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It is observed that polymeric nematics (large, long inflexible
molecules) can exhibit prolonged unsteady response to steady
simple shear flow (low shear rates).

Kiss, Gabor, and Roger S. Porter: Rheology of concentrated solutions of helical

polypeptides. J. Polymer Science: Polymer Physics Edition 18.2 (1980):

361–388.

Tan, Zhanjie, and Guy C. Berry: Studies on the texture of nematic solutions of

rodlike polymers. 3. Rheo-optical and rheological behavior in shear. Journal of

Rheology 47 (2003): 73–104.

I Liquid crystal molecules like to align with each other . . .
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Molecular tumbling in a shear flow (2D)



What happens when we allow a third dimension? Does tumbling
become unstable? If so, what stable dynamical regimes exist?
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Symmetry: z 7→ −z . Dynamical regimes invariant under this
symmetry action of the group Z2 are called in-plane. For example:

Vertical: tumbling
Horizontal: log-rolling



Numerical evidence suggests many other types of (out-of-plane)
periodic behaviour, in particular kayaking [demo].

Various mathematical models give proofs of the existence of
tumbling motion; so far no full proof of kayaking.

M. Gregory Forest, Qi Wang and Ruhai Zhou: The weak shear kinetic
phase diagram for nematic polymers, Rheol. Acta 43 (2004), 17–37

+ references therein.

I We use methods of geometry and symmetry to reduce this
proof to an elementary calculation
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M. Gregory Forest, Qi Wang and Ruhai Zhou: The weak shear kinetic
phase diagram for nematic polymers, Rheol. Acta 43 (2004), 17–37

+ references therein.

I We use methods of geometry and symmetry to reduce this
proof to an elementary calculation [not yet completed ...].



The dynamical equations

Set up the dynamical equations as an ODE on the space

V := {symmetric, traceless 3× 3 matrices} ∼= R5.

Think of Q ∈ V as the non-spherical part of the second moment of
the probability that molecules will align in a given direction. Thus
0 ∈ V corresponds to the isotropic state: individual molecules will
align themselves in any direction with equal probability.

If there is no flow then equilibrium states (phases) are taken to be
critical points of a free energy function

F : V → R

independent of the choice of axes inherent in V . . .



. . . or, to put it another way, F must be invariant under the action
of the group SO(3) on V by conjugacy, that is

R : Q 7→ RQRT , R ∈ SO(3).

Therefore F must have the form

F(Q) = f (X ,Y )

where

X = X (Q) := trQ2

Y = Y (Q) := trQ3.

Writing FX = ∂F
∂X , FY = ∂F

∂Y we then have

∇F(Q) = FX .2Q + FY .
(
3Q2 − (trQ2)I

)
.



Decomposition of the 5-dim space V

Any space on which the group Z2 acts linearly can be decomposed
as a direct sum of a space on which Z2 has no effect and a space
on which it changes signs. In our case with Z2 generated by
z 7→ −z we have

V = V in ⊕ V out

corresponding top u t
u q s
t s r

 =

p u 0
u q 0
0 0 r

+

0 0 t
0 0 s
t s 0


where p + q + r = 0. Thus

dim V in = 3 , dim V out = 2.



First, an elementary consequence of the symmetry:

Lemma

If Q ∈ V in then ∇F(Q) ∈ V in .

Proof. Let ρ : V → V denote the action of the reflection z 7→ −z
on V : then by definition

V in = Fix(ρ) =: {Q ∈ V : ρQ = Q}.

Differentiating F(Q) = F(ρQ) we have

∇F(Q) = ρ∇F(ρQ) = ρ∇F(Q)

so ∇F(Q) ∈ Fix(ρ) = V in as claimed. �

Therefore any critical point of F|V in is a critical point of F .



Critical points of F

Every Q 6= 0 ∈ V has either

I 3 distinct eigenvalues (biaxial), or

I a repeated eigenvalue (uniaxial).

Every uniaxial Q is conjugate to

Q∗ = Q∗(a) := a

(−1 0 0
0 −1 0
0 0 2

)
for some a 6= 0.



Which other matrices Q ∈ V in are conjugate to Q∗(a)?

They form a circle C = C(a) consisting of the matrices

Q(α) = 1
2a

1 + 3 cos 2α 3 sin 2α 0
3 sin 2α 1− 3 cos 2α 0

0 0 −2


for 0 ≤ α ≤ π.
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When is Q∗ a critical point of F ?

Substituting Q∗(a) into

∇F(Q) = FX .2Q + FY .
(
3Q2 − (trQ2)I

)
we find:

Lemma
Q = Q∗(a) is a critical point of F if and only if

2F∗X + 3aF∗Y = 0 (1)

where ∗ denotes evaluation at Q∗.

