Eigensystem Bootstrap Multiscale Analysis for the Anderson Model

Abel Klein
University of California, Irvine

with C.S. Sidney Tsang
arXiv:1605.03637

Mathematical Many-Body Theory and its Applications
BCAM-Basque Center for Applied Mathematics
Bilbao, June 13 - 19, 2016
The Anderson model

The Anderson model is the random Schrödinger operator

$$H_{\varepsilon, \omega} := -\varepsilon \Delta + V_\omega$$

on $$\ell^2(\mathbb{Z}^d)$$,
The Anderson model

The Anderson model is the random Schrödinger operator

\[H_{\varepsilon, \omega} := -\varepsilon \Delta + V_\omega \quad \text{on} \quad \ell^2(\mathbb{Z}^d), \quad \text{where} \]

\[\Delta \quad \text{is the (centered) discrete Laplacian:} \]

\[(\Delta \varphi)(x) := \sum_{y \in \mathbb{Z}^d; \ |y-x|=1} \varphi(y) \quad \text{for} \quad \varphi \in \ell^2(\mathbb{Z}^d). \]
The Anderson model is the random Schrödinger operator

\[H_{\varepsilon, \omega} := -\varepsilon \Delta + V_{\omega} \quad \text{on} \quad \ell^2(\mathbb{Z}^d), \quad \text{where} \]

1. \(\Delta \) is the (centered) discrete Laplacian:

\[(\Delta \varphi)(x) := \sum_{y \in \mathbb{Z}^d; |y-x|=1} \varphi(y) \quad \text{for} \quad \varphi \in \ell^2(\mathbb{Z}^d). \]

2. \(V_{\omega}(x) = \omega_x \) for \(x \in \mathbb{Z}^d \), where \(\omega = \{ \omega_x \}_{x \in \mathbb{Z}^d} \) are i.i.d. r.v.’s with a non-degenerate probability distribution \(\mu \) with bounded support.
The Anderson model

The Anderson model is the random Schrödinger operator

\[H_{\varepsilon, \omega} := -\varepsilon \Delta + V_\omega \quad \text{on} \quad \ell^2(\mathbb{Z}^d), \quad \text{where} \]

1. \(\Delta \) is the (centered) discrete Laplacian:

\[(\Delta \varphi)(x) := \sum_{y \in \mathbb{Z}^d; \ |y-x|=1} \varphi(y) \quad \text{for} \quad \varphi \in \ell^2(\mathbb{Z}^d). \]

2. \(V_\omega(x) = \omega_x \) for \(x \in \mathbb{Z}^d \), where \(\omega = \{ \omega_x \}_{x \in \mathbb{Z}^d} \) are i.i.d.r.v.’s with a non-degenerate probability distribution \(\mu \) with bounded support. We assume \(\mu \) is Hölder continuous of order \(\alpha \in (\frac{1}{2}, 1] : \)

\[S_\mu(t) := \sup_{a \in \mathbb{R}} \mu \{ [a, a+t] \} \leq K t^\alpha \quad \text{for} \quad t \in [0, 1]. \]
The Anderson model

The Anderson model is the random Schrödinger operator

$$H_{\varepsilon, \omega} := -\varepsilon \Delta + V_\omega$$ on $\ell^2(\mathbb{Z}^d)$, where

1. Δ is the (centered) discrete Laplacian:

$$ (\Delta \varphi)(x) := \sum_{y \in \mathbb{Z}^d; |y-x|=1} \varphi(y) \quad \text{for} \quad \varphi \in \ell^2(\mathbb{Z}^d). $$

2. $V_\omega(x) = \omega_x$ for $x \in \mathbb{Z}^d$, where $\omega = \{\omega_x\}_{x \in \mathbb{Z}^d}$ are i.i.d.r.v.’s with a non-degenerate probability distribution μ with bounded support. We assume μ is Hölder continuous of order $\alpha \in (\frac{1}{2}, 1]$:

$$ S_\mu(t) := \sup_{a \in \mathbb{R}} \mu \{[a, a+t]\} \leq K t^\alpha \quad \text{for} \quad t \in [0, 1]. $$

3. $\varepsilon > 0$ is the inverse of the disorder parameter (i.e., $\frac{1}{\varepsilon}$ is the disorder); $\varepsilon \ll 1$ is high disorder. We assume $\varepsilon \leq 1$.

Abel Klein
The Anderson model

The Anderson model is the random Schrödinger operator

\[H_{\varepsilon, \omega} := -\varepsilon \Delta + V_\omega \quad \text{on} \quad \ell^2(\mathbb{Z}^d), \]

where

1. \(\Delta \) is the (centered) discrete Laplacian:

\[(\Delta \varphi)(x) := \sum_{y \in \mathbb{Z}^d; |y-x|=1} \varphi(y) \quad \text{for} \quad \varphi \in \ell^2(\mathbb{Z}^d). \]

2. \(V_\omega(x) = \omega_x \) for \(x \in \mathbb{Z}^d \), where \(\omega = \{ \omega_x \}_{x \in \mathbb{Z}^d} \) are i.i.d. r.v.'s with a non-degenerate probability distribution \(\mu \) with bounded support. We assume \(\mu \) is Hölder continuous of order \(\alpha \in (\frac{1}{2}, 1] \):

\[S_\mu(t) := \sup_{a \in \mathbb{R}} \mu \{ [a, a+t] \} \leq K t^\alpha \quad \text{for} \quad t \in [0, 1]. \]

3. \(\varepsilon > 0 \) is the inverse of the disorder parameter (i.e., \(\frac{1}{\varepsilon} \) is the disorder); \(\varepsilon \ll 1 \) is high disorder. We assume \(\varepsilon \leq 1 \).

