Time optimal control for wave-type systems

Jérôme Lohéac

BCAM

PDE working group

J. Lohéac (BCAM)

Time optimal control of waves

24/01/2014 1 / 20

Problem Statement

Let X and U be two Banach spaces and $F : X \times U \rightarrow X$. Consider the control system:

$$\dot{z}=F(z,u)$$
.

• Given $z_0, z_1 \in X$, $z_0 \neq z_1$, show that there exist a minimal time $\tau = \tau(z_0, z_1) > 0$ such that there exists a control $u \in L^2([0, \tau], U)$, with

$$\|u\|_{L^2([0,\tau],U)}\leqslant 1\,,$$

for which the solution of the Cauchy problem:

$$\dot{z}=F(z,u)\,,\qquad z(0)=\mathrm{z}_0\,,$$

satisfies:

$$z(T) = z_1;$$

- Derive optimality conditions (Pontryagin's maximum principle);
- Prove the saturation property, i.e. $||u||_{L^2([0,\tau],U)} = 1$.

J. Lohéac (BCAM)

Introduction

- 2 Extension of the Pontryagin's maximum principle
- 3 Finite dimensional spaces approximation
- 4 Conclusion and open questions

Introduction

- 2 Extension of the Pontryagin's maximum principle
- 3 Finite dimensional spaces approximation
- 4 Conclusion and open questions

Input to state map

Let $A : \mathcal{D}(A) \to X$ be a skew-adjoint operator and let $B \in \mathcal{L}(U, X)$ be a bounded control operator. Then A generate a strongly continuous group of isometries $\mathbb{T} = (\mathbb{T}_t)_{t \in \mathbb{R}}$. We consider the dynamical system described by the equation:

$$\dot{z} = Az + Bu$$
, $z(0) = z_0$, (1)

with $u \in L^2([0, T], U)$. Then the solution of (1) writes:

$$z(t) = \mathbb{T}_t z_0 + \Phi_t u \quad (t \in [0, T]),$$

where the maps $\Phi_t \in \mathcal{L}(L^2([0, t], U), X)$ are the *input to state maps*:

$$\Phi_t u = \int_0^t \mathbb{T}_{t-s} Bu(s) \,\mathrm{d}s \qquad (u \in L^2([0,t],U)) \,.$$

Controllability notions

Let recall some classical definitions:

Definition

The pair (A, B) is said:

- approximatively controllable in time τ if $\operatorname{Ran} \Phi_{\tau}$ is dense in X;
- exactly controllable in time τ if $\operatorname{Ran} \Phi_{\tau} = X$.

Introduction

2 Extension of the Pontryagin's maximum principle

- The reachable set
- Optimality conditions
- Application to the wave equation

3 Finite dimensional spaces approximation

4 Conclusion and open questions

The L^2 reachable set I

Let $R_t^2 = \Phi_t(L^2([0, t], U))$. We endowed R_t^2 with the norm:

$$\|\mathbf{z}\|_{R^2_t} = \inf\{\|u\|_{L^2([0,t],U)}, \ \Phi_t u = \mathbf{z}\}.$$

Let denote the closed unit ball of R_t^2 :

$$B_t^2(1) = \left\{ \Phi_t u \,, \, u \in L^2([0,t],U) \,, \, \|u\|_{L^2([0,t],U)} \leqslant 1
ight\} \,.$$

The time optimal control problem writes:

Problem (\mathcal{P})

Does the set $\{T > 0, z_1 - \mathbb{T}_T z_0 \in B^2_T(1)\}$ admits a minimum?

The L^2 reachable set II

Proposition

Let $0 \leq \sigma \leq t$. Then we have the continuous inclusions:

$$R^2_{\sigma} \subset R^2_t \subset X$$
.

If there exists $T_* \ge 0$ such that $R_t^2 = X$ for every $t > T_*$, then the norms $\|\cdot\|_X$ and $\|\cdot\|_{R_t^2}$ are equivalent and the *control cost* in time t > 0 is defined by:

$$C_t = \sup_{z \neq 0} rac{\|z\|_{R_t^2}}{\|z\|_X} \qquad (t > T_*).$$

We can see that $t \mapsto C_t$ is non increasing.

