Global existence of solutions for some hyperbolic systems arising from chemotaxis

Roberto Natalini

Istituto per le Applicazioni del Calcolo ”M. Picone” Consiglio Nazionale delle Ricerche

16 February 2011, BCAM Working Group Line on PDE
What chemotaxis is?

• Movement of cells driven by chemical signals
• Patlak 1953; Keller-Segel 1970

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \text{div}(Du \nabla u - \chi(u, \phi) \nabla \phi), \\
\frac{\partial \phi}{\partial t} &= Dc \Delta \phi + f(u, \phi).
\end{align*}
\]

• u is the density of bacteria,
• ϕ is the density of the chemoattractant.

Many analytical and numerical results [Horstmann, 03 & 04]:
• existence of global solutions vs. finite time blow-up; analysis of the blow-up profile,
• self-similar solutions, traveling waves...
What chemotaxis is?

Movement of cells driven by chemical signals
What chemotaxis is?

Movement of cells driven by chemical signals
Patlak 1953; Keller-Segel 1970

\[
\begin{aligned}
\partial_t u &= \text{div} \left(D_u \nabla u - \chi(u, \phi) \nabla \phi \right), \\
\partial_t \phi &= D_c \Delta \phi + f(u, \phi).
\end{aligned}
\]
What chemotaxis is?

Movement of cells driven by chemical signals
Patlak 1953; Keller-Segel 1970

\[
\begin{align*}
\partial_t u &= \text{div} \left(D_u \nabla u - \chi(u, \phi) \nabla \phi \right), \\
\partial_t \phi &= D_c \Delta \phi + f(u, \phi).
\end{align*}
\]

- u is the density of bacteria,
- ϕ is the density of the chemoattractant.
What chemotaxis is?

Movement of cells driven by chemical signals
Patlak 1953; Keller-Segel 1970

\[
\begin{align*}
\partial_t u &= \text{div} \left(D_u \nabla u - \chi(u, \phi) \nabla \phi \right), \\
\partial_t \phi &= D_c \Delta \phi + f(u, \phi).
\end{align*}
\]

- \(u \) is the density of bacteria,
- \(\phi \) is the density of the chemoattractant.

Many analytical and numerical results [Horstmann, 03 & 04]:
- existence of global solutions vs. finite time blow-up; analysis of the blow-up profile,
- self-similar solutions, traveling waves...
Two hyperbolic models of chemotaxis

Cattaneo-type model (Hillen)

\[
\begin{align*}
\partial_t u + \text{div}(uV) &= 0, \\
\partial_t(uV) + \gamma^2 \nabla u &= u \nabla \phi - uV, \\
\partial_t \phi &= D \partial_{xx} \phi + f(u, \phi).
\end{align*}
\]
Two hyperbolic models of chemotaxis

Cattaneo-type model (Hillen)

\[
\begin{aligned}
\partial_t u + \text{div}(uV) &= 0, \\
\partial_t (uV) + \gamma^2 \nabla u &= u \nabla \phi - uV, \\
\partial_t \phi &= D \partial_{xx} \phi + f(u, \phi).
\end{aligned}
\]

Euler-type model (Gamba–Preziosi)

\[
\begin{aligned}
\partial_t u + \text{div}(uV) &= 0, \\
\partial_t (uV) + \text{div}(uV \otimes V) + \nabla P(u) &= u \nabla \phi - uV, \\
\partial_t \phi &= D \partial_{xx} \phi + f(u, \phi).
\end{aligned}
\]

Biological motivations: tomorrow talk
Two hyperbolic models of chemotaxis

Cattaneo-type model (Hillen)

\[
\begin{align*}
\partial_t u + \text{div}(uV) &= 0, \\
\partial_t (uV) + \gamma^2 \nabla u &= u \nabla \phi - uV, \\
\partial_t \phi &= D \partial_{xx} \phi + f(u, \phi).
\end{align*}
\]

Euler-type model (Gamba–Preziosi)

\[
\begin{align*}
\partial_t u + \text{div}(uV) &= 0, \\
\partial_t (uV) + \text{div}(uV \otimes V) + \nabla P(u) &= u \nabla \phi - uV, \\
\partial_t \phi &= D \partial_{xx} \phi + f(u, \phi).
\end{align*}
\]

