 90°
Caveat to always rotating CCW 90°
Caveat to always rotating CCW 90°
Caveat to always rotating CCW 90°

How to prevent this?

- Check node number and multiply by negative when appropriate.
- Number the nodes in a particular way to avoid the problem.
Boundary Conditions

- Consider the Poisson Problem

\[- \Delta u = f \text{ on } \Omega, \]
\[u = 0 \text{ on } \partial \Omega.\]

- With C^0 FEs we can set $u^h = 0$ on $\partial \Omega$.
Boundary Conditions

- Consider the Poisson Problem

\[- \Delta u = f \text{ on } \Omega,\]
\[u = 0 \text{ on } \partial \Omega.\]

- With C^0 FEs we can set $u^h = 0 \text{ on } \partial \Omega$
Boundary Conditions

- Consider the Poisson Problem

\[-\Delta u = f \text{ on } \Omega, \quad u = 0 \text{ on } \partial\Omega. \]

- With C^0 FE, we can set $u^h = 0$ on $\partial\Omega$

Eliminate Boundary Nodes
Boundary Conditions

- Consider the Poisson Problem

\[- \Delta u = f \text{ on } \Omega,\]
\[u = 0 \text{ on } \partial \Omega.\]

- With C^0 FEs we can set $u^h = 0$ on $\partial \Omega$

- Why can’t we do the same for C^1 elements?
 Well we can we just have to be smarter, since, for the Argyris element,

\[
\frac{\partial}{\partial x'} \frac{\partial}{\partial y'} \frac{\partial}{\partial n} \frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial x \partial y} \frac{\partial^2}{\partial y^2}
\]

are all DoFs.
$\partial \Omega = \Gamma_1 \cup \Gamma_2$

Rectangular Problem Domain
Boundary Conditions for Rectangular Domain
\[u = 0 \quad \Gamma_1 \qquad \Omega \qquad \Gamma_1 \quad u = 0 \]

\[\Rightarrow u = \frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial y^2} = 0 \]

\(\Gamma_1 \) Boundary Conditions

We would have to set

\[u^h = \frac{\partial u^h}{\partial y} = \frac{\partial^2 u^h}{\partial y^2} = 0 \text{ on } \Gamma_1 \]

for the Argyris Element.
\[u = 0 \]

\[\Gamma_2 \]

\[\Omega \]

\[\Gamma_2 \]

\[u = 0 \]

\[\Gamma_2 \text{ Boundary Conditions} \]
$u = 0$

Ω

Γ_2

$u = 0$

$\Rightarrow u = \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2} = 0$

Γ_2 Boundary Conditions

We would have to set

$$u^h = \frac{\partial u^h}{\partial x} = \frac{\partial^2 u^h}{\partial x^2} = 0 \text{ on } \Gamma_2$$

for the Argyris Element.
But what if we change the domain?

- Analyze the BCs and implement accordingly

- Lagrange Multipliers
 - Let Λ be the matrix representation of constraints (BCs)
 - Then the original Poisson problem can be written as a FE system with Lagrange multipliers:

\[
K u^h + \Lambda^T \lambda = \ell, \\
\Lambda u^h + \varepsilon \lambda = 0,
\]

where λ is the Lagrange multipliers, K is the stiffness matrix, ε is a small perturbation to prevent a poorly conditioned system, and ℓ is the load vector.
But what if we change the domain?

- Analyze the BCs and implement accordingly
- Lagrange Multipliers
 - Let Λ be the matrix representation of constraints (BCs)
 - Then the original Poisson problem can be written as a FE system with Lagrange multipliers:

\[
K u^h + \Lambda^T \lambda = \ell,
\]
\[
\Lambda u^h + \varepsilon \lambda = 0,
\]

where λ is the Lagrange multipliers, K is the stiffness matrix, ε is a small perturbation to prevent a poorly conditioned system, and ℓ is the load vector.
But what if we change the domain?