Existence of the optimal time

Proposition

Let $z_0, z_1 \in X$, $z_0 \neq z_1$ such that there exists $t \ge 0$ with:

$$\mathbf{z}_1 - \mathbb{T}_t \mathbf{z}_0 \in B_t^2(1)$$
.

Then there exist $\tau > 0$ such that:

$$au= au(\mathrm{z}_0,\mathrm{z}_1)=\min\left\{t>0\,,\,\,z_1-\mathbb{T}_t\mathrm{z}_0\in B^2_t(1)
ight\}\,.$$

Optimality conditions

Theorem

Let (A, B) be exactly controllable in any time $T > T_* \ge 0$ and $z_0, z_1 \in X$, $z_0 \ne z_1$, such that there exists t > 0 and $u \in L^2([0, t], U)$ with $||u||_{L^2([0,t],U)} \le 1$ steering z_0 to z_1 in time t. Then there exists a minimal time $\tau = \tau(z_0, z_1) > 0$ and a time optimal control $u^* \in L^2([0, \tau], U)$, with $||u^*||_{L^2([0, \tau], U)} \le 1$ steering z_0 to z_1 in time τ .

Moreover, if $\tau > T_*$, then

1 $\exists \eta \in X \setminus \{0\} \text{ s.t. } \mathbf{u}^{\star} = \Phi_{\tau}^{\star} \eta;$

2
$$\|u^{\star}\|_{L^{2}([0,\tau],U)} = 1;$$

u* is unique.

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition. If $\tau > T_{*}$, the sketch of the proof is:

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

If $\tau > T_*$, the sketch of the proof is:

• $R_t^2 = X$ for every $t > T_*$

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

If $\tau > T_*$, the sketch of the proof is:

• $R_t^2 = X$ for every $t > T_*$

(A, B) is exactly controllable in any time $t > T_*$.

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

- $R_t^2 = X$ for every $t > T_*$
- $2 z_1 \mathbb{T}_{\tau} z_0 \in \partial B^2_{\tau}(1)$

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

If $\tau > T_*$, the sketch of the proof is:

- $R_t^2 = X$ for every $t > T_*$
- $2 z_1 \mathbb{T}_{\tau} z_0 \in \partial B^2_{\tau}(1)$
 - Assume by contradiction that $z_1 \mathbb{T}_{\tau} z_0$ is in the interior of $B^2_{\tau}(1)$, i.e. there exists $u \in L^2([0,\tau], U)$ such that $||u||_{L^2([0,\tau], U)} = r < 1$ and $z_1 \mathbb{T}_{\tau} z_0 = \Phi_{\tau} u$.
 - Take $t \in (T_*, \tau)$ then $z_1 \mathbb{T}_t z_0 = \Phi_t(u\mathbf{1}_{[0,t]}) + \varphi(\tau, t)$ with $\lim_{t \to \tau} \varphi(\tau, t) = 0.$
 - Since $t \mapsto C_t$ is non increasing, there exists $t \in [T_*, \tau]$ with τt small enough such that there exists $\tilde{u} \in L^2([0, t], U)$, $\|\tilde{u}\| \leq 1 r$ and $\Phi_t \tilde{u} = \varphi(\tau, t)$.
 - Consequently, $u + \tilde{u}$ is a control in time $t < \tau$, with $\|u + \tilde{u}\|_{L^2([0,t],U)} \leq 1.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

$$\begin{array}{l} \bullet \quad R_t^2 = X \text{ for every } t > T_* \\ \bullet \quad z_1 - \mathbb{T}_\tau z_0 \in \partial B_\tau^2(1) \\ \bullet \quad \exists \tilde{\eta} \in X \setminus \{0\}, \ \langle u^*, \Phi_\tau^* \tilde{\eta} \rangle \geqslant \sup_{\substack{v \in L^2([0,\tau],U) \\ \|v\|_{L^2([0,\tau],U)} \leqslant 1}} \langle v, \Phi_\tau^* \tilde{\eta} \rangle \end{array}$$