Biological motivations: tomorrow talk
The simplest case

\[
\left\{
\begin{array}{l}
\partial_t u + \partial_x v = 0, \\
\partial_t v + \partial_x u = \partial_x \phi u - v, \\
\partial_t \phi - D \partial_{xx} \phi = u - \phi
\end{array}
\right.
\]
The simplest case

\[\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \partial_x u &= \partial_x \phi u - v, \\
\partial_t \phi - D \partial_{xx} \phi &= u - \phi
\end{align*} \] (1)

go to the blackboard!
A general statement

\[
\begin{aligned}
\partial_t u + \nabla \cdot v &= 0, \\
\partial_t v + \gamma^2 \nabla u &= h(\phi, \nabla \phi)g(u) - (\beta + \bar{b}(\phi, \nabla \phi))v, \\
\partial_t \phi &= \Delta \phi + au - b\phi + \bar{f}(u, \phi).
\end{aligned}
\]

Where \(\bar{b}(\phi, \nabla \phi), h(\phi, \nabla \phi), g(u) \) have linear growth and \(\bar{f}(u, \phi) \) is quadratic
Theorem Under the above assumptions, there exists an $\varepsilon_0 > 0$ such that, if
\[
\| u_0 \|_{H^s}, \| u_0 \|_{L^1}, \| v_0 \|_{H^s}, \| v_0 \|_{L^1}, \| \phi_0 \|_{H^{s+1}}, \| \phi_0 \|_{W^{1,\infty}} \leq \varepsilon_0,
\]
\[\Rightarrow \exists! \text{ global solution to the Cauchy problem (2), for } s \geq \left\lceil \frac{n}{2} \right\rceil + 1:
\]
\[u \in C([0, \infty), H^s(\mathbb{R}^n)), \quad v \in C([0, \infty), H^s(\mathbb{R}^n)), \quad \phi \in C([0, \infty), H^{s+1}(\mathbb{R}^n))\]

Moreover for the solution (u, v, ϕ) the following decay rates are satisfied for $k = 0, \ldots, s$
\[
\| u(t) \|_{L^\infty} \sim t^{-\frac{n}{2}}, \quad \| u(t) \|_{L^2} \sim t^{-\frac{n}{4}}, \quad \| D_x^k u(t) \|_{L^2} \sim t^{-\delta_k},
\]
\[
\| v(t) \|_{L^\infty} \sim t^{-\frac{n}{2}}, \quad \| v(t) \|_{L^2} \sim t^{-\min\left\{\frac{n}{2}, \frac{n}{4} + \frac{1}{2}\right\}}, \quad \| D_x^k v(t) \|_{L^2} \sim t^{-\nu_k},
\]
\[
\| \phi(t) \|_{L^\infty} \sim t^{-\frac{n}{2}}, \quad \| D_x^1 \phi(t) \|_{L^\infty} \sim t^{-\frac{n}{2}}, \quad \| D_x^{k+1} \phi(t) \|_{L^2} \sim t^{-\delta_k},
\]
\[
\| \phi(t) \|_{L^2} \sim t^{-\frac{n}{4}},
\]
\[
\| D_x^k \phi(t) \|_{L^2} \sim t^{-\delta_k},
\]
Comparison with the diffusive case

Cattaneo System

\begin{align*}
\partial_t u + \nabla \cdot v &= 0, \\
\partial_t v + \nabla u &= -\beta v + h(\phi, \nabla \phi)g(u), \\
\partial_t \phi &= \Delta \phi + au - b\phi + \tilde{f}(u, \phi)
\end{align*}
Comparison with the diffusive case

Cattaneo System

\begin{align*}
\partial_t u + \nabla \cdot \nu &= 0, \\
\partial_t \nu + \nabla u &= -\beta \nu + h(\phi, \nabla \phi) g(u), \\
\partial_t \phi &= \Delta \phi + au - b\phi + \bar{f}(u, \phi)
\end{align*}

Keller-Segel System

\begin{align*}
\beta \partial_t \tilde{u} - \Delta \tilde{u} + \nabla \cdot (h(\tilde{\phi}, \nabla \tilde{\phi}) g(\tilde{u})) &= 0 \\
\partial_t \tilde{\phi} &= \Delta \tilde{\phi} + a\tilde{u} - b\tilde{\phi} + \bar{f}(\tilde{u}, \tilde{\phi})
\end{align*}
Comparison with the diffusive case