Recall \(\sigma(H_{\varepsilon, \omega}) = \Sigma_\varepsilon := [-2d\varepsilon, 2d\varepsilon] + \text{supp} \mu \) with probability one.
Given $\Phi \subset \Theta \subset \mathbb{Z}^d$, we consider $\ell^2(\Phi) \subset \ell^2(\Theta)$ by extending functions on Φ to functions on Θ that are identically 0 on $\Theta \setminus \Phi$.

$\parallel x \parallel = \max_{j=1,2,\ldots,d} |x_j|$ and $|x| = \sqrt{\sum_{j=1}^d x_j^2}$ for $x \in \mathbb{R}^d$.

We consider $\mathbb{Z}^d \subset \mathbb{R}^d$ and use boxes in \mathbb{Z}^d centered at points in \mathbb{R}^d:

$\Lambda_L(x) = \Lambda_R^L(x) \cap \mathbb{Z}^d$, where $x \in \mathbb{R}^d$ and $\Lambda_R^L(x) = \{ y \in \mathbb{R}^d; \parallel y - x \parallel \leq L \}$.

Note that $(L - 2)^d < |\Lambda_L(x)| \leq (L + 1)^d$ for $L \geq 2$.

Abel Klein
Basic notation

- Given \(\Phi \subset \Theta \subset \mathbb{Z}^d \), we consider \(\ell^2(\Phi) \subset \ell^2(\Theta) \) by extending functions on \(\Phi \) to functions on \(\Theta \) that are identically 0 on \(\Theta \setminus \Phi \).

- If \(K \) is a bounded operator on \(\ell^2(\mathbb{Z}^d) \) and \(\Theta \subset \mathbb{Z}^d \), we let \(K_{\Theta} \) be the restriction of \(\chi_{\Theta}K\chi_{\Theta} \) to \(\ell^2(\Theta) \). (Simple boundary condition.)
Basic notation

- Given $\Phi \subset \Theta \subset \mathbb{Z}^d$, we consider $\ell^2(\Phi) \subset \ell^2(\Theta)$ by extending functions on Φ to functions on Θ that are identically 0 on $\Theta \setminus \Phi$.

- If K is a bounded operator on $\ell^2(\mathbb{Z}^d)$ and $\Theta \subset \mathbb{Z}^d$, we let K_Θ be the restriction of $\chi_\Theta K \chi_\Theta$ to $\ell^2(\Theta)$. (Simple boundary condition.)

- $\|x\| = \max_{j=1,2,...,d} |x_j|$ and $|x| = \sqrt{\sum_{j=1}^{d} x_j^2}$ for $x \in \mathbb{R}^d$.
Basic notation

- Given $\Phi \subset \Theta \subset \mathbb{Z}^d$, we consider $\ell^2(\Phi) \subset \ell^2(\Theta)$ by extending functions on Φ to functions on Θ that are identically 0 on $\Theta \setminus \Phi$.

- If K is a bounded operator on $\ell^2(\mathbb{Z}^d)$ and $\Theta \subset \mathbb{Z}^d$, we let K_{Θ} be the restriction of $\chi_{\Theta} K \chi_{\Theta}$ to $\ell^2(\Theta)$. (Simple boundary condition.)

- $\|x\| = \max_{j=1,2,...,d} |x_j|$ and $|x| = \sqrt{\sum_{j=1}^{d} x_j^2}$ for $x \in \mathbb{R}^d$.

- We consider $\mathbb{Z}^d \subset \mathbb{R}^d$ and use boxes in \mathbb{Z}^d centered at points in \mathbb{R}^d:

$$\Lambda_L(x) = \Lambda^\mathbb{R}_L(x) \cap \mathbb{Z}^d,$$

where $x \in \mathbb{R}^d$ and $\Lambda^\mathbb{R}_L(x) = \left\{ y \in \mathbb{R}^d; \|y - x\| \leq \frac{L}{2} \right\}$.

Note that $(L - 2)^d < |\Lambda^\mathbb{R}_L(x)| \leq (L + 1)^d$ for $L \geq 2$.

Abel Klein
Given $\Phi \subset \Theta \subset \mathbb{Z}^d$, we consider $\ell^2(\Phi) \subset \ell^2(\Theta)$ by extending functions on Φ to functions on Θ that are identically 0 on $\Theta \setminus \Phi$.

If K is a bounded operator on $\ell^2(\mathbb{Z}^d)$ and $\Theta \subset \mathbb{Z}^d$, we let K_Θ be the restriction of $\chi_\Theta K \chi_\Theta$ to $\ell^2(\Theta)$. (Simple boundary condition.)

