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Introduction

Linear Mindlin-Timoshenko system

oh® .
72¢ _¢xx+k(¢+¢x):0 in Q,
ph" —k(p+1x), =0 in Q,

Boundary Conditions
¢ (x,0) =do(x), ¢ (x,0)=¢1(x) in (
P (x,0) =1o(x), ¢ (x0)=v1(x) in (

e Q=(0,L) x (0, T)

@ ¢ - angle of rotation

@ 1 - vertical displacement

@ p - density, h - thickness of the beam

@ k > 0 - modulus of elasticity in shear
1
!Mindlin (1951), Timoshenko-Woinowsky (1959) , Lagnese-Lions (1988)
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B.C.:
[6(0,t) = (L, t) =1 (0,t) = s (L,t) =0 on (0, T)]
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Introduction

The energy of the Mindlin-Timoshenko system

1 ph3

L
Eul) = [ {55 10O + o140 + fox x OF +

K16 (x, 1) + i (x, £) P dx

is conservative, that is,

E, (1.') = E4 (0) .
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Introduction

When assuming that the linear filament of the beam remains
perpendicular to the deformed middle surface, the transverse shear
effects are neglected.
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Introduction

Linear Kirchhoff system

Y« (0,-) = ¢x (L,-) =0 on
wXXX (07 ) = ¢xxx (L, ) =0 on
¥ (,0) =10, ¢'(-0)=v1 in (0,L).

" ph3 ! _ H
P’“ﬂ - wax + wXXXX =0 n Q7
(
(

2Kirchhoff (1850) , Lagnese-Lions (1988) .

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Introduction

Linear Kirchhoff system

Y« (0,-) = ¢x (L,-) =0 on
wXXX (07 ) = ¢xxx (L, ) =0 on
¥ (,0) =10, ¢'(-0)=v1 in (0,L).

Notice that the energy of the Kirchhoff system

" ph3 ! _ H
P’“ﬂ - wax + wXXXX =0 n Q7
(
(

L 3
E(t) = ;/0 {ph W’ (x, t)}2 + % ’z/); (x, t)‘2 + |thxx (X, t)|2} dx.

is also conservative, that is,
E(t)=£(0).

2
2Kirchhoff (1850) , Lagnese-Lions (1988) .
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Introduction

Control problem

3
%u”—uxx+k(u+vx):0 in Q,
phv" — k(u+vy), =0 in Q,
u(0,-)=0, wu(L,-)=0 on (0,7),
v« (0,-) = O, w(L,-)=0 on (0,7),
u(,0)=uw, v(-,00=uv1 in (0,L),
v(,0)=w, V(,0)=wn in  (0,L)
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Introduction

Control problem

ph?

ﬁu”—ux)ﬁ—k(u—l—vx):o in Q,
phv" — k(u+vy), =0 in Q,
u(0,-)=0, wu(L,-)=0 on (0,7),
v« (0,-) = O, w(L,-)=0 on (0,7),
u(,0)=uw, v(-,00=uv1 in (0,L),
v(,0)=w, V(,0)=wn in  (0,L).

Problem: given T > 0, large enough, and initial data, to find a
control © such that the solution of system satisfies the conditions

u(-T)=d(,T)=v(,T)=V(,T)=0 in (0,L).
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Introduction

As k — oo, the Mindlin-Timoshenko system tends to Kirchhoff

system
3
phv” — %vgx 4+ Viox = 0 in Q,
v (0,-) =0, w(L,-)=0 on (0,7),
Vi (0,°) = 2, v (L,©)=0 on (0,7),
v(,0)=wvw, V(,0)=wn in (0,L).
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Introduction

As k — oo, the Mindlin-Timoshenko system tends to Kirchhoff
system

"n_ ph3 "

phv ﬁvxx 4+ Viox = 0 in Q,
Vx (07) =0, w (L7) =0 on (0’ T),
Vxxx (O,) =2, Vix (L7) =0 on (07 T),

v(,0)=wvw, V(,0)=wn in (0,L).

Question: The function X drives the system to the equilibrium in
time T, that is,

v(,T)=V(,T)=0 em ]0,L[?
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Introduction

The goals in Lagnese-Lions (1988):

(i) to show that the control time T is independent of k, for any
given initial state, and to find, for each k, a control ©
driving the M-T system to rest at time T, and
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The goals in Lagnese-Lions (1988):

(i) to show that the control time T is independent of k, for any
given initial state, and to find, for each k, a control ©
driving the M-T system to rest at time T, and

(i) to study the behavior of ©; as k — oc.