Asymptotic convergence Let \((u, v, \phi)\) and \((\tilde{u}, \tilde{\phi})\) be the global solutions respectively to the Cattaneo and Keller-Segel systems. Then there exist \(\varepsilon_0, L > 0\) such that, if

\[
\|u_0\|_{H^s}, \|u_0\|_{L^1}, \|v_0\|_{H^s}, \|v_0\|_{L^1}, \|\phi_0\|_{H^{s+1}}, \|\phi_0\|_{W^{1,\infty}} \leq \varepsilon_0
\]

then, for all \(t > 0\),

\[
\sup_{(0,t)} \left\{ \max\{1, s^{\delta}\} \left(\|u(s) - \tilde{u}(s)\|_{L^2} + \|\phi(s) - \tilde{\phi}(s)\|_{L^2} \right) \right\} \leq L
\]

where \(\delta = \min\{\frac{n}{4} + \frac{1}{2}, \frac{n}{2}\}\).
The Gamba-Preziosi model

\[\begin{align*}
\partial_t \tilde{\rho} + \partial_x (\tilde{\nu}) &= 0, \\
\partial_t (\tilde{\nu}) + \partial_x \left(\frac{\tilde{\nu}^2}{\tilde{\rho}} + P(\tilde{\rho}) \right) &= \mu \tilde{\rho} \partial_x \tilde{\phi} - \alpha \tilde{\nu}, \\
\partial_t \tilde{\phi} &= D \partial_{xx} \tilde{\phi} + a \tilde{\rho} - \frac{\tilde{\phi}}{\tau},
\end{align*} \]

with \(P'(\rho) > 0 \)
Consider solutions of the form \((\tilde{\rho}, \tilde{v}, \tilde{\phi}) = (\rho + \bar{\rho}, v, \phi + \bar{\phi})\), where \((\bar{\rho}, 0, \bar{\phi})\) is a constant solution

\[
\begin{align*}
\partial_t \rho + \partial_x v &= 0, \\
\partial_t v + \partial_x \left(\frac{v^2}{\rho + \bar{\rho}} + P(\rho + \bar{\rho}) \right) &= \mu(\rho + \bar{\rho}) \partial_x \phi - \alpha v, \\
\partial_t \phi &= D \partial_{xx} \phi + a \rho - \frac{\phi}{\tau}.
\end{align*}
\]
The Gamba-Preziosi model

Theorem We consider the Cauchy problem associated to the Gamba-Preziosi system, with small initial data \((\rho_0, v_0) \in H^2(\mathbb{R})\) and \(\phi_0 \in H^2(\mathbb{R})\). If \(\|(\rho_0, v_0)\|_{H^2(\mathbb{R})}, \|\phi_0\|_{H^2(\mathbb{R})}\) and \(\bar{\rho}\) are sufficiently small, then there exists a unique global solution \((\rho, v, \phi)\) to the Gamba-Preziosi system s.t.:

\[
(\rho, v) \in C([0, \infty), H^2(\mathbb{R})), \quad \phi \in C([0, \infty), H^2(\mathbb{R})) \cap L^2([0, \infty), H^3(\mathbb{R}))
\]

and, for each \(T > 0\),

\[
\|(\rho, v)(T)\|_{H^2}^2 + \int_0^T \|\partial_x (\rho, v)(\tau)\|_{H^1}^2 \, d\tau + \int_0^T \|v(\tau)\|_{H^2}^2 \leq C \|(\rho, v)_0\|_{H^2}^2,
\]

\[
\|\phi(T)\|_{H^2}^2 + \int_0^T \|\partial_x \phi(\tau)\|_{H^2}^2 \, d\tau \leq C(\|(\rho, v)_0\|_{H^2}^2 + \|\phi_0\|_{H^2}^2),
\]

where \(C = C(\bar{\rho}, \|(\rho, v)_0\|_{H^2}, \|\phi_0\|_{H^2})\).
The Gamba-Preziosi model

Differences w.r.t. the Cattaneo model
The Gamba-Preziosi model

Differences w.r.t. the Cattaneo model

- The hyperbolic part is quasilinear:
The Gamba-Preziosi model

Differences w.r.t. the Cattaneo model

• The hyperbolic part is quasilinear: to prove the existence no Duhamel formula
The Gamba-Preziosi model