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

If $\tau > T_*$, the sketch of the proof is:

$$\begin{array}{l} \bullet \quad R_t^2 = X \text{ for every } t > T_* \\ \bullet \quad z_1 - \mathbb{T}_\tau z_0 \in \partial B_\tau^2(1) \\ \bullet \quad \exists \tilde{\eta} \in X \setminus \{0\}, \ \langle u^*, \Phi_\tau^* \tilde{\eta} \rangle \geqslant \sup_{\substack{v \in L^2([0,\tau],U) \\ ||v||_{L^2([0,\tau],U)} \leqslant 1}} \langle v, \Phi_\tau^* \tilde{\eta} \rangle \end{array}$$

• $B_{\tau}^2(1)$ is a convex set with non empty interior.

•
$$\exists \tilde{\eta} \in X \setminus \{0\}, \ \langle z_1 - \mathbb{T}_{\tau} z_0, \tilde{\eta} \rangle \geqslant \sup_{z \in B^2_{\tau}(1)} \langle z, \tilde{\eta} \rangle$$

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

$$\begin{array}{l} \bullet \quad R_t^2 = X \text{ for every } t > T_* \\ \bullet \quad z_1 - \mathbb{T}_\tau z_0 \in \partial B_\tau^2(1) \\ \bullet \quad \exists \tilde{\eta} \in X \setminus \{0\}, \ \langle u^*, \Phi_\tau^* \tilde{\eta} \rangle \geqslant \sup_{\substack{v \in L^2([0,\tau], U) \\ \|v\|_{L^2([0,\tau], U)} \leqslant 1}} \langle v, \Phi_\tau^* \tilde{\eta} \rangle \\ \bullet \quad \exists \eta \in X \setminus \{0\}, \ u^* = \Phi_\tau^* \eta \text{ and } \|u^*\|_{L^2([0,\tau], U)} = 1 \end{array}$$

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

$$\begin{array}{l} \bullet \quad R_t^2 = X \text{ for every } t > T_* \\ \bullet \quad z_1 - \mathbb{T}_\tau z_0 \in \partial B_\tau^2(1) \\ \bullet \quad \exists \tilde{\eta} \in X \setminus \{0\}, \ \langle u^*, \Phi_\tau^* \tilde{\eta} \rangle \geqslant \sup_{\substack{v \in L^2([0,\tau], U) \\ \|v\|_{L^2([0,\tau], U)} \leqslant 1 \\ \bullet \quad \exists \eta \in X \setminus \{0\}, \ u^* = \Phi_\tau^* \eta \text{ and } \|u^*\|_{L^2([0,\tau], U)} = 1 \\ (A, B) \text{ controllable implies } \operatorname{Ker} \Phi_\tau^* = \{0\}. \text{ Hence } u^* = \frac{\Phi_\tau^* \tilde{\eta}}{\|\Phi_\tau^* \tilde{\eta}\|_{L^2([0,\tau], U)}}. \end{array}$$

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

$$\begin{array}{l} \bullet \quad R_t^2 = X \text{ for every } t > T_* \\ \bullet \quad z_1 - \mathbb{T}_\tau z_0 \in \partial B_\tau^2(1) \\ \bullet \quad \exists \tilde{\eta} \in X \setminus \{0\}, \ \langle u^*, \Phi_\tau^* \tilde{\eta} \rangle \geqslant \sup_{\substack{v \in L^2([0,\tau],U) \\ \|v\|_{L^2([0,\tau],U)} \leqslant 1 \\ \bullet \quad \exists \eta \in X \setminus \{0\}, \ u^* = \Phi_\tau^* \eta \text{ and } \|u^*\|_{L^2([0,\tau],U)} = 1 \\ \bullet \quad u^* \text{ is unique} \end{array}$$

The proof is based on the ideas given by Fattorini. Firstly, the existence of τ and u^* is ensured by the previous proposition.