$\|x\| = \max_{j=1,2,\ldots,d} |x_j|$ and $|x| = \sqrt{\sum_{j=1}^d x_j^2}$ for $x \in \mathbb{R}^d$.

We consider $\mathbb{Z}^d \subset \mathbb{R}^d$ and use boxes in \mathbb{Z}^d centered at points in \mathbb{R}^d:

$\Lambda_L(x) = \Lambda_L^R(x) \cap \mathbb{Z}^d$, where $x \in \mathbb{R}^d$ and $\Lambda_L^R(x) = \{ y \in \mathbb{R}^d; \| y - x \| \leq \frac{L}{2} \}$.

Note that $(L - 2)^d < |\Lambda_L(x)| \leq (L + 1)^d$ for $L \geq 2$.
Let $H = -\varepsilon \Delta + V$ on $\ell^2(\mathbb{Z}^d)$ and $\Theta \subset \mathbb{Z}^d$.
Eigenpairs and eigensystems

Let \(H = -\varepsilon \Delta + V \) on \(\ell^2(\mathbb{Z}^d) \) and \(\Theta \subset \mathbb{Z}^d \).

- We call \((\varphi, \lambda)\) an eigenpair for \(H_\Theta \) if \(\lambda \) is an eigenvalue for \(H_\Theta \) and \(\varphi \) is a corresponding normalized eigenfunction, that is,

\[
H_\Theta \varphi = \lambda \varphi, \quad \text{where} \quad \lambda \in \mathbb{R} \quad \text{and} \quad \varphi \in \ell^2(\Theta) \quad \text{with} \quad \| \varphi \| = 1.
\]
Basic definitions

Eigenpairs and eigensystems

Let \(H = -\varepsilon \Delta + V \) on \(\ell^2(\mathbb{Z}^d) \) and \(\Theta \subset \mathbb{Z}^d \).

- We call \((\varphi, \lambda)\) an eigenpair for \(H_\Theta \) if \(\lambda \) is an eigenvalue for \(H_\Theta \) and \(\varphi \) is a corresponding normalized eigenfunction, that is,
 \[
 H_\Theta \varphi = \lambda \varphi, \quad \text{where} \quad \lambda \in \mathbb{R} \quad \text{and} \quad \varphi \in \ell^2(\Theta) \quad \text{with} \quad \| \varphi \| = 1.
 \]

- A collection \(\{ (\varphi_j, \lambda_j) \}_{j \in J} \) of eigenpairs for \(H_\Theta \) will be called an eigensystem for \(H_\Theta \) if \(\{ \varphi_j \}_{j \in J} \) is an orthonormal basis for \(\ell^2(\Theta) \).
Eigenpairs and eigensystems

Let $H = -\varepsilon \Delta + V$ on $\ell^2(\mathbb{Z}^d)$ and $\Theta \subset \mathbb{Z}^d$.

- We call (φ, λ) an eigenpair for H_Θ if λ is an eigenvalue for H_Θ and φ is a corresponding normalized eigenfunction, that is,
 \[H_\Theta \varphi = \lambda \varphi, \quad \text{where} \quad \lambda \in \mathbb{R} \quad \text{and} \quad \varphi \in \ell^2(\Theta) \quad \text{with} \quad \| \varphi \| = 1. \]

- A collection $\{(\varphi_j, \lambda_j)\}_{j \in J}$ of eigenpairs for H_Θ will be called an eigensystem for H_Θ if $\{\varphi_j\}_{j \in J}$ is an orthonormal basis for $\ell^2(\Theta)$.

- If Θ is finite and all eigenvalues of H_Θ are simple, we can rewrite an eigensystem as $\{(\varphi_\lambda, \lambda)\}_{\lambda \in \sigma(H_\Theta)}$.
Localizing boxes

Definition

Fix $\beta, \tau \in (0,1)$. Let $m > 0$. A box Λ_L will be called m-localizing for $H = H_{\varepsilon, \omega}$ if

$$\left| \lambda - \lambda' \right| \geq e^{-L \beta} \quad \text{for all} \quad \lambda, \lambda' \in \sigma(H_{\Lambda_L}), \lambda \neq \lambda'.$$

There exists an m-localized eigensystem for H_{Λ_L}: an eigensystem $\{ (\phi_x, \lambda_x) \}_{x \in \Lambda_L}$ for H_{Λ_L} such that ϕ_x is m-localized for all $x \in \Lambda_L$, that is,

$$\left| \phi_x(y) \right| \leq e^{-m \|y - x\|} \quad \text{for all} \quad y \in \Lambda_L \quad \text{with} \quad \|y - x\| \geq L \tau.$$
Localizing boxes

Definition

Fix $\beta, \tau \in (0, 1)$. Let $m > 0$. A box Λ_L will be called m-localizing for $H = H_{\epsilon, \omega}$ if

1. Λ_L is level spacing for H: all eigenvalues of H_{Λ_L} are simple and

\[
|\lambda - \lambda'| \geq e^{-L\beta} \quad \text{for all} \quad \lambda, \lambda' \in \sigma(H_{\Lambda_L}), \quad \lambda \neq \lambda'.
\]
Localizing boxes