Differences w.r.t. the Cattaneo model

• The hyperbolic part is quasilinear: to prove the existence no Duhamel formula

• Strategy: embed the chemoattract ϕ estimates in the Kawashima formalism (Hanouzet-N. proof for the hyperbolic systems)
The Gamba-Preziosi model

Differences w.r.t. the Cattaneo model

- The hyperbolic part is quasilinear: to prove the existence no Duhamel formula
- Strategy: embed the chemoattractant ϕ estimates in the Kawashima formalism (Hanouzet-N. proof for the hyperbolic systems)
- Decay estimates can be obtained by the Duhamel formula obtained on the linearized system,
The Gamba-Preziosi model

Differences w.r.t. the Cattaneo model

- The hyperbolic part is quasilinear: to prove the existence no Duhamel formula
- Strategy: embed the chemoattractant \(\phi \) estimates in the Kawashima formalism (Hanouzet-N. proof for the hyperbolic systems)
- Decay estimates can be obtained by the Duhamel formula obtained on the linearized system, which coincides with the Cattaneo one
The Gamba-Preziosi model

Differences w.r.t. the Cattaneo model

• The hyperbolic part is quasilinear: to prove the existence no Duhamel formula

• Strategy: embed the chemoattract ϕ estimates in the Kawashima formalism (Hanouzet-N. proof for the hyperbolic systems)

• Decay estimates can be obtained by the Duhamel formula obtained on the linearized system, which coincides with the Cattaneo one

Blackboard, again!
Decay rates theorem Let \((U, \phi)(t)\) a global (perturbation) solution to the Gamba Preziosi system, with

\[U_0(x) \in H^{s+1}(\mathbb{R}) \cap L^1(\mathbb{R}), \quad \phi_0(x) \in H^{s+1}(\mathbb{R}) \cap L^1(\mathbb{R}), \quad \text{for } s \geq 1. \]

Then the following decay estimate holds:

\[\| U(t) \|_{H^s} + \| \phi(t) \|_{H^{s+1}} \leq C \min\{1, t^{-\frac{1}{4}}\}(E_{s+1} + D_{s+1}) \]

\[\| U(t) \|_{L^\infty} + \| \phi(t) \|_{L^\infty} \leq C \min\{1, t^{-\frac{1}{2}}\}(E_2 + D_2) \]

where the constant \(C\) depends on the constant state.
The Neumann problem for the Cattaneo model

Let \((U, 0, \Phi)\) be a constant steady state of the Cattaneo model

\((U + u, v, \Phi + \phi)\) perturbed solution

The perturbation \(w = (u, v, \phi)\) satisfies

\[
\begin{cases}
 \partial_t u + \partial_x v = 0, \\
 \partial_t v + \gamma^2 \partial_x u - \chi U \partial_x \phi + \beta v = F_1(\phi, \partial_x \phi) + F_2(\phi, \partial_x \phi) u + F_3(\phi, \partial_x \phi) v, \\
 \partial_t \phi - D \partial_{xx} \phi + b \phi - a u = F_4(u, \phi),
\end{cases}
\]

where

\[
F_1(\phi, \partial_x \phi) := U (g(\Phi + \phi, \partial_x \phi) - \chi \phi) = O\left(\left|\phi, \partial_x \phi\right|^2\right),
\]

\[
F_2(\phi, \partial_x \phi) := g(\Phi + \phi, \partial_x \phi) = O\left(\left|\phi, \partial_x \phi\right|^2\right),
\]

\[
F_3(\phi, \partial_x \phi) := \beta - h(\Phi + \phi, \partial_x \phi) = O\left(\left|\phi, \partial_x \phi\right|^2\right),
\]

\[
F_4(u, \phi) := f(U + u, \Phi + \phi) - a u + b \phi = O\left(\left|u, \phi\right|^2\right)\]
The Neumann problem for the Cattaneo model

Let \((U, 0, \Phi)\) be a constant steady state of the Cattaneo model \((U + u, v, \Phi + \phi)\) perturbed solution