Conjecture by Lagnese-Lions: as k — oo, ©y converges, in
some appropriate sense, towards a control driving the Kirchhoff
system to equilibrium in time T.
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Introduction

Main results:

@ The controls ©y of the M-T system may diverge exponentially
as k — oc.

3Araruna-Zuazua (2008)
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Main results:

@ The controls ©y of the M-T system may diverge exponentially
as k — oc.

@ By analyzing the underlying spectrum, it is possible to
decompose the adjoint M-T system into two subsystems. It is
sufficient to obtain a uniform (with relation to k) observability
inequality for one of these subsystems.

3Araruna-Zuazua (2008)
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Main results:

@ The controls ©y of the M-T system may diverge exponentially
as k — oc.

@ By analyzing the underlying spectrum, it is possible to
decompose the adjoint M-T system into two subsystems. It is
sufficient to obtain a uniform (with relation to k) observability
inequality for one of these subsystems.

@ Accordingly, the exact controllability requirement on M-T
system is relaxed to a partial controllability property over a
suitable projection of solutions, and the controls © remain
bounded as kK — oc.

@ The partial controls ©, obtained this way converge to an
exact control for the limit Kirchhoff system.

3Araruna-Zuazua (2008)
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Adjoint M-T system

ph3 " .

B — b+ k(00 = f n
P — k(9 + ), =& in @,
?(0,t) =@ (L, t) =0« (0,t) =1 (L,t) =0 on (0,7),
¢(X70) = o (X)’ qb, (X’O) =¢1 (X) on (07 L)?
P (x,0) = o (x), ¥ (x,0)=11(x) in (0,L).
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Adjoint M-T system

3

PL ! — k(64 15) = n Q.
ph" — k(9 +4x) =& in Q,
?(0,t) =@ (L, t) =0« (0,t) =1 (L,t) =0 on (0,7),
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e existence, uniqueness and regularity;
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Adjoint M-T system

3

P04 — b k(610 = n Q.

ph" — k(¢ +1x), =g in Q,

?(0,t) =@ (L, t) =0« (0,t) =1 (L,t) =0 on (0,7),

¢(X70) = ¢o (X)’ qb, (X’ 0) = ¢ (X) on (07 L),

¥ (x,0) = v (x), wl(xvo)zwl (x) in (0,L). )
1

e existence, uniqueness and regularity;
e asymptotic limit as k — oc;
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Adjoint M-T system

3

PL ! — k(64 15) = n Q.
ph" — k(9 +4x) =& in Q,
?(0,t) =@ (L, t) =0« (0,t) =1 (L,t) =0 on (0,7),
¢(X70) = o (X)’ qb, (X’O) =1 (X) on (07 L)?
P (x,0) = o (x), ¥ (x,0)=11(x) in (0,L).

e existence, uniqueness and regularity;
e asymptotic limit as k — oc;
e spectral analysis.
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Spectral analysis

¢ = —iAD,
®=[p, ¢, 0], A: DA CX - X

i 0 1 0 0]
12 [/ 92 12k O
= == —k ==
A—i]| PP <8x2 > 0 ph3 Ox 0
0 0 0 1
k O k &2
| hox 0 phoe O

with domain

D (A) = [Hg (0,L) N H?(0,L)] x Hy (0,L) x W x H*(0,L).
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Ad = \O. (2)
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Introduction

Ad = 2o, (2)

In view of the various equations involved in (2) and the boundary
conditions satisfied by the components ¢ and 1, the solutions
® = [¢, ¢, 1h,¢']" associated with the eigenfunctions are such that

{(x,1),0(x,t)} = e {sin (mrx/L), ccos(mmx/L)},

where the constant c is to be determined in terms of m and .
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From (2) we have

A2 A2ph3 N p2ht
e = (2 + g ) 0t (S + ¥k} 9= 0.