Corollary

If (1) is satisfied, then all points of C are also critical points of F .
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The simplest meaningful (and well-studied) case is where F is
given by

F(Q) := 1
2τ trQ2 − 1

3B trQ3 + 1
4C
(
trQ2

)2
= 1

2τX − 1
3B Y + 1

4C X 2

where we find

F∗X = 1
2 + 3Ca2 , F∗Y = −1

3B

and the condition for Q∗(a) to be a critical point of F is a = 0 or

τ − Ba + 6Ca2 = 0.



a

τ

local minimum

Branching diagram for equilibria (critical points of F), fixed B,C .



Introducing the dynamics

The velocity field for the shear flow isẋ
ẏ
ż

 =

by
0
0


so the fluid flow is given by

x(t) =

x(t)
y(t)
z(t)

 =

x(0) + b y(0)t
y(0)
z(0)

 =

1 bt 0
0 1 0
0 0 1

x(0)
y(0)
z(0)

 .



The effect this has on the molecule represented by the quadratic
form Q is given to a first approximation (allowing for different
responses to rotation and compression etc.) by a differential
equation of the form

Q̇ = δ[W ,Q] + βD(Q)

where [W ,Q] = WQ − QW and D(Q) = DQ + QD with

W =

0 −1 0
1 0 0
0 0 0

 and D =

0 1 0
1 0 0
0 0 0

 . . .

. . . although we may consider different expressions for the
non-rotational term D(Q).



Therefore the overall dynamical system that we wish to study has
the form

Q̇ = Uδ,β(Q) := −∇F(Q) + δ[W ,Q] + βD(Q) .

We first suppose β = 0 and then switch it on later:

Q̇ = Uδ,0(Q) = −∇F(Q) + δ[W ,Q].

The vector field [W ,Q] represents infinitesimal rotation

I about the Q∗ -axis in V in, and

I about the origin in V out .
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Suppose the fixed point Q∗ (log-rolling) is linearly stable in V in,
that is the local linearization has 3 negative eigenvalues (can
show this is the case for large enough a).

Immediate consequence: the projective plane P is a normally
hyperbolic invariant manifold in V for the flow (β = 0).

Further consequence: for sufficiently small |β| > 0 there is a
normally-hyperbolic flow-invariant manifold Pβ close to P in V .

Question: What is (are?) the dynamics on Pβ ?
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Dynamics on Pβ
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Strategy:

Show that for δ > 0 and for small β > 0 and for a suitable range
of values of the parameters

I the north pole Q∗β (fixed point) becomes repelling and

I the equator Cβ (periodic orbit) becomes repelling.

Then invoke the Poincaré–Bendixson Theorem to deduce that
there is a periodic orbit trapped between them — kayaking!

Warning: there may be more than one ...
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More symmetry

Suppose D(Q∗) has zero component in the direction of Q∗ (which
is certainly the case when D(Q) = D or D(Q) = DQ + QD).

Then to first order in β the perturbing effect of the βD(Q) term at
angle α is equal and opposite to its effect at α + π

2 .

Hence the Pβ -eigenvalues at Q∗β have zero real part and we cannot
decide if Q∗β is repelling or not.



More symmetry (contd.)

Likewise suppose that to first order in β the effect of βD(Q(α)) at
Q(α) on C is equal and opposite to its effect at Q(α + π

2 )
(certainly the case when D(Q) = D or D(Q) = DQ + QD).

Then the Pβ -eigenvalue of the α = π
2 Poincaré map for the

periodic orbit Cβ is −1 and we cannot decide if Cβ is repelling or
not.

So we are going to have to
go to second order in β .
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Theorem

To second order in β the real part of the eigenvalues at Q∗β is a
positive multiple of afY (Q∗) . �

In the much-studied case when

F(Q) = f (X ,Y ) := 1
2τX − 1

3BY + 1
4CX 2

we have simply
afY (Q∗) = −1

3aB

and so in that case

Corollary

The fixed point Q∗β is repelling provided a > 0.



For the new equator Cβ it is not so straightforward:

First we have to find where Cβ is,

then we have to find the eigenvalue of the α = π
2 Poincaré map

that is close to −1

which we do by integrating the variational equation
ξ̇ = DUδ,β(Q)ξ along Cβ.

Elementary but a bit complicated as we are dealing with terms of
second order in β . . . which means working with the third
derivatives of F .

Undergraduate multiple integration with exponentials and
trigonometric functions . . . but we want to be sure to get it right!

Work in progress . . .
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that is close to −1

which we do by integrating the variational equation
ξ̇ = DUδ,β(Q)ξ along Cβ.

Elementary but a bit complicated as we are dealing with terms of
second order in β . . . which means working with the third
derivatives of F .

Undergraduate multiple integration with exponentials and
trigonometric functions . . . but we want to be sure to get it right!

Work in progress . . .



For the new equator Cβ it is not so straightforward:

First we have to find where Cβ is,

then we have to find the eigenvalue of the α = π
2 Poincaré map
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