- Analyze the BCs and implement accordingly
- Lagrange Multipliers
 - Let Λ be the matrix representation of constraints (BCs)
 - Then the original Poisson problem can be written as a FE system with Lagrange multipliers:

$$
K u^h + \Lambda^T \lambda = \ell,
$$

$$
\Lambda u^h + \varepsilon \lambda = 0,
$$

where λ is the Lagrange multipliers, K is the stiffness matrix, ε is a small perturbation to prevent a poorly conditioned system, and ℓ is the load vector.
But what if we change the domain?

- Analyze the BCs and implement accordingly
- Lagrange Multipliers
 - Let Λ be the matrix representation of constraints (BCs)
 - Then the original Poisson problem can be written as a FE system with Lagrange multipliers:
 \[
 K u^h + \Lambda^T \lambda = \ell,
 \]
 \[
 \Lambda u^h + \varepsilon \lambda = 0,
 \]

where λ is the Lagrange multipliers, K is the stiffness matrix, ε is a small perturbation to prevent a poorly conditioned system, and ℓ is the load vector.
Recall the SQGE

\[Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega \]

Theorem (Optimal Error Estimate)

Let \(\psi \) be a unique solution of (5) and \(\psi^h \) be the solution of (6). Furthermore, assume that the following small data condition is satisfied:

\[Re^{-2} Ro \geq \Gamma_1 \| F \|_{-2} \]

Then

\[|\psi - \psi^h|_2 \leq c(Re, Ro, \Gamma_1, \Gamma_2, F) \cdot \inf_{\psi^h \in X^h} |\psi - \psi^h|_2 \quad (9) \]

where

\[c(Re, Ro, \Gamma_1, \Gamma_2, F) := \frac{\Gamma_2 Ro^{-1} + 2Re^{-1} + \Gamma_1 Re Ro^{-1} \| F \|_{-2}}{Re^{-1} - \Gamma_1 Re Ro^{-1} \| F \|_{-2}} \]
Recall the SQGE

\[Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega \]

Theorem (Optimal Error Estimate)

Let \(\psi \) be a unique solution of (5) and \(\psi^h \) be the solution of (6).

Furthermore, assume that the following small data condition is satisfied:

\[Re^{-2} Ro \geq \Gamma_1 \| F \|_{-2}, \]

Then

\[|\psi - \psi^h|_2 \leq c(Re, Ro, \Gamma_1, \Gamma_2, F) \cdot \inf_{\chi^h \in X^h} |\psi - \chi^h|_2 \] \hspace{1cm} (9)

where \(c(Re, Ro, \Gamma_1, \Gamma_2, F) := \frac{\Gamma_2 Ro^{-1} + 2Re^{-1} + \Gamma_1 Re Ro^{-1} \| F \|_{-2}}{Re^{-1} - \Gamma_1 Re Ro^{-1} \| F \|_{-2}} \)

Theorem (Argyris Error Estimates)

Let \(\psi \) be the solution of (5) and \(\psi^h \) be the solution of (6) and assume the small data condition

\[
Re^{-2} Ro \geq \Gamma_1 \| F \|_{-2}.
\]

Furthermore, assume that \(\psi \in H^6(\Omega) \cap H_0^2(\Omega) \) Then there exists positive constants \(C_0, C_1, \) and \(C_2 \) that depend on \(Re, Ro, \Gamma_1, \Gamma_2, F \) but not \(h \) such that

\[
|\psi - \psi^h|_2 \leq C_2 \cdot h^4 \tag{10}
\]
\[
|\psi - \psi^h|_1 \leq C_1 \cdot h^5 \tag{11}
\]
\[
\|\psi - \psi^h\|_0 \leq C_0 \cdot h^6 \tag{12}
\]

Proof relies on duality argument (Aubin-Nitsche) to bootstrap from \(H^2 \)-norm into \(L^2 \)-norm.
Numerical Test

\[Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad Re = Ro = 1 \]

- Domain

\[\Omega = [0, 1] \times [0, 1] \]

- Exact Solution

\[\psi(x, y) = \sin^2 \pi x \cdot \sin^2 2\pi y \]
Numerical Test

\[Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad Re = Ro = 1 \]

- Domain

\[\Omega = [0, 1] \times [0, 1] \]

- Exact Solution

\[\psi(x, y) = \sin^2 \pi x \cdot \sin^2 2\pi y \]
Numerical Test

\[Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \quad \text{on} \quad \partial \Omega, \quad Re = Ro = 1 \]