Since ¢ (x, t) = e~*tsin (mmx/L), we obtain

1272m?  7wkm? 12k 1274 km*
‘- N4 = =0 3
A ( ph3L2 + phL2 + ph3> 2h4L4 ’ ( )

while ¢ satisfies

m3m3 hmn

_ _ _ 4
T Nph3 T 120 *)
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We find
~ 6m2m?  w2km? 6k
+
-+ oK
Ak {ph?’L2 + 2phl? + ph3+

1 \/144k2 288m2km?  247w2k2m? <127T2m2 712km2>2

2\ p2hd + p2h6 12 + p2hA 12 ph312 o phl2
and
E g 62 m? +7r2km2 +ﬁ_

k,m — ph3[_2 2ph[_2 ph3

N

1 [144k2 . 28872 km? N 2472 k2 m? 1202m®  w?km? 2
2\ p2he p2h6[2 p2hA L2 ph312 phl2

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Introduction

For m fixed, we see easily that, as k tends to infinity,
T+
Ajm — E00. (5)

This corresponds to that half of the spectrum that disappears
when letting k tend to infinity.
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Introduction

For m fixed, we see easily that, as k tends to infinity,
T+
Ajm — E00. (5)

This corresponds to that half of the spectrum that disappears
when letting k tend to infinity.

Proposition

For fixed m € N, as k — oo,

127%m*
s AE =+ :
kom 7 Am \/12phL4 T m2ph32m? (6)

These are the eigenvalues of the limit Kirchhoff system for which
the corresponding eigenfunctions are cos(mmx/L).
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Introduction

Nonlinear Mindlin-Timoshenko system

3
P e — b k(6 + 1) = 0 n Q.
phiec— k(6 +, — [ (m+ 302)| =0 in @
phee — <77x + ;wﬁ) =0 in Q,

e @Q=(0,L)x (0, T)

@ ¢ - angle of rotation

@ 1 - vertical displacement

@ 7 - longitudinal displacement

@ p - density, h - thickness of the beam
@ k > 0 - modulus of elasticity in shear
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Nonlinear Mindlin-Timoshenko system

=0
-,0)) = (¢0,%0,70) in
t(+,0)) = (é1,%1,m) in (
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Nonlinear Mindlin-Timoshenko system

The energy Ei (t) given by

)= 3 (% 6c(OF + o 6 (O + phla (O + 1o (O

2 |

1 () + e (O + e (8) + 5 (i (1))

(8)
satisfies
Ex(t) = Ex(0), Vt>0.
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Introduction

von Kdrman system

Assuming that the transverse shear effects are neglected, we obtain
the so called von Kiarman system:

3
phwtt - %wxxtt + wxxxx - |:¢x (nx + ;Zb)%)]x =0 in Q,
phiee — (77x + ;%%) =0 in Q,
$(0,) =¥ (L) = (0,7) = e (L) = 0 on (0.7),
Tx (07) :nX(L?') =0 on (07 T)a
(w('vo)awt (’70)777('70)7771‘ (70)) = (¢07¢177707771) in (Ov(L))a
9
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Introduction

von Kdrman system

Assuming that the transverse shear effects are neglected, we obtain
the so called von Kiarman system:

3
phwtt - %wxxtt + wxxxx - |:¢x (nx + ;Zb)%)]x =0 in Q,
phiee — (77x + ;%%) =0 in Q,
$(0,) =¥ (L) = (0,7) = e (L) = 0 on (0.7),
Tx (07) :nX(L?') =0 on (07 T)a
(w('vo)awt (’70)777('70)7771‘ (70)) = (¢07¢177707771) in (Ov(L))a
9

Neglecting the shear effects of the beam is equivalent to making
k — oo in (7).
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von Kdrman system

The energy E(t) of (9):

3
B = 5 (oh10x(OF + phlne (0 + 7 [ 1)

2
2) (10)

is conservative, that is, E(t) = E(0), for all t € [0, T].

b (BOF + | () + 202 ()

F. D. Araruna Basque Center for Applied Mathematics - BCAM
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Notations

-H= {VE L2(0,L); fOLv(x)dx:0}
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Notations
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- X = [HE(0,L) x [2(0,L)]* x V x H,
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Introduction

Notations

-H= {v € L2(0,L); fOLv(x)dx = 0}
SV =HY(0,L)N H

- X = [HE(0,L) x [2(0,L)]* x V x H,
equipped with the norm

H(u17u27V17V27W17W2)||i: |U1X| + |U2| +k|u1+V1X|

+ph |val® + [wax|* + ph |wa,

where |-| denotes the norm in L2 (0, L).