Definition

Fix $\beta, \tau \in (0, 1)$. Let $m > 0$. A box Λ_L will be called m-localizing for $H = H_{\varepsilon, \omega}$ if

1. Λ_L is level spacing for H: all eigenvalues of H_{Λ_L} are simple and

 $$|\lambda - \lambda'| \geq e^{-L\beta} \quad \text{for all} \quad \lambda, \lambda' \in \sigma(H_{\Lambda_L}), \quad \lambda \neq \lambda'.$$

2. There exists an m-localized eigensystem for H_{Λ_L}: an eigensystem $\{((\varphi_x, \lambda_x))_{x \in \Lambda_L}\}$ for H_{Λ_L} such that φ_x is (x, m)-localized for all $x \in \Lambda_L$, that is,

 $$|\varphi_x(y)| \leq e^{-m\|y-x\|} \quad \text{for all} \quad y \in \Lambda_L \quad \text{with} \quad \|y - x\| \geq L\tau.$$
Localizing boxes

Definition

Fix \(\beta, \tau \in (0, 1) \). Let \(m > 0 \). A box \(\Lambda_L \) will be called \(m \)-localizing for \(H = H_{\epsilon, \omega} \) if

1. \(\Lambda_L \) is level spacing for \(H \): all eigenvalues of \(H_{\Lambda_L} \) are simple and
 \[|\lambda - \lambda'| \geq e^{-L\beta} \quad \text{for all} \quad \lambda, \lambda' \in \sigma(H_{\Lambda_L}), \quad \lambda \neq \lambda'. \]

2. There exists an \(m \)-localized eigensystem for \(H_{\Lambda_L} \): an eigensystem
 \(\{(\varphi_x, \lambda_x)\}_{x \in \Lambda_L} \) for \(H_{\Lambda_L} \) such that \(\varphi_x \) is \((x, m)\)-localized for all \(x \in \Lambda_L \), that is,
 \[|\varphi_x(y)| \leq e^{-m\|y-x\|} \quad \text{for all} \quad y \in \Lambda_L \quad \text{with} \quad \|y-x\| \geq L^{\tau}. \]

We need to specify \(\beta, \tau \in (0, 1) \) in the definition of an \(m \)-localizing box.
Theorem

Let $H_{\varepsilon,\omega}$ be an Anderson model. There exists $\varepsilon_0 > 0$ with the following property:

Given $\xi \in (0, 1)$, fix $\beta, \tau \in (0, 1)$ such that, for some $\gamma > 1$,

\[0 < \xi < \beta < 1 < \frac{\gamma}{2} < 1 < \gamma < \sqrt{\beta \xi} \text{ and } \max\{1+\frac{\gamma \beta}{2}, (\gamma-1)\beta+1, \gamma \} < \tau < 1. \]

Then there exist a scale \tilde{L}_ξ and $m_\xi > 0$, such that for all $0 < \varepsilon \leq \varepsilon_0$ we have

\[\inf_{x \in \mathbb{R}^d} P\{\Lambda_{L}(x) \text{ is } m_\xi \text{-localizing for } H_{\varepsilon,\omega}\} \geq 1 - e^{-L_\xi} \text{ for all } L \geq \tilde{L}_\xi. \]

This theorem was originally proved by Elgart and Klein for a fixed $\xi \in (0, 1)$, that is, with ε_0 depending on ξ.
Eigensystem bootstrap multiscale analysis

Theorem

Let $H_{\epsilon, \omega}$ be an Anderson model. There exists $\epsilon_0 > 0$ with the following property:

Given $\xi \in (0, 1)$, fix $\beta, \tau \in (0, 1)$ such that, for some $\gamma > 1$,
Theorem

Let $H_{\varepsilon,\omega}$ be an Anderson model. There exists $\varepsilon_0 > 0$ with the following property:

Given $\xi \in (0,1)$, fix $\beta, \tau \in (0,1)$ such that, for some $\gamma > 1$,

$$0 < \xi < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\beta}{\xi}}$$ and $\max \left\{ \frac{1+\gamma\beta}{2}, \frac{(\gamma-1)\beta+1}{\gamma} \right\} < \tau < 1.$
Theorem

Let $H_{\varepsilon, \omega}$ be an Anderson model. There exists $\varepsilon_0 > 0$ with the following property:

Given $\xi \in (0, 1)$, fix $\beta, \tau \in (0, 1)$ such that, for some $\gamma > 1$,

$$0 < \xi < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\beta}{\xi}} \quad \text{and} \quad \max \left\{ \frac{1 + \gamma \beta}{2}, \frac{(\gamma - 1) \beta + 1}{\gamma} \right\} < \tau < 1.$$

Then there exist a scale \tilde{L}_ξ and $m_\xi > 0$, such that for all $0 < \varepsilon \leq \varepsilon_0$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_L(x) \text{ is } m_\xi\text{-localizing for } H_{\varepsilon, \omega} \} \geq 1 - e^{-L_\xi} \quad \text{for all } L \geq \tilde{L}_\xi.$$
Eigensystem multiscale analysis

Theorem

Let $H_{\varepsilon, \omega}$ be an Anderson model. There exists $\varepsilon_0 > 0$ with the following property:

Given $\xi \in (0, 1)$, fix $\beta, \tau \in (0, 1)$ such that, for some $\gamma > 1$,

$$0 < \xi < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\beta}{\xi}} \quad \text{and} \quad \max \left\{ \frac{1+\gamma \beta}{2}, \frac{(\gamma-1)\beta+1}{\gamma} \right\} < \tau < 1.$$

Then there exist a scale \tilde{L}_ξ and $m_\xi > 0$, such that for all $0 < \varepsilon \leq \varepsilon_0$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_L(x) \text{ is } m_\xi \text{-localizing for } H_{\varepsilon, \omega} \} \geq 1 - e^{-L^\xi} \quad \text{for all} \quad L \geq \tilde{L}_\xi.$$

This theorem was originally proved by Elgart and Klein for a fixed $\xi \in (0, 1)$, that is, with ε_0 depending on ξ.

Abel Klein
All forms of localization can be derived from the conclusions of the theorem. It implies Anderson localization (pure point spectrum with exponentially decaying eigenfunctions with probability one), dynamical localization, SULE, etc.
All forms of localization can be derived from the conclusions of the theorem. It implies Anderson localization (pure point spectrum with exponentially decaying eigenfunctions with probability one), dynamical localization, SULE, etc.

Infinite volume localization results for the Anderson model at high disorder are well known.
Elgart and Klein developed the eigensystem multiscale analysis to gain intuition for problems where the usual Green’s function approach is not suitable.
Elgart and Klein developed the eigensystem multiscale analysis to gain intuition for problems where the usual Green’s function approach is not suitable.

Labeling of eigenpairs is done using Hall’s Marriage Theorem.
Elgart and Klein developed the eigensystem multiscale analysis to gain intuition for problems where the usual Green’s function approach is not suitable.

Labeling of eigenpairs is done using Hall’s Marriage Theorem.

The Green’s function MSA relies on Wegner’s estimate. The eigensystem MSA uses a probability estimate for level spacing sets, derived by Klein and Molchanov from Minami’s estimate.
Elgart and Klein developed the eigensystem multiscale analysis to gain intuition for problems where the usual Green’s function approach is not suitable.

Labeling of eigenpairs is done using Hall’s Marriage Theorem.

The Green’s function MSA relies on Wegner’s estimate. The eigensystem MSA uses a probability estimate for level spacing sets, derived by Klein and Molchanov from Minami’s estimate.

The Green’s function MSA is done either for a fixed energy, or for all energies but with two boxes with an ‘either or’ statement for each energy. The eigensystem MSA treats all energies in a single box, giving directly a complete picture in a fixed box.

The eigensystem MSA implies the conclusions of the Green’s function MSA. Conversely, we can recover the conclusions of the eigensystem MSA from the Green’s function MSA except for the labeling. The labeling can then be established using the argument based on Hall’s Marriage Theorem.
Elgart and Klein developed the eigensystem multiscale analysis to gain intuition for problems where the usual Green’s function approach is not suitable.

Labeling of eigenpairs is done using Hall’s Marriage Theorem.

The Green’s function MSA relies on Wegner’s estimate. The eigensystem MSA uses a probability estimate for level spacing sets, derived by Klein and Molchanov from Minami’s estimate.

The Green’s function MSA is done either for a fixed energy, or for all energies but with two boxes with an ‘either or’ statement for each energy. The eigensystem MSA treats all energies in a single box, giving directly a complete picture in a fixed box.

The eigensystem MSA implies the conclusions of the Green’s function MSA.

Conversely, we can recover the conclusions of the eigensystem MSA from the Green’s function MSA except for the labeling. The labeling can then be established using the argument based on Hall’s Marriage Theorem.
Elgart and Klein developed the eigensystem multiscale analysis to gain intuition for problems where the usual Green’s function approach is not suitable.

Labeling of eigenpairs is done using Hall’s Marriage Theorem.

The Green’s function MSA relies on Wegner’s estimate. The eigensystem MSA uses a probability estimate for level spacing sets, derived by Klein and Molchanov from Minami’s estimate.

The Green’s function MSA is done either for a fixed energy, or for all energies but with two boxes with an ‘either or’ statement for each energy. The eigensystem MSA treats all energies in a single box, giving directly a complete picture in a fixed box.

The eigensystem MSA implies the conclusions of the Green’s function MSA. Conversely, we can recover the conclusions of the eigensystem MSA from the Green’s function MSA except for the labeling.
Elgart and Klein developed the eigensystem multiscale analysis to gain intuition for problems where the usual Green’s function approach is not suitable.

Labeling of eigenpairs is done using Hall’s Marriage Theorem.

The Green’s function MSA relies on Wegner’s estimate. The eigensystem MSA uses a probability estimate for level spacing sets, derived by Klein and Molchanov from Minami’s estimate.

The Green’s function MSA is done either for a fixed energy, or for all energies but with two boxes with an ‘either or’ statement for each energy. The eigensystem MSA treats all energies in a single box, giving directly a complete picture in a fixed box.