- **Domain**

 \[\Omega = [0, 1] \times [0, 1] \]

- **Exact Solution**

 \[\psi(x, y) = \sin^2 \pi x \cdot \sin^2 2\pi y \]
Numerical Test

\[Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad Re = Ro = 1 \]

- **Domain**

 \[\Omega = [0, 1] \times [0, 1] \]

- **Exact Solution**

 \[\psi(x, y) = \sin^2 \pi x \cdot \sin^2 2\pi y \]

<table>
<thead>
<tr>
<th>(h)</th>
<th>DoFs</th>
<th>(e_0)</th>
<th>(L_2) order</th>
<th>(e_1)</th>
<th>(H^1) order</th>
<th>(e_2)</th>
<th>(H^2) order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>0.09243</td>
<td>–</td>
<td>1.236</td>
<td>–</td>
<td>20.51</td>
<td>–</td>
</tr>
<tr>
<td>0.4268</td>
<td>106</td>
<td>0.0117</td>
<td>2.428</td>
<td>0.2311</td>
<td>1.969</td>
<td>5.667</td>
<td>1.511</td>
</tr>
<tr>
<td>0.2054</td>
<td>350</td>
<td>0.0002294</td>
<td>5.375</td>
<td>0.009499</td>
<td>4.364</td>
<td>0.4862</td>
<td>3.358</td>
</tr>
<tr>
<td>0.1011</td>
<td>1270</td>
<td>3.137 \times 10^{-6}</td>
<td>6.058</td>
<td>0.0002876</td>
<td>4.936</td>
<td>0.03209</td>
<td>3.836</td>
</tr>
<tr>
<td>0.05036</td>
<td>4838</td>
<td>3.849 \times 10^{-8}</td>
<td>6.313</td>
<td>7.825 \times 10^{-6}</td>
<td>5.171</td>
<td>0.001941</td>
<td>4.024</td>
</tr>
<tr>
<td>0.02517</td>
<td>18886</td>
<td>5.288 \times 10^{-10}</td>
<td>6.182</td>
<td>2.28 \times 10^{-7}</td>
<td>5.099</td>
<td>0.0001191</td>
<td>4.025</td>
</tr>
</tbody>
</table>
The Mediterranean Sea

- Domain:

Mesh for the Mediterranean Sea with $DoFs = 240, 342$.

- $Re = 5.27$, $Ro = 6.051 \times 10^{-4}$, $F = \sin \frac{\pi}{4} y$.
- Take the “true” solution to be the solution obtained from the numerical simulation on the fine mesh, $DoFs = 955, 302$ or $h = \frac{1}{640}$.

“True” solution of SQGE applied to the Mediterranean Sea.

Observed surface currents of the Mediterranean Sea.
Rates of Convergence

<table>
<thead>
<tr>
<th>h</th>
<th>$DoFs$</th>
<th>e_0</th>
<th>L^2 order</th>
<th>e_1</th>
<th>H^1 order</th>
<th>e_2</th>
<th>H^2 order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>1,122</td>
<td>2.08×10^{-6}</td>
<td>–</td>
<td>1.95×10^{-4}</td>
<td>–</td>
<td>4.50×10^{-2}</td>
<td>–</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>4,092</td>
<td>8.00×10^{-7}</td>
<td>1.38</td>
<td>6.68×10^{-5}</td>
<td>1.54</td>
<td>2.50×10^{-2}</td>
<td>0.850</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>15,594</td>
<td>2.91×10^{-7}</td>
<td>1.46</td>
<td>2.47×10^{-5}</td>
<td>1.43</td>
<td>1.49×10^{-2}</td>
<td>0.741</td>
</tr>
<tr>
<td>$\frac{1}{160}$</td>
<td>60,846</td>
<td>1.04×10^{-7}</td>
<td>1.49</td>
<td>9.05×10^{-6}</td>
<td>1.45</td>
<td>8.67×10^{-3}</td>
<td>0.785</td>
</tr>
<tr>
<td>$\frac{1}{320}$</td>
<td>240,342</td>
<td>3.10×10^{-8}</td>
<td>1.75</td>
<td>2.75×10^{-6}</td>
<td>1.72</td>
<td>4.35×10^{-3}</td>
<td>0.994</td>
</tr>
</tbody>
</table>
Time Dependence