F. D. Araruna Basque Center for Applied Mathematics - BCAM
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Existence and uniqueness of solution

Existence and uniqueness of solution

Let (o, P1,%0,1,m0,m1) € X. Then, problem (7) has a unique
weak solution in the class

(p.0.m € C([0,00); [HE (0, L))" x V)

nct ([0, 00); [12(0,1)]° x H) : (1)

y

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Existence and uniqueness of solution

Idea of the proof

We employ the semigroup theory. The problem (7) can be written

in the form:
U=AU+ F(U),
U (0) = Uy,
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Existence and uniqueness of solution

Idea of the proof

We employ the semigroup theory. The problem (7) can be written

in the form:
U=AU+ F(U),
U (0) = Uy,
i 0 1 0 0 0 0] R
12 ( 92 12k 9
0 0 0 1 0 0 P
A= P k 82 5 U= / )
EXH 0 Jhge O 0 0 (%
0 0 0 0 0 1 77/
82
I 0 0 0 0 #W 0 | LT

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Existence and uniqueness of solution

Idea of the proof

[ 0 ] [ %o

0 1

_ 0 | o
FUO= T e 102)], | 2 Y= |y,
0 70
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Existence and uniqueness of solution

Idea of the proof

i 0 ] [ o
0 ®1
_ 0 | o
FO=1 e 202, | 2 D= |y,
0 10

L 3 (V) | [ m

“A:DA)CX X

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Existence and uniqueness of solution

Idea of the proof

$1

and Up = io
1

Tlo

“A:DA)CX X

- D(A) = {[HE(0,L) N HE(0,L)] x HE(0,L)}* x W x H! (0, L)

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Existence and uniqueness of solution

Idea of the proof

$1

and Up = io
1

Tlo

“A:DA)CX—X
- D(A) = {[HE(0,L) N HE(0,L)] x HE(0,L)}* x W x H! (0, L)
-W={veH?(0,L); vw(0)=w(L)=0}
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Existence and uniqueness of solution

Idea of the proof

- A is the infinitesimal generator of a semigroup in X
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Existence and uniqueness of solution

Idea of the proof

- A is the infinitesimal generator of a semigroup in X

- F (U) is locally Lipschitz continuous in X.
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Asymptotic Limit as k — oo

Asymptotic Limit as k — oo

Theorem

Let (gf)k,wk,nk) be the unique solution of (7) with data
(¢0> é1, %o, ¥1, Mo, 771) eX Satisﬂ/l.ng

do+1vox =0 in (0,L). (12)

Then, as k — oo, the following convergence property holds:
k ok ok oo 1 2
{65,040} = (=} weake in L (0, T [H3 (0,1)] x V'),

where (1, n) solves the von Karman system (9).

4

*F. D. Araruna, P. Braz e Silva and E. Zuazua (in preparation)
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Asymptotic Limit as k — oo

Idea of the proof

For e € (0,1) fixed, we consider the perturbed system:

3
b — b+ K (9" +05) =0 n @
phwtt - k (¢6 + ¢6 )x - |:¢>E< (77; =+ % (¢;)2>:| + 677b)€<xxx = 0 in Qa
phig <n§+;(¢§)2> =0 in Q,
9 (0,)= ¢ (L)=0 on (0,T),
we(07):wE(L7):¢)€<(O ):w;(La):O on (07 T)7
n%(0,-) =ne(L,-)=0 on (0,7T),
((ZSE ('70)7w€ (‘70)7776( )) (¢07¢07770) in (07 L)7
(Vg (+,0), 9% (-,0),m5 (+,0)) = (¢1,¢1,m) in (0,L).

(13)
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Asymptotic Limit as k — oo

Idea of the proof

System (13) is well-posed in the energy space

Xy = H}(0,L) x L2(0,L) x H3 (0,L) x L*>(0,L) x V x H,
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Asymptotic Limit as k — oo

Idea of the proof

System (13) is well-posed in the energy space

Xy = H}(0,L) x L2(0,L) x H3 (0,L) x L*>(0,L) x V x H,

that is, for any (¢o, ¢1, %0, ¥1,Mm0,1m1) € X1, there exists a unique
solution in the class

(6.0 n) € CO([0, T1: Hy (0, L) x H§ (0,L) x V)
nct ([o, T]: [12(0, 1)]? % H) .
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Asymptotic Limit as k — oo

Idea of the proof

For each k, let (¢9K, 4K n®k) be the solution of system (13) with
data (¢o, ¢1,%0,%1,7m0,1m1) € X1.
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Asymptotic Limit as k — oo