The eigensystem MSA implies the conclusions of the Green’s function MSA. Conversely, we can recover the conclusions of the eigensystem MSA from the Green’s function MSA except for the labeling. The labeling can then be established using the argument based on Hall’s Marriage Theorem.
Probability estimates for level spacing sets

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.
The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.

Definition

Let $\eta > 0$. A finite set $\Theta \subset \mathbb{Z}^d$ will be called η-level spacing for H if

1. All eigenvalues of H_{Θ} are simple, i.e., $|\sigma(H_{\Theta})| = |\Theta|$,
2. $|\lambda - \lambda'| \geq \eta$ for all $\lambda, \lambda' \in \sigma(H_{\Theta}), \lambda \neq \lambda'$.

Lemma (Klein-Molchanov)

Let $\Theta \subset \mathbb{Z}^d$ be finite. Then, for all $\varepsilon \leq 1$,

$$P\{\Theta \text{ is } \eta\text{-level spacing for } H_{\varepsilon, \omega}\} \geq 1 - Y \mu \eta^{2\alpha - 1} |\Theta|^2.$$

In the special case of a box Λ_L, we have

$$P\{\Lambda_L \text{ is } \eta\text{-level spacing for } H_{\varepsilon, \omega}\} \geq 1 - Y \mu (L + 1)^2 \eta^{2\alpha - 1}.$$

(We will take $\eta = e^{-L \beta}$ and $\mu = L - q$.)
The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.

Definition

Let $\eta > 0$. A finite set $\Theta \subset \mathbb{Z}^d$ will be called η-level spacing for H if all eigenvalues of H_Θ are simple, i.e., $|\sigma(H_\Theta)| = |\Theta|$.

Lemma (Klein-Molchanov)

Let $\Theta \subset \mathbb{Z}^d$ be finite. Then, for all $\varepsilon \leq 1$,

$$
P\left\{ \Theta \text{ is } \eta\text{-level spacing for } H_{\varepsilon, \omega} \right\} \geq 1 - \gamma \mu \eta^{2/\alpha - 2} |\Theta|^{-2}.
$$

In the special case of a box Λ_{2L}, we have

$$
P\left\{ \Lambda_{2L} \text{ is } \eta\text{-level spacing for } H_{\varepsilon, \omega} \right\} \geq 1 - \gamma \mu (L + 1)^2 \eta^{2/\alpha - 2}.
$$

(We will take $\eta = e^{-L \beta}$ and $\eta = L^{-q}$.)
Probability estimates for level spacing sets

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.

Definition

Let $\eta > 0$. A finite set $\Theta \subset \mathbb{Z}^d$ will be called η-level spacing for H if

1. all eigenvalues of H_Θ are simple, i.e., $|\sigma (H_\Theta)| = |\Theta|$,
2. $|\lambda - \lambda'| \geq \eta$ for all $\lambda, \lambda' \in \sigma (H_\Theta)$, $\lambda \neq \lambda'$.
Probability estimates for level spacing sets

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.

Definition
Let $\eta > 0$. A finite set $\Theta \subset \mathbb{Z}^d$ will be called η-level spacing for H if

1. all eigenvalues of H_Θ are simple, i.e., $|\sigma(H_\Theta)| = |\Theta|$,
2. $|\lambda - \lambda'| \geq \eta$ for all $\lambda, \lambda' \in \sigma(H_\Theta)$, $\lambda \neq \lambda'$.

Lemma (Klein-Molchanov)

Let $\Theta \subset \mathbb{Z}^d$ be finite. Then, for all $\varepsilon \leq 1$,
Probability estimates for level spacing sets

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.

Definition
Let $\eta > 0$. A finite set $\Theta \subset \mathbb{Z}^d$ will be called η-level spacing for H if
1. all eigenvalues of H_Θ are simple, i.e., $|\sigma(H_\Theta)| = |\Theta|$,
2. $|\lambda - \lambda'| \geq \eta$ for all $\lambda, \lambda' \in \sigma(H_\Theta)$, $\lambda \neq \lambda'$.

Lemma (Klein-Molchanov)
Let $\Theta \subset \mathbb{Z}^d$ be finite. Then, for all $\varepsilon \leq 1$,
\[
P\{\Theta \text{ is } \eta\text{-level spacing for } H_{\varepsilon,\omega}\} \geq 1 - Y_\mu \eta^{2\alpha-1} |\Theta|^2.
\]
Probability estimates for level spacing sets

The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.

Definition
Let $\eta > 0$. A finite set $\Theta \subset \mathbb{Z}^d$ will be called η-level spacing for H if

1. all eigenvalues of H_{Θ} are simple, i.e., $|\sigma(H_{\Theta})| = |\Theta|$,
2. $|\lambda - \lambda'| \geq \eta$ for all $\lambda, \lambda' \in \sigma(H_{\Theta}), \lambda \neq \lambda'$.

Lemma (Klein-Molchanov)

Let $\Theta \subset \mathbb{Z}^d$ be finite. Then, for all $\varepsilon \leq 1$,

$$\mathbb{P}\{\Theta \text{ is } \eta\text{-level spacing for } H_{\varepsilon, \omega}\} \geq 1 - Y_{\mu} \eta^{2\alpha - 1} |\Theta|^2.$$
In the special case of a box Λ_L, we have

$$\mathbb{P}\{\Lambda_L \text{ is } \eta\text{-level spacing for } H_{\varepsilon, \omega}\} \geq 1 - Y_{\mu} (L + 1)^{2d} \eta^{2\alpha - 1}.$$
The eigensystem MSA does not use a Wegner estimate; it uses instead a probability estimate for level spacing sets derived from Minami’s estimate.