- Recall the pure streamfunction form of QGE, i.e. Equation 3
 $$\frac{-\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F$$

$$\psi(t; x, y) = \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad \psi(0; x, y) = \psi_0(x, y)$$

- Strong Form
 $$\langle \nabla \psi_t, \nabla \chi \rangle + Re^{-1} \langle \Delta \psi, \Delta \chi \rangle + b(\psi; \psi, \chi)$$
 $$- Ro^{-1} \langle \psi_x, \chi \rangle = Ro^{-1} \langle F, \chi \rangle, \quad \forall \chi \in X \quad (13)$$

- Semi-discretization
 $$\langle \nabla \psi_t^h, \nabla \chi^h \rangle + Re^{-1} \langle \Delta \psi^h, \Delta \chi^h \rangle + b(\psi^h; \psi^h, \chi^h)$$
 $$- Ro^{-1} \langle \psi_x^h, \chi^h \rangle = Ro^{-1} \langle F, \chi^h \rangle, \quad \forall \chi^h \in X^h \quad (14)$$
Time Dependence

- Recall the pure streamfunction form of QGE, i.e. Equation 3

\[
- \frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F
\]

\[
\psi(t; x, y) = \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad \psi(0; x, y) = \psi_0(x, y)
\]

- Strong Form

\[
(\nabla \psi_t, \nabla \chi) + Re^{-1}(\Delta \psi, \Delta \chi) + b(\psi; \psi, \chi)
\]

\[
- Ro^{-1}(\psi_x, \chi) = Ro^{-1}(F, \chi), \quad \forall \chi \in X
\] (13)

- Semi-discretization

\[
(\nabla \psi_t^h, \nabla \chi^h) + Re^{-1}(\Delta \psi^h, \Delta \chi^h) + b(\psi^h; \psi^h, \chi^h)
\]

\[
- Ro^{-1}(\psi_x^h, \chi^h) = Ro^{-1}(F, \chi^h), \quad \forall \chi^h \in X^h
\] (14)
Time Dependence

- Recall the pure streamfunction form of QGE, i.e. Equation 3

\[-\frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^{2} \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F\]

\[\psi(t; x, y) = \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad \psi(0; x, y) = \psi_{0}(x, y)\]

- Strong Form

\[(\nabla \psi_{t}, \nabla \chi) + Re^{-1}(\Delta \psi, \Delta \chi) + b(\psi; \psi, \chi) - Ro^{-1}(\psi_{x}, \chi) = Ro^{-1}(F, \chi), \quad \forall \chi \in X \quad (13)\]

- Semi-discretization

\[(\nabla \psi_{t}^{h}, \nabla \chi^{h}) + Re^{-1}(\Delta \psi^{h}, \Delta \chi^{h}) + b(\psi^{h}; \psi^{h}, \chi^{h}) - Ro^{-1}(\psi_{x}^{h}, \chi^{h}) = Ro^{-1}(F, \chi^{h}), \quad \forall \chi^{h} \in X^{h} \quad (14)\]
Theorem (Semi-Discretization)

Let ψ be a unique solution to the QGE, (3). Then there exists constants $C_1(T, Re, \Gamma_3)$, $C_2(T, Re, \Gamma_3)$, $C_3(Re, Ro, \Gamma_2)$, and $C_4(T, F, \psi_0, \Gamma_1, \Gamma_2, Re, Ro, \|\Delta\psi\|_{L^4(0,T;L^2)})$ such that for all $t \in [0, T]$

$$
\|\nabla(\psi - \psi^h)\|^2 + Re^{-1} \int_0^T \|\Delta(\psi - \psi^h)\|^2 dt \\
\leq C_1(T, Re, \Gamma_3) \|\nabla(\psi_0 - \psi^h(0))\|^2 \\
+ \inf_{\lambda^h(t) \in X^h} \left\{ C_2(T, Re, \Gamma_3) \int_0^T \|\nabla(\psi - \lambda^h)_{t}\|^2_{-1} \\
+ C_3(Re, Ro, \Gamma_2) \|\Delta(\psi - \lambda^h)\|^2 dt \\
+ C_4(T, Re, Ro, F, \Gamma_1, \Gamma_2, \Gamma_4, \|\Delta\psi\|_{L^4(0,T;L^2)}) \\
\|\Delta(\psi - \lambda^h)\|_{L^4(0,T;L^2)} + 2 \|\nabla(\psi - \lambda^h)\|^2 \right\},
$$