The perturbation \(w = (u, v, \phi)\) satisfies

\[
\begin{cases}
\partial_t u + \partial_x v = 0, \\
\partial_t v + \gamma^2 \partial_x u - \chi U \partial_x \phi + \beta v \\
= F_1(\phi, \partial_x \phi) + F_2(\phi, \partial_x \phi) u + F_3(\phi, \partial_x \phi) v, \\
\partial_t \phi - D \partial_{xx} \phi + b\phi - a u = F_4(u, \phi),
\end{cases}
\]

where

\[
F_1(\phi, \psi) := U \left(g(\Phi + \phi, \psi) - \chi \psi \right) = O(||(\phi, \psi)||^2),
\]

\[
F_2(\phi, \psi) := g(\Phi + \phi, \psi) = O(||(\phi, \psi)||),
\]

\[
F_3(\phi, \psi) := \beta - h(\Phi + \phi, \psi) = O(||(\phi, \psi)||),
\]

\[
F_4(u, \phi) := f(U + u, \Phi + \phi) - a u + b \phi = O(||(u, \phi)||^2)
\]

\(v = \partial_x \phi = 0, \quad \text{for } x = 0, L\)

\(|(\phi, \psi)| \to 0\)

\(|(u, \phi)| \to 0\)
The linearized problem

Linearizing around a constant state

\[(u, v, \phi) = \left(U, 0, \frac{a}{b} U\right), \quad U \geq 0.\]

\[
\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \gamma^2 \partial_x u &= \chi U \partial_x \phi - v, \\
\partial_t \phi - D \partial_{xx} \phi &= au - b\phi
\end{align*}
\]

Inserting plane waves like \(u(k) = e^{\lambda(k) t + ikx}\) we find the stability condition to have \(\Re \lambda(k) \leq 0:\).
The linearized problem

Linearizing around a constant state

\[(u, v, \phi) = \left(U, 0, \frac{a}{b} U\right), \quad U \geq 0.\]

\[
\begin{align*}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \gamma^2 \partial_x u &= \chi U \partial_x \phi - v, \\
\partial_t \phi - D \partial_{xx} \phi &= au - b\phi
\end{align*}
\]

Inserting plane waves like \[u(k) = e^{\lambda(k)t + ikx}\] we find the stability condition to have \(\Re \lambda(k) \leq 0:\)
The linearized problem

Linearizing around a constant state

\[(u, v, \phi) = \left(U, 0, \frac{a}{b} U \right), \quad U \geq 0.\]

\[
\begin{aligned}
\partial_t u + \partial_x v &= 0, \\
\partial_t v + \gamma^2 \partial_x u &= \chi U \partial_x \phi - v, \\
\partial_t \phi - D \partial_{xx} \phi &= au - b\phi
\end{aligned}
\]

Inserting plane waves like \(u(k) = e^{\lambda(k)t + ikx}\) we find the stability condition to have \(\Re \lambda(k) \leq 0:\)

\[
U < \frac{\gamma^2 (b + Dk^2)}{a \chi}
\]
Theorem

Under the previous assumptions, let \((U, 0, \Phi)\) be a constant steady state such that

\[
\chi = \partial_\psi g(\Phi, 0) > 0, \quad \beta = h(\Phi, 0) > 0, \quad \partial_\phi f(U, \Phi) = -b < 0 < a = \partial_u f(U, \Phi)
\]

Assume the stability condition

\[
U < \frac{\gamma^2}{\chi a} \left(b + \frac{D \pi^2}{L^2} \right)
\]
Global existence for the Neumann case

Theorem

Under the previous assumptions, let \((U, 0, \Phi)\) be a constant steady state such that

\[\chi = \partial_\psi g(\Phi, 0) > 0, \quad \beta = h(\Phi, 0) > 0, \quad \partial_\phi f(U, \Phi) = -b < 0 < a = \partial_u f(U, \Phi) \]

Assume the stability condition

\[U < \frac{\gamma^2}{\chi a} \left(b + \frac{D \pi^2}{L^2} \right) \]

Let \(w_0 = (u_0, v_0, \phi_0) \in H^1\) the perturbation (with zero mass for \(u_0\)), and \(w\) the corresponding solution. Then there exists \(\varepsilon_0 > 0\) such that, if \(\|w_0\|_{H^1} \leq \varepsilon_0\), then

\[\|w\|_{H^1(t)} \leq C \|w_0\|_{H^1} e^{-\theta t}. \quad \forall t > 0. \]
A model on a simple network (one node)

\[
\begin{align*}
\partial_t u^i + \partial_x v^i &= 0, \\
\partial_t v^i + \partial_x u^i &= \partial_x \phi^i u^i - v^i, \\
\partial_t \phi^i - D \partial_{xx} \phi^i &= u^i - \phi^i
\end{align*}
\]