If $\tau > T_*$, the sketch of the proof is:

$$\begin{array}{l} \bullet \quad R_t^2 = X \text{ for every } t > T_* \\ \bullet \quad z_1 - \mathbb{T}_\tau z_0 \in \partial B_\tau^2(1) \\ \bullet \quad \exists \tilde{\eta} \in X \setminus \{0\}, \ \langle u^*, \Phi_\tau^* \tilde{\eta} \rangle \geqslant \sup_{\substack{v \in L^2([0,\tau], U) \\ \|v\|_{L^2([0,\tau], U)} \leqslant 1 \\ \bullet \quad \exists \eta \in X \setminus \{0\}, \ u^* = \Phi_\tau^* \eta \text{ and } \|u^*\|_{L^2([0,\tau], U)} = 1 \end{array}$$

u^{*} is unique

If u_1 and u_2 are time optimal controls, then $\frac{1}{2}(u_1 + u_2)$ is. Hence $||u_1|| = ||u_2|| = ||\frac{1}{2}(u_1 + u_2)|| = 1$ and the conclusion comes from Cauchy-Schwartz inequality.

Result for the wave equation I

Consider the system:

$$egin{aligned} \ddot{y}(x,t) &= -\Delta y(x,t) + u(x,t) \mathbf{1}_{\mathcal{O}}(x) & (x \in \Omega, \quad t \geqslant 0), \ y(x,t) &= 0 & (x \in \partial \Omega, \quad t \geqslant 0), \end{aligned}$$

with initial condition:

$$(y(\cdot,0),\dot{y}(\cdot,0)) = z_0 \in H^1_0(\Omega) \times L^2(\Omega),$$

where $\Omega \subset \mathbb{R}^n$ is a bonded and open set with C^2 boundary and \mathcal{O} is an open subset of Ω satisfying the optic geometric condition.

Then for every $z_1 \in H_0^1(\Omega) \times L^2(\Omega)$, with $z_1 \neq z_0$, there exists a time optimal control u^* steering the solution from z_0 (at t = 0) to z_1 (at $t = \tau$).

Result for the wave equation II

Let $T_* \ge 0$ be the time of the optic geometric condition, then if $\tau > T_*$, we have:

- u^{*} is unique;
- $\|u^{\star}\|_{L^{2}([0,\tau],U)} = 1;$
- there exists $(\eta_0,\eta_1)\in \left(H^1_0(\Omega) imes L^2(\Omega)
 ight)\setminus\{0\}$ such that

$$u^{\star}(x,t) = \dot{w}(x,t) \qquad \left((x,t) \in \mathcal{O} \times [0,\tau] \right),$$

where w is solution of the adjoint problem:

$$\begin{split} \ddot{w}(x,t) &= -\Delta w(x,t) & (x \in \Omega, \quad t \ge 0), \\ w(x,t) &= 0 & (x \in \partial \Omega, \quad t \ge 0), \end{split}$$

$$w(\cdot, au) = \eta_0$$
 and $\dot{w}(\cdot, au) = \eta_1$.

Introduction

- 2 Extension of the Pontryagin's maximum principle
- 3 Finite dimensional spaces approximation
- 4 Conclusion and open questions

The finite dimensional problem

Let $(\varphi_n)_{n \in \mathbb{N}}$ be the eigenvectors of A. Since A is skew-adjoint, $(\varphi_n)_n$ can be chosen as an orthonormal basis of X. For every $N \in \mathbb{N}$, we define $V_N = \text{Span}\{\varphi_0, \ldots, \varphi_N\}$ and $P_N \in \mathcal{L}(X)$ the orthogonal projection on V_N . Let also define the problems set for every $N \in \mathbb{N}$:

Problem (\mathcal{P}_N)