(15)
Theorem (QGE Rates of Convergence)

Let X^h be the FE space associated with the Argyris element and an I^h the associated \mathbb{P}^5-interpolation operator (see Theorem 6.1.1 in Ciarlet). Suppose the interpolation estimates (7) hold and that $\psi, \psi_t \in H^6(\Omega)$. Suppose also that the assumptions of 3 hold. Then,

$$\| \nabla \left(\psi - \psi^h \right) (T) \|^2 + Re^{-1} \int_0^T \| \Delta \left(\psi - \psi^h \right) \|^2 \, dt \\
\leq h^8 C \left\{ \left(C_1(T, Re, \Gamma_3) + 2 \right) h^2 |\psi|^2_6 + C_2(T, Re, \Gamma_3) \right. \\
\left. \left(h^2 \| \psi_t \|^2_{L^2(0,T;H^6(\Omega))} + C_3(Re, Ro, \Gamma_2) \| \psi \|^2_{L^2(0,T;H^6(\Omega))} \right) \\
+ C_4(T, F, \psi_0, Re, Ro, \Gamma_1, \Gamma_3, \Gamma_4, \| \psi \|_{L^4(0,T;L^2)} \| \psi \|^2_{L^4(0,T;H^6(\Omega))} \right\}.$$

(16)
Numerical Test

\[- \frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F\]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad \psi(0; x, y) = \psi_0(x, y)\]

\[Re = Ro = 1\]

- \[\Omega = [0, 1] \times [0, 1], \quad t = [0, 0.5], \quad dt = \frac{1}{8192}\]
- \[\psi(t; x, y) = [\sin \pi x \sin \pi y]^2 \sin t\]
Numerical Test

\[-\frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F\]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad \psi(0; x, y) = \psi_0(x, y)\]

\[Re = Ro = 1\]

- \(\Omega = [0, 1] \times [0, 1], \ t = [0, 0.5], \ dt = \frac{1}{8192}\)
- \(\psi(t; x, y) = [\sin \pi x \sin \pi y]^2 \sin t\)
Numerical Test

\[- \frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F \]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad \psi(0; x, y) = \psi_0(x, y)\]

\[Re = Ro = 1\]

- \(\Omega = [0, 1] \times [0, 1], \quad t = [0, 0.5], \quad dt = \frac{1}{8192}\)
- \(\psi(t; x, y) = [\sin \pi x \sin \pi y]^2 \sin t\)
Numerical Test

\[-\frac{\partial [\Delta \psi]}{\partial t} + Re^{-1} \Delta^2 \psi + J(\psi, \Delta \psi) - Ro^{-1} \frac{\partial \psi}{\partial x} = Ro^{-1} F\]

\[\psi = 0, \quad \frac{\partial \psi}{\partial n} = 0 \text{ on } \partial \Omega, \quad \psi(0; x, y) = \psi_0(x, y)\]

\[Re = Ro = 1\]

- \(\Omega = [0, 1] \times [0, 1], \ t = [0, 0.5], \ dt = \frac{1}{8192}\)
- \(\psi(t; x, y) = [\sin \pi x \sin \pi y]^2 \sin t\)