• a network of oriented arcs consists of \(M = E \cup U \) intervals (E=enter, U=exit) \([a_i, N], i \in E \) (E=incoming), and \([N, a_i], i \in U \) (U=outcoming), and \(N \) is the node;
• for each \(i = 1, \ldots, M \), \(u_i^\pm(x, t) \) is defined in \([a_i, N] \times [0, T] \in R \times R \);
• initial conditions
• boundary and node conditions (discussed later..)
Diagonal formulation

Let \(u = u^+ + u^- \) and \(v = \lambda(u^+ - u^-) \)

\[
\begin{align*}
\begin{cases}
 u_{i,t}^+ + \lambda_i u_{i,x}^+ &= \frac{1}{2\lambda_i} ((\phi_i^i + \lambda_i)u_i^- - (\lambda_i - \phi_x^i)u_i^+), \\
 u_{i,t}^- - \lambda_i u_{i,x}^- &= -\frac{1}{2\lambda_i} ((\phi_i^i + \lambda_i)u_i^- - (\lambda_i - \phi_x^i)u_i^+).
\end{cases}
\end{align*}
\]

external boundary conditions: no flux conditions

\[
v^i(a_i) = \lambda(u_i^+ - u_i^-) = 0, \phi_x^i(a_i) = 0
\]
Diagonal formulation

Let \(u = u^+ + u^- \) and \(v = \lambda (u^+ - u^-) \)

\[
\begin{align*}
 u_{i,t}^+ + \lambda_i u_{i,x}^+ &= \frac{1}{2\lambda_i}((\phi_x^i + \lambda_i)u_i^- - (\lambda_i - \phi_x^i)u_i^+), \\
 u_{i,t}^- - \lambda_i u_{i,x}^- &= -\frac{1}{2\lambda_i}((\phi_x^i + \lambda_i)u_i^- - (\lambda_i - \phi_x^i)u_i^+).
\end{align*}
\]

external boundary conditions: no flux conditions

\[
v^i(a_i) = \lambda(u_i^+ - u_i^-) = 0, \phi_x^i(a_i) = 0
\]

More general external boundary conditions

\[
u_+^i = \beta_{ai}u_+^i + b_{ai}(t), \quad i \in E
\]

\[
u_-^i = \beta_{ai}u_-^i + b_{ai}(t), \quad i \in U
\]
Flux conservation

\[
\sum_{i \in E} \lambda_i (u_i^+ - u_i^-)(N, t) = \sum_{i \in U} \lambda_i (u_i^+ - u_i^-)(N, t), \quad \sum_i D_i \phi_x^i = 0
\]
Node

Flux conservation

\[
\sum_{i \in E} \lambda_i (u_i^+ - u_i^-)(N, t) = \sum_{i \in U} \lambda_i (u_i^+ - u_i^-)(N, t), \sum_i D_i \phi_x = 0
\]

Conditions in \(N \):

- if \(i \in E \): \(u_i^- (N, t) = \sum_{j \in E} \beta_{i,j} u_j^+(N, t) + \sum_{j \in U} \gamma_{i,j} u_j^-(N, t) \)
- if \(i \in U \): \(u_i^+(N, t) = \sum_{j \in E} \beta_{i,j} u_j^+(N, t) + \sum_{j \in U} \gamma_{i,j} u_j^-(N, t) \)
Node

Flux conservation

\[
\sum_{i \in E} \lambda_i (u_i^+ - u_i^-) (N, t) = \sum_{i \in U} \lambda_i (u_i^+ - u_i^-) (N, t), \quad \sum_i D_i \phi_x^i = 0
\]

Conditions in \(N \):

- if \(i \in E \): \(u_i^- (N, t) = \sum_{j \in E} \beta_{i,j} u_j^+ (N, t) + \sum_{j \in U} \gamma_{i,j} u_j^- (N, t) \)
- if \(i \in U \): \(u_i^+ (N, t) = \sum_{j \in E} \beta_{i,j} u_j^+ (N, t) + \sum_{j \in U} \gamma_{i,j} u_j^- (N, t) \)
- \(D_i \phi_x^i = \sum_j \kappa_{ij} (\phi_j^i (N, t) - \phi_i^i (N, t)) \)
Node

