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Statement of the problem

We want to solve this optimization problem:

J (u0) = min
u0∈Uad

1
2

∫
R

[u(x ,T )− u∗(x)]
2 dx

subject to{
ut + [fc,θ(u)]x = νuxx + c

θ3 (Kθ ∗ u − θu) , (x , t) ∈ R× (0,T )

u(x , 0) = u(x), x ∈ R

where fc,θ(u) = − u2

2 −
c
θ
u and Kθ(z) := χz>0(z)e−z/θ.
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Linearized equation

Let us consider
uε,0(x) := u0(x + εδϕ0(x)) + εδu0(x)

If ε > 0 is small enough, uε can be written as uε = u + ε(δu + δϕux ) +O(ε2),
where:{
∂tδφ+ ∂x

[
f ′c,θ(u)δφ

]
= ν∂xxδφ+ c

θ3 (Kθ ∗ δφ− θδφ) , (x , t) ∈ R× (0,T )

δu(x , 0) = δu0(x), x ∈ R

denoting δφ = δu + δϕux .
In this case, the Gateaux derivative of J is:

δJ (u0)[δφ0] = lim
ε→0

J (uε,0)− J (u0)

ε
=

∫
R

[u(x ,T )− u∗(x)] δφ(x ,T )dx
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Adjoint equation

Multiply by a function p ∈ C1
0 (R× [0,T ]) and integrate it on R× [0,T ].

Integrating by parts and rearranging terms:∫
R
δφ(x ,T )p(x ,T )dx −

∫
R
δφ(x , 0)p(x , 0)dx

+

∫ T

0

∫
R
δφ
[
−pt − f ′c,θ(u)px − νpxx −

c
θ3

(
K̄θ ∗ p − p

)]
dxdt = 0

where K̄θ(z) := Kθ(−z). This leads to the adjoint equation:{
−pt − f ′c,θ(u)px − νpxx − c

θ3

(
K̄θ ∗ p − θp

)
= 0, (x , t) ∈ R× (0,T )

p(x ,T ) = u(x ,T )− u∗(x), x ∈ R

and, therefore,

δJ (u0)[δφ0] =

∫
R

p(x , 0)
[
δu0(x) + δϕ0(x)u0

x (x)
]

dx
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Usual continuous approach

Why the usual continuous approach (assuming u is smooth and δϕ0 ≡ 0) does
not work well?
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Alternating Descent Method

If we consider the viscosity to be small, the viscous case behaves similarly to
the the inviscid one. Thus, from the numerical point of view, it seems natural
to try to apply the same ideas.

Our aim is to obtain two pairs (δu0, δϕ0), one acting mainly on [x−, x+] and
the other out of it.
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Descent directions

A possible option is to choose δu0 ≡ 0, so that

δJ =

∫
R

p(x , 0)δϕ0(x)u0
x (x)dx (1)

This defines the second term of the descent direction: δϕ0 = −p(x , 0)u0
x (x).

But this perturbation could develop undesirable extra oscillations or, even
worse, extra quasi-shocks.
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Descent directions

The second option is to choose (δu0, δϕ0) such that

δJ (u0) =

∫
R\[x−,x+]

p(x , 0)δu0(x)dx

This can be done, for instance, if we assume that p(x , 0) is constant in
[x−, x+], δϕ0 ≡ 0 and

∫ x+

x− δu0(x)dx = 0.
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Conclusions

Really good performance, as for the ADM.

The creation of extra oscillations due to δϕ0 needs a better control.

Consider only linear perturbations: δϕ0(x) = αx + β.

Use compactly supported functions to restrict the perturbation.

Modify δu0 in [x−, x+] so that it adapts better to the quasi-shock.

Consider perturbations of the form: δu0(x) = Mu0(x) + N.

Alejandro Pozo ADM applied to ABE



Optimization problem
Alternating Descent Method

Conclusions

Thanks for your attention!
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