<table>
<thead>
<tr>
<th>(h)</th>
<th>DoFs</th>
<th>(e_{L^2})</th>
<th>(L^2) order</th>
<th>(e_{H^1})</th>
<th>(H^1) order</th>
<th>(e_{H^2})</th>
<th>(H^2) order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2)</td>
<td>38</td>
<td>(1.23 \times 10^{-2})</td>
<td>–</td>
<td>(1.18 \times 10^{-1})</td>
<td>–</td>
<td>(1.57 \times 10^0)</td>
<td>–</td>
</tr>
<tr>
<td>(1/4)</td>
<td>174</td>
<td>(2.12 \times 10^{-5})</td>
<td>9.18</td>
<td>(7.31 \times 10^{-4})</td>
<td>7.34</td>
<td>(2.79 \times 10^{-2})</td>
<td>5.81</td>
</tr>
<tr>
<td>(1/8)</td>
<td>662</td>
<td>(7.88 \times 10^{-7})</td>
<td>4.75</td>
<td>(4.59 \times 10^{-5})</td>
<td>3.99</td>
<td>(3.04 \times 10^{-3})</td>
<td>3.20</td>
</tr>
<tr>
<td>(1/16)</td>
<td>2853</td>
<td>(7.87 \times 10^{-9})</td>
<td>6.65</td>
<td>(9.05 \times 10^{-7})</td>
<td>5.67</td>
<td>(1.29 \times 10^{-4})</td>
<td>4.56</td>
</tr>
<tr>
<td>(1/32)</td>
<td>11690</td>
<td>(6.97 \times 10^{-11})</td>
<td>6.82</td>
<td>(1.88 \times 10^{-8})</td>
<td>5.59</td>
<td>(5.98 \times 10^{-6})</td>
<td>4.43</td>
</tr>
<tr>
<td>(1/64)</td>
<td>47958</td>
<td>(7.23 \times 10^{-12})</td>
<td>3.27</td>
<td>(5.26 \times 10^{-10})</td>
<td>5.16</td>
<td>(3.43 \times 10^{-7})</td>
<td>4.12</td>
</tr>
</tbody>
</table>
Mesh of the North Atlantic created using GMSH with

\[h = \frac{1}{100}, \quad \text{DoFs} = 79,635. \]
Mesh of the North Atlantic created using GMSH with
\(h = \frac{1}{100}, \text{DoFs} = 79,635. \)

QGE on North Atlantic

\[F = \sin(\pi y), \ Re = 5.27, \]
\[Ro = 6.051 \times 10^{-4}, \ t = [0, 3], \]
\[dt = \frac{1}{100}, \text{DoFs} = 79,635 \]
Remember QGE is not NSE.

NSE: $Re = 200$

QGE: $Re = 200, Ro = 1$

QGE: $Re = 200, Ro = 1 \times 10^{-1}$

QGE: $Re = 200, Ro = 1 \times 10^{-2}$

QGE: $Re = 200, Ro = 1 \times 10^{-3}$
Challenges and Future Work

- **Realistic Parameters and Domains**
 - **Challenge**
 - Narrow Boundary Layer
 - Dynamic Structures
 - Loss of Regularity
 - Islands
 - **Possible Solution**
 - Stabilization Methods
 - Adaptive Mesh Refinement
 - Radical Meshes
 - Integral Conditions as in van Gijzen 1998

- **Ensemble Forecasting**
 - **Challenge**
 - “Slow” Code
 - **Possible Solutions**
 - Parallel Processing
 - Adaptive Mesh Refinement
 - Proper Orthogonal Decomposition
 - Large Eddy Simulation

- **Realistic Forcing through data assimilation.**
Challenges and Future Work

- **Realistic Parameters and Domains**
 - **Challenge**
 - Narrow Boundary Layer
 - Dynamic Structures
 - Loss of Regularity
 - Islands
 - **Possible Solution**
 - Stabilization Methods
 - Adaptive Mesh Refinement
 - Radical Meshes
 - Integral Conditions as in van Gijzen 1998

- **Ensemble Forecasting**
 - **Challenge**
 - “Slow” Code
 - **Possible Solutions**
 - Parallel Processing
 - Adaptive Mesh Refinement
 - Proper Orthogonal Decomposition
 - Large Eddy Simulation

- Realistic Forcing through data assimilation.
Challenges and Future Work

Realistic Parameters and Domains

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Boundary Layer</td>
<td>Stabilization Methods</td>
</tr>
<tr>
<td>Dynamic Structures</td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td>Loss of Regularity</td>
<td>Radical Meshes</td>
</tr>
<tr>
<td>Islands</td>
<td>Integral Conditions as in van Gijzen 1998</td>
</tr>
</tbody>
</table>