Idea of the proof

For each k, let (¢9K, 4K n®k) be the solution of system (13) with

data (¢, ¢1,%0,%1,70,Mm) € A1.
The energy of system (13):

1 h3 2 2 2
Bt = 5 (55 |60 @] + onlue @ + on|ae* (o)
2 2
ok )+ ko (6) +u (1)
1 2|2 2
+ ik 0+ 5 (v @) \ +e|ugt (o) )
(14)
satisfies
Eck(t) = Ecx(0), Yt € [0, T]. (15)
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Asymptotic Limit as k — oo

Idea of the proof

Initially we want to show that system (13) approaches, as k — oo,
the modified von Karman system:

h3 .
phwgt _ %w)e(xtt + (1 + 6) wixxx - [w; (77; * 5 (¢;)2):|X -0

phnit—<n§+;(wi)e) =0
Pe(0,) =9 (L) = 95 (0,-) = ¢ (L,-) =0

(N
ns (O, )—nX(L ) =0
(¥ (+,0), 4% (+,0),7° (-, 0), % (-, 0)) = (Yo, 1,70, Mm1)

(16)

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Asymptotic Limit as k — oo

Idea of the proof

In fact, considering the initial data (¢o, ¢1, %0, ¥1, 10, M) Satisfying
(12), we obtain

E.«(0) < C, Yk >0, Ve € (0,1).
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Asymptotic Limit as k — oo

Idea of the proof

In fact, considering the initial data (¢o, ¢1, %0, ¥1, 10, M) Satisfying
(12), we obtain

E.(0)< C, Yk >0, Ve e (0,1).
In this way, we can deduce that the sequences (in k)
{d)e,k} {d}e,k} {ne,k}

are bounded in L*° (0, T; H3 (O, L)) , L (0, T; HZ (0, L)) and
L> (0, T; V), respectively,
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Asymptotic Limit as k — oo

Idea of the proof

In fact, considering the initial data (¢o, ¢1, %0, ¥1, 10, M) Satisfying
(12), we obtain

E.«(0)< C,Vk >0, Vec (0,1).

In this way, we can deduce that the sequences (in k)

G S G B U

are bounded in L*° (0, T; H3 (O, L)) , L (0, T; HZ (0, L)) and
L> (0, T; V), respectively,
and

k K k 1 2
{oeh {or s (ot} (Vi (o st {3 (o))
remain bounded in L> (0, T; L2 (0, L)).



Asymptotic Limit as k — oo

Idea of the proof

Extracting subsequences, we can conclude that

{¢6:k,¢e»k,n€:k} — {05, 0%, n°} weaks in L (0, T; HY x H3 x V)
(17)
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Asymptotic Limit as k — oo

Idea of the proof

Extracting subsequences, we can conclude that

{¢6:k,¢e»k,n€:k} — {05, 0%, n°} weaks in L (0, T; HY x H3 x V)
(17)

¢+ 15 = 0. (18)
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Asymptotic Limit as k — oo

Idea of the proof

Extracting subsequences, we can conclude that

{¢6:k,¢e»k,n€:k} — {05, 0%, n°} weaks in L (0, T; HY x H3 x V)
(17)

¢ + 15 =0, (18)
{6 ve* me* b — (o6, v, mE) weak < in 1 (0, T3 [12(0,1)]°)

(19)
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Asymptotic Limit as k — oo

Idea of the proof

Extracting subsequences, we can conclude that

{¢6:k,¢e»k,n€:k} — {05, 0%, n°} weaks in L (0, T; HY x H3 x V)
(17)

¢+ 15 = 0. (18)

{oe ueknet ) — 165 w6y weak+ in 1 (0, T; [L2(0,1)]°)
(19)

ok + % ( ;’k>2 — & weak — x in L™ (0, T; L2(0, L)) . (20)
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Asymptotic Limit as k — oo

Idea of the proof

By the uniform bounded of {4} in L> (0, T; H3 (0, L)) and
Aubin-Lions compactness theorem, we get

WK —s € strongly in L™ (o, T H2=3 (0, L)) , (21)

for any 6 > 0.
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Asymptotic Limit as k — oo

Idea of the proof

By the uniform bounded of {4} in L> (0, T; H3 (0, L)) and
Aubin-Lions compactness theorem, we get

WK —s € strongly in L™ (o, T H2=3 (0, L)) , (21)
for any 6 > 0.