Definition
Let \(\eta > 0 \). A finite set \(\Theta \subset \mathbb{Z}^d \) will be called \(\eta \)-level spacing for \(H \) if
1. all eigenvalues of \(H_\Theta \) are simple, i.e., \(|\sigma(H_\Theta)| = |\Theta| \),
2. \(|\lambda - \lambda'| \geq \eta \) for all \(\lambda, \lambda' \in \sigma(H_\Theta), \lambda \neq \lambda' \).

Lemma (Klein-Molchanov)
Let \(\Theta \subset \mathbb{Z}^d \) be finite. Then, for all \(\varepsilon \leq 1 \),
\[
P\{ \Theta \text{ is } \eta \text{-level spacing for } H_{\varepsilon,\omega} \} \geq 1 - Y_\mu \eta^{2\alpha - 1} |\Theta|^2.
\]
In the special case of a box \(\Lambda_L \), we have
\[
P\{ \Lambda_L \text{ is } \eta \text{-level spacing for } H_{\varepsilon,\omega} \} \geq 1 - Y_\mu (L + 1)^{2d} \eta^{2\alpha - 1}.
\]
(We will take \(\eta = e^{-L^\beta} \) and \(\eta = L^{-q} \).)
Level spacing and localizing eigensystems

Definition Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$.

Abel Klein
Level spacing and localizing eigensystems

Definition Fix $H = H_{\epsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$. Let Λ_L be a box, $\theta, m > 0$, $s \in (0, 1)$.
Level spacing and localizing eigensystems

Definition Fix $H = H_{\epsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$. Let Λ_L be a box, $\theta, m > 0$, $s \in (0, 1)$.

1. Λ_L is polynomially level spacing (PLS) if it is L^{-q}-level spacing.

2. Λ_L is level spacing (LS) if it is $e^{-L^{\beta}}$-level spacing.

3. A θ-polynomially localized eigensystem (PLE) for H_{Λ_L} is an eigensystem $\{ (\phi_x, \lambda_x) \}_{x \in \Lambda_L}$ for H_{Λ_L} such that for all $x \in \Lambda_L$ we have $|\phi_x(y)| \leq L^{-\theta}$ for all $y \in \Lambda_L$ with $\|y - x\| \geq L^{1/2}$.

4. A s-subexponentially localized eigensystem (SLE) for H_{Λ_L} is an eigensystem $\{ (\phi_x, \lambda_x) \}_{x \in \Lambda_L}$ for H_{Λ_L} such that for all $x \in \Lambda_L$ we have $|\phi_x(y)| \leq e^{-L^{s}}$ for all $y \in \Lambda_L$ with $\|y - x\| \geq L^{1/2}$.

5. An m-localized eigensystem (LE) for H_{Λ_L} is an eigensystem $\{ (\phi_x, \lambda_x) \}_{x \in \Lambda_L}$ for H_{Λ_L} such that for all $x \in \Lambda_L$ we have $|\phi_x(y)| \leq e^{-m\|y - x\|}$ for all $y \in \Lambda_L$ with $\|y - x\| \geq L^{1/2}$.
Level spacing and localizing eigensystems

Definition Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$.
Let Λ_L be a box, $\theta, m > 0$, $s \in (0, 1)$.

1. Λ_L is polynomially level spacing (PLS) if it is L^{-q}-level spacing.
2. Λ_L is level spacing (LS) if it is e^{-L^β}-level spacing.
Level spacing and localizing eigensystems

Definition Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$. Let Λ_L be a box, $\theta, m > 0$, $s \in (0, 1)$.

1. Λ_L is polynomially level spacing (PLS) if it is L^{-q}-level spacing.
2. Λ_L is level spacing (LS) if it is e^{-L^β}-level spacing.
3. A θ-polynomially localized eigensystem (PLE) for H_{Λ_L} is an eigensystem $\{(\phi_x, \lambda_x)\}_{x \in \Lambda_L}$ for H_{Λ_L} such that for all $x \in \Lambda_L$ we have

$$|\phi_x(y)| \leq L^{-\theta} \quad \text{for all} \quad y \in \Lambda_L \quad \text{with} \quad \|y - x\| \geq \frac{L}{20}.$$
Level spacing and localizing eigensystems

Definition Fix $H = H_{ε,ω}$, $q > 0$ and $β, τ ∈ (0,1)$. Let $Λ_L$ be a box, $θ, m > 0$, $s ∈ (0,1)$.