Ensemble Forecasting

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Slow” Code</td>
<td>Parallel Processing</td>
</tr>
<tr>
<td></td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td></td>
<td>Proper Orthogonal Decomposition</td>
</tr>
<tr>
<td></td>
<td>Large Eddy Simulation</td>
</tr>
</tbody>
</table>

Realistic Forcing through data assimilation.
Challenges and Future Work

- **Realistic Parameters and Domains**

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Boundary Layer</td>
<td>Stabilization Methods</td>
</tr>
<tr>
<td>Dynamic Structures</td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td>Loss of Regularity</td>
<td>Radical Meshes</td>
</tr>
<tr>
<td>Islands</td>
<td>Integral Conditions as in van Gijzen 1998</td>
</tr>
</tbody>
</table>

- **Ensemble Forecasting**

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Slow” Code</td>
<td>Parallel Processing</td>
</tr>
<tr>
<td></td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td></td>
<td>Proper Orthogonal Decomposition</td>
</tr>
<tr>
<td></td>
<td>Large Eddy Simulation</td>
</tr>
</tbody>
</table>

- Realistic Forcing through data assimilation.

E. L. Foster (BCAM)
Challenges and Future Work

Realistic Parameters and Domains

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Boundary Layer</td>
<td>Stabilization Methods</td>
</tr>
<tr>
<td>Dynamic Structures</td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td>Loss of Regularity</td>
<td>Radical Meshes</td>
</tr>
<tr>
<td>Islands</td>
<td>Integral Conditions as in van Gijzen 1998</td>
</tr>
</tbody>
</table>

Ensemble Forecasting

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Slow” Code</td>
<td>Parallel Processing</td>
</tr>
<tr>
<td></td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td></td>
<td>Proper Orthogonal Decomposition</td>
</tr>
<tr>
<td></td>
<td>Large Eddy Simulation</td>
</tr>
</tbody>
</table>

Realistic Forcing through data assimilation.
Challenges and Future Work

- **Realistic Parameters and Domains**

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow Boundary Layer</td>
<td>Stabilization Methods</td>
</tr>
<tr>
<td>Dynamic Structures</td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td>Loss of Regularity</td>
<td>Radical Meshe</td>
</tr>
<tr>
<td>Islands</td>
<td>Integral Conditions as in van Gijzen 1998</td>
</tr>
</tbody>
</table>

- **Ensemble Forecasting**

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Slow” Code</td>
<td>Parallel Processing</td>
</tr>
<tr>
<td></td>
<td>Adaptive Mesh Refinement</td>
</tr>
<tr>
<td></td>
<td>Proper Orthogonal Decomposition</td>
</tr>
<tr>
<td></td>
<td>Large Eddy Simulation</td>
</tr>
</tbody>
</table>

- Realistic Forcing through data assimilation.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
- Numerical Confirmation of Error Estimates
- Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work.
We would also like to acknowledge GMSH for their excellent meshing software.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
- Numerical Confirmation of Error Estimates
- Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work.

We would also like to acknowledge GMSH for their excellent meshing software.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
- Numerical Confirmation of Error Estimates
- Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work.
We would also like to acknowledge GMSH for their excellent meshing software.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
 - Numerical Confirmation of Error Estimates
 - Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work.
We would also like to acknowledge GMSH for their excellent meshing software.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
- Numerical Confirmation of Error Estimates

Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work.
We would also like to acknowledge GMSH for their excellent meshing software.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
- Numerical Confirmation of Error Estimates
- Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work.
We would also like to acknowledge GMSH for their excellent meshing software.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
- Numerical Confirmation of Error Estimates
- Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work. We would also like to acknowledge GMSH for their excellent meshing software.
Summary

- Large Scale Ocean Currents
- Quasi-Geostrophic Equation
- Pure Stream Function form of QGE
- Optimal Error estimates
- Numerical Confirmation of Error Estimates
- Future Work

We would like to acknowledge the NSF and ICTAS for their generous sponsorship of this work.
We would also like to acknowledge GMSH for their excellent meshing software.
Thank you!
References

- C. Johnson, 2009.