Combining (17) and (21), it result that £ = 1S + (¥£)? /2 and

ot g (o)) = v o+ 5 0007 weakiyin £2(0).
(22)
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Asymptotic Limit as k — oo

Idea of the proof

We consider now the energy of the system (16):

E(t)= = (phls (1) COF + 2 g, ()P
(6) = 5 | ph 10t (OF + phint (7 + 75 [¥5 (2)]

2
2) (23)

FF I (OF + [ng (6)+ 5 (05 (1)
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Asymptotic Limit as k — oo

Idea of the proof

We consider now the energy of the system (16):

E(t)= = (phls (1) COF + 2 g, ()P
(6) = 5 | ph 10t (OF + phint (7 + 75 [¥5 (2)]

2
2) (23)

FF I (OF + [ng (6)+ 5 (05 (1)

The easy see that

F. D. Araruna Basque Center for Applied Mathematics - BCAM



Asymptotic Limit as k — oo

Idea of the proof

In this way, the following sequences (in €) remain bounded in
L> (0, T;L2(0,L)) :

W), 0}, (s (s} s (Ve (o 5 %)
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Asymptotic Limit as k — oo

Idea of the proof

In this way, the following sequences (in €) remain bounded in
L> (0, T;L2(0,L)) :

€ € € € € € € 1 €
W), 0}, (s (s} s (Ve (o 5 %)
Extracting subsequences, we deduce that

{0e, Ve i} — {6, a,n} weakx in 1 (0, T; [H3 (0,1)]* x V)
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Asymptotic Limit as k — oo

Idea of the proof

In this way, the following sequences (in €) remain bounded in
L> (0, T;L2(0,L)) :

€ € € € € € € 1 €
W), 0}, (s (s} s (Ve (o 5 %)
Extracting subsequences, we deduce that

{0e, Ve i} — {6, a,n} weakx in 1 (0, T; [H3 (0,1)]* x V)

{5, m5} — {we,me} weak = in L (0, T; Hg (0, L) x L2(0, L))
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Asymptotic Limit as k — oo

Idea of the proof

In this way, the following sequences (in €) remain bounded in
L> (0, T;L2(0,L)) :

€ € € € € € € 1 €
W), 0}, (s (s} s (Ve (o 5 %)
Extracting subsequences, we deduce that

{0 Ve 0y = {6,a,n} weakx in L (0, T; [HG (0,1)]* x V)
{0 ne} — {Ye,me} weak x in L (0, T; Hy (0,L) x L (0, L))

1 1
M+ 5 (V)" = i+ 5 ()" weakx in L (0, T; 12(0, L))
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Uniform Stabilization as k — oo
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Uniform Stabilization as k — oo

Uniform Stabilization as kK — oo

The aim is to obtain the exponential decay for the energy (10)
associated to solution of the von Karman system

h? 1
phwtt _P wxxtt + wxxxx - wx Nx + *w)% + wt - wxxt =0,
12 2 «
1
phiee = (mx+ 595 ) +1e=0,

$(0,) = (L) =1 (0,) = (L, ) = 0,
7x(0,-) = nx (L,-) =0,
(w('ao)th ('70)a77('?0) > Mt ('?O)) = (1#0,1/)1,"70,771)

(24)
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Uniform Stabilization as k — oo

Uniform Stabilization as kK — oo

as limit (as k — o0) of the uniform stabilization of the
Mindlin-Timoshenko one

ph?

7¢tt ¢xx+k(¢+¢)x) +¢t = 07 in Qa
phbee — k(¢ +x), — [% (77)( + ;1@%)] +¢r=0, in Q,
phne — (nx + ;1&3) + 1t =0, in Q,
$(0,) = (L) =0, on (0,T),
T/J(O»)Zw(L’):O on (07 T)7
nX(O )_77X( ):0 on (OaT)7
( ( O) 1/}( 0) 7]( 0)) ((15071/}07770) in (07 L)7
(¢¢ (-,0), 9 (+,0), 7t (+,0)) = (&1, %1, m) in ((075/-))-
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Uniform Stabilization as k — oo

Uniform Stabilization as kK — oo

Let (¢,1,n) be the global solution of (25) for data
(o, d1,%0,%1,Mm0,m) € X. Then there exists a constant w > 0
such that

E (t) < 4E(0) e~ 2%, Vt > 0. (26)
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Uniform Stabilization as k — oo

Thank you!
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