Flux conservation

\[\sum_{i \in E} \lambda_i (u_i^+ - u_i^-)(N, t) = \sum_{i \in U} \lambda_i (u_i^+ - u_i^-)(N, t), \sum_i D_i \phi_x^i = 0 \]

Conditions in \(N \):

• if \(i \in E \): \(u_i^- (N, t) = \sum_{j \in E} \beta_{i,j} u_j^+ (N, t) + \sum_{j \in U} \gamma_{i,j} u_j^- (N, t) \)
• if \(i \in U \): \(u_i^+ (N, t) = \sum_{j \in E} \beta_{i,j} u_j^+ (N, t) + \sum_{j \in U} \gamma_{i,j} u_j^- (N, t) \)
• \(D_i \phi_x^i = \sum_j \kappa_{ij} (\phi_j^j (N, t) - \phi_i^i (N, t)) \)
• \(\beta_{i,j}, \gamma_{i,j} \in [0, 1]; \kappa_{ij} \geq 0 \)
• \(\sum_{i \in E \cup U} \lambda_i \beta_{i,j} = \lambda_j = \sum_{i \in E \cup U} \lambda_i \gamma_{i,j} \), \(\kappa_{ij} = \kappa_{ji} \)
Analytical results only for the case $\phi_x = \alpha = \text{const.}$

Results obtained in collaboration with Irene Guaraldo (Ph.D Student)
Analytical results only for the case \(\phi_x = \alpha = \text{const.} \).

Results obtained in collaboration with Irene Guaraldo (Ph.D Student)

- If \(|\alpha_i| \leq \lambda\) and \(|\beta_{ai}| \leq 1\), then

\[
\sum_{i=1}^{M} \int_{a_i}^{N} |u_i^+| + |u_i^-| \, dx \leq \sum_{i=1}^{M} \int_{a_i}^{N} |u_{i,0}^+| + |u_{i,0}^-| \, dx + \sum_{i=1}^{M} \lambda_i \int_{0}^{T} |b_{ai}(t)| \, dt
\]
\[
\int_{a_i}^N |u_i^+| + |u_i^-| \, dx \leq \int_{a_i}^N |u_{i,0}^+| + |u_{i,0}^-| \, dx \\
+ \lambda_i \int_0^T (|u_i^+(a_i)| - |u_i^-(a_i)|) \, dt - \lambda_i \int_0^T (|u_i^+(N)| - |u_i^-(N)|) \, dt \\
\leq \int_{a_i}^N |u_{i,0}^+| + |u_{i,0}^-| \, dx + \lambda_i \int_0^T (|\beta_{a_i} u_i^- + b_{a_i}(t)| - |u_i^-(a_i)|) \, dt \\
- \lambda_i \int_0^T (|u_i^+(N)| - \sum_{j \in E} \beta_{i,j} u_i^+(N, t) + \sum_{j \in U} \gamma_{i,j} u_i^-(N, t)) \, dt \\
\leq \int_{a_i}^N |u_{i,0}^+| + |u_{i,0}^-| \, dx + \lambda_i \int_0^T (|\beta_{a_i} - 1| |u_i^-(a_i)|) \, dt + \int_0^T \lambda_i |b_{a_i}(t)| \, dt \\
- \lambda_i \int_0^T (|u_i^+(N)| - \sum_{j \in E} \beta_{i,j} u_i^+(N, t) + \sum_{j \in U} \gamma_{i,j} u_i^-(N, t)) \, dt \\
\leq \int_{a_i}^N |u_{i,0}^+| + |u_{i,0}^-| \, dx + \int_0^T \lambda_i |b_{a_i}(t)| \, dt \\
- \lambda_i \int_0^T (|u_i^+(N)| - \sum_{j \in E} \beta_{i,j} u_i^+(N, t) + \sum_{j \in U} \gamma_{i,j} u_i^-(N, t)) \, dt;
\]
Analytical results only for the case $\phi_x = \alpha = \text{const.}$

Results obtained in collaboration with Irene Guaraldo (Ph.D Student)