Given $z_0, z_1 \in X$, $z_0 \neq z_1$ Find the minimal time $\tau_N \ge 0$ such that there exists a control $u_N \in L^2([0, \tau_N], U)$ satisfying $||u_N||_{L^2([0, \tau_N], U)} \le 1$ and $z_N(\tau_N) = P_N z_1$, where z is the solution of:

$$\dot{z}_N = A z_N + P_N B u_N, \qquad z_N(0) = P_N z_0. \qquad (\star_N)$$

Notice that the solution of (\star_N) is:

$$z_N(t) = P_N(\mathbb{T}_t z_0 + \Phi_t u_N) \qquad (t \in [0, \tau_N]).$$

イロト イポト イヨト イヨト 二日

Weak convergence

Proposition

For every $N \in \mathbb{N}$, (\mathcal{P}_N) admits a unique solution (τ_N, u_N) . In addition, the sequence (τ_N) is increasing and convergent to τ and $(E_{\tau_N}^{\tau}u_N)_{N\in\mathbb{N}}$ is weakly convergent (up to an extraction) to an element $u \in L^2([0, \tau], U)$ and (τ, u) is solution of the optimal control problem (\mathcal{P}) .

In the above, we have defined, for $0 \le t \le T$, $E_t^T \in \mathcal{L}(L^2([0, t], U), L^2([0, T], U))$ by:

$$E_t^T v(s) = \begin{cases} v(s) & \text{if } s \in [0, t], \\ 0 & \text{if } s \in (t, T], \end{cases} \quad (v \in L^2([0, t], U), s \in [0, T]).$$

Strong convergence

Proposition

Up to an extraction, the convergence of $((\tau_n, E_{\tau_n}^{\tau} u_N))_N$ to a solution (τ, u) of (\mathcal{P}) is strong. In addition, $\|u\|_{L^2([0,\tau],U)} = 1$ and $\exists \eta \in X \text{ s.t. } u = \Phi_{\tau}^* \eta$.

Strong convergence

Proposition

Up to an extraction, the convergence of $((\tau_n, E_{\tau_n}^{\tau} u_N))_N$ to a solution (τ, u) of (\mathcal{P}) is strong. In addition,

$$\|u\|_{L^2([0, au],U)}=1$$
 and $\exists\eta\in X \text{ s.t. } u=\Phi_{ au}^*\eta$.

Main idea of the proof

For every $N \in \mathbb{N}$, the time optimal control u_N is the one obtained by the HUM (Hilbert Uniqueness Method), that is:

$$u_N = \Phi_{\tau_N}^* \eta_N \,,$$

where $\eta_N \in V_N$ is the minimum on V_N of the function:

$$J_{N}(\zeta) = \frac{1}{2} \int_{0}^{\tau_{N}} \|B^{*}P_{N}^{*}\mathbb{T}_{t}^{*}\zeta\|_{U}^{2} \mathrm{d}t - \langle P_{N}(\mathbf{z}_{1} - \mathbb{T}_{\tau_{n}}\mathbf{z}_{0}), \zeta \rangle \qquad (\zeta \in X).$$

But (J_N) is Γ -convergent to the function J:

$$J(\zeta) = \frac{1}{2} \int_0^\tau \|B^* \mathbb{T}_t^* \zeta\|_U^2 \, \mathrm{d}t - \langle \mathbf{z}_1 - \mathbb{T}_{\tau_n} \mathbf{z}_0, \zeta \rangle \underbrace{(\zeta \in X)}_{z \to z \to z}$$

J. Lohéac (BCAM)

Introduction

- 2 Extension of the Pontryagin's maximum principle
- 3 Finite dimensional spaces approximation
- 4 Conclusion and open questions

- The optimality conditions given still hold for control constraints in L^p .
- Results are true for admissible (possibly unbounded) control operators.

- The optimality conditions given still hold for control constraints in L^p.
- Results are true for admissible (possibly unbounded) control operators.
- Is the time optimal control unique and of maximal norm for $\tau \leqslant T_*$?
- How can we compute numerically the time optimal control?