1. $Λ_L$ is polynomially level spacing (PLS) if it is L^{-q}-level spacing.
2. $Λ_L$ is level spacing (LS) if it is $e^{-L^β}$-level spacing.
3. A $θ$-polynomially localized eigensystem (PLE) for $H_{Λ_L}$ is an eigensystem $\{(φ_x, λ_x)\}_{x ∈ Λ_L}$ for $H_{Λ_L}$ such that for all $x ∈ Λ_L$ we have

$$|φ_x(y)| ≤ L^{-θ} \text{ for all } y ∈ Λ_L \text{ with } \|y - x\| ≥ \frac{L}{20}.$$

4. A s-subexponentially localized eigensystem (SLE) for $H_{Λ_L}$ is an eigensystem $\{(φ_x, λ_x)\}_{x ∈ Λ_L}$ for $H_{Λ_L}$ such that for all $x ∈ Λ_L$ we have

$$|φ_x(y)| ≤ e^{-L^s} \text{ for all } y ∈ Λ_L \text{ with } \|y - x\| ≥ \frac{L}{20}.$$
Level spacing and localizing eigensystems

Definition
Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$.

Let Λ_L be a box, $\theta, m > 0$, $s \in (0, 1)$.

1. Λ_L is polynomially level spacing (PLS) if it is L^{-q}-level spacing.
2. Λ_L is level spacing (LS) if it is e^{-L^β}-level spacing.
3. A θ-polynomially localized eigensystem (PLE) for H_{Λ_L} is an eigensystem $\{(\varphi_x, \lambda_x)\}_{x \in \Lambda_L}$ for H_{Λ_L} such that for all $x \in \Lambda_L$ we have
 $$|\varphi_x(y)| \leq L^{-\theta} \quad \text{for all } y \in \Lambda_L \quad \text{with} \quad \|y - x\| \geq \frac{L}{20}.$$

4. A s-subexponentially localized eigensystem (SLE) for H_{Λ_L} is an eigensystem $\{(\varphi_x, \lambda_x)\}_{x \in \Lambda_L}$ for H_{Λ_L} such that for all $x \in \Lambda_L$ we have
 $$|\varphi_x(y)| \leq e^{-L^s} \quad \text{for all } y \in \Lambda_L \quad \text{with} \quad \|y - x\| \geq \frac{L}{20}.$$

5. An m-localized eigensystem (LE) for H_{Λ_L} is an eigensystem $\{(\varphi_x, \lambda_x)\}_{x \in \Lambda_L}$ for H_{Λ_L} such that for all $x \in \Lambda_L$ we have
 $$|\varphi_x(y)| \leq e^{-m\|y - x\|} \quad \text{for all } y \in \Lambda_L \quad \text{with} \quad \|y - x\| \geq L^\tau.$$
Definition Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$. Let Λ_L be a box, and consider $\theta > 0$, $m > 0$, and $s \in (0, 1)$.
Hierarchy of localizing boxes for the bootstrap MSA

Definition Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0,1)$. Let Λ_L be a box, and consider $\theta > 0$, $m > 0$, and $s \in (0,1)$.

1. Λ_L is θ-polynomially localizing (PL) if Λ_L is PLS and there is a θ-PLE for H_{Λ_L}.
Hierarchy of localizing boxes for the bootstrap MSA

Definition Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$. Let Λ_L be a box, and consider $\theta > 0$, $m > 0$, and $s \in (0, 1)$.

1. Λ_L is θ-polynomially localizing (PL) if Λ_L is PLS and there is a θ-PLE for H_{Λ_L}.
2. Λ_L is m-mix localizing (ML) if Λ_L is PLS and there is an m-LE for H_{Λ_L}.
Hierarchy of localizing boxes for the bootstrap MSA

Definition

Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$. Let Λ_L be a box, and consider $\theta > 0$, $m > 0$, and $s \in (0, 1)$.

1. Λ_L is θ-polynomially localizing (PL) if Λ_L is PLS and there is a θ-PLE for H_{Λ_L}.

2. Λ_L is m-mix localizing (ML) if Λ_L is PLS and there is an m-LE for H_{Λ_L}.

3. Λ_L is s-subexponentially localizing (SEL) if Λ_L is LS and there is a s-SLE for H_{Λ_L}.
The bootstrap multiscale analysis

Hierarchy of localizing boxes for the bootstrap MSA

Definition Fix $H = H_{\varepsilon, \omega}$, $q > 0$ and $\beta, \tau \in (0, 1)$. Let Λ_L be a box, and consider $\theta > 0$, $m > 0$, and $s \in (0, 1)$.

1. Λ_L is θ-polynomially localizing (PL) if Λ_L is PLS and there is a θ-PLE for H_{Λ_L}.

2. Λ_L is m-mix localizing (ML) if Λ_L is PLS and there is an m-LE for H_{Λ_L}.

3. Λ_L is s-subexponentially localizing (SEL) if Λ_L is LS and there is an s-SLE for H_{Λ_L}.

4. Λ_L is m-localizing (LOC) if Λ_L is LS and there is an m-LE for H_{Λ_L}.

Abel Klein
The eigensystem bootstrap multiscale analysis

Theorem

Let $H_{\varepsilon, \omega}$ be an Anderson model, and consider $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d$.

Abel Klein
The eigensystem bootstrap multiscale analysis

Theorem

Let $H_{\epsilon,\omega}$ be an Anderson model, and consider $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d$. There exists a finite scale $\mathcal{L}(\theta)$ with the following property:
The eigensystem bootstrap multiscale analysis