- If $|\alpha_i| \leq \lambda$ and $|\beta_{a_i}| \leq 1$, then

$$\sum_{i=1}^{M} \int_{a_i}^{N} |u_i^+| + |u_i^-| \, dx \leq \sum_{i=1}^{M} \int_{a_i}^{N} |u_{i,0}^+| + |u_{i,0}^-| \, dx + \sum_{i=1}^{M} \lambda_i \int_{0}^{T} |b_{a_i}(t)| \, dt$$
Analytical results only for the case $\phi_x = \alpha = \text{const.}$

Results obtained in collaboration with Irene Guaraldo (Ph.D Student)

- If $|\alpha_i| \leq \lambda$ and $|\beta_{ai}| \leq 1$, then
 \[
 \sum_{i=1}^{M} \int_{a_i}^{N} |u_i^+| + |u_i^-| \, dx \leq \sum_{i=1}^{M} \int_{a_i}^{N} |u_{i,0}^+| + |u_{i,0}^-| \, dx + \sum_{i=1}^{M} \lambda_i \int_{0}^{T} |b_{ai}(t)| \, dt
 \]

- Uniformly Bounded time derivatives in L^1
Analytical results only for the case $\phi_x = \alpha = \text{const.}$

Results obtained in collaboration with Irene Guaraldo (Ph.D Student)

- If $|\alpha_i| \leq \lambda$ and $|\beta_{a_i}| \leq 1$, then
 $$\sum_{i=1}^{M} \int_{a_i}^{N} |u^+_i| + |u^-_i| \, dx \leq \sum_{i=1}^{M} \int_{a_i}^{N} |u^+_{i,0}| + |u^-_{i,0}| \, dx + \sum_{i=1}^{M} \lambda_i \int_{0}^{T} |b_{a_i}(t)| \, dt$$

- Uniformly Bounded time derivatives in L^1
- Uniformly Bounded space derivatives in L^1
Analytical results only for the case $\phi_x = \alpha = \text{const.}$

Results obtained in collaboration with Irene Guaraldo (Ph.D Student)

- If $|\alpha_i| \leq \lambda$ and $|\beta_{a_i}| \leq 1$, then
 \[
 \sum_{i=1}^{M} \int_{a_i}^{N} |u_i^+| + |u_i^-| \, dx \leq \sum_{i=1}^{M} \int_{a_i}^{N} |u_{i,0}^+| + |u_{i,0}^-| \, dx + \sum_{i=1}^{M} \lambda_i \int_{0}^{T} |b_{a_i}(t)| \, dt
 \]

- Uniformly Bounded time derivatives in L^1
- Uniformly Bounded space derivatives in L^1
- Global existence (and uniqueness) by an approximation procedure (on the Node conditions)
Open problems and perspectives

• 1D Cauchy problem: solutions with big data
• MultiD Cauchy problem: Blow-up in finite time?
• Neumann 1D problem: stability of non constant stationary solutions
• Network problem: general chemoattractant.

Work in progress with I. Guaraldo. Analysis of the semigroup generator for the linear problem
Open problems and perspectives

- 1D Cauchy problem: solutions with big data
- MultiD Cauchy problem: Blow-up in finite time?
- Neumann 1D problem: stability of non constant stationary solutions
- Network problem: general chemoattractant.

Work in progress with I. Guaraldo. Analysis of the semigroup generator for the linear problem.
Open problems and perspectives

- 1D Cauchy problem: solutions with big data
- MultiD Cauchy problem: Blow-up in finite time?
- Neumann 1D problem: stability of non constant stationary solutions
- Network problem: general chemoattractant.

Work in progress with I. Guaraldo. Analysis of the semigroup generator for the linear problem
Open problems and perspectives

- 1D Cauchy problem: solutions with big data
- MultiD Cauchy problem: Blow-up in finite time?
- Neumann 1D problem: stability of non constant stationary solutions

Work in progress with I. Guaraldo. Analysis of the semigroup generator for the linear problem.
Open problems and perspectives

- 1D Cauchy problem: solutions with big data
- MultiD Cauchy problem: Blow-up in finite time?
- Neumann 1D problem: stability of non constant stationary solutions
- Network problem: general chemoattractant.

Work in progress with I. Guaraldo. Analysis of the semigroup generator for the linear problem.
Open problems and perspectives

- 1D Cauchy problem: solutions with big data
- MultiD Cauchy problem: Blow-up in finite time?
- Neumann 1D problem: stability of non constant stationary solutions
- Network problem: general chemoattractant.
 Work in progress with I. Guaraldo. Analysis of the semigroup generator for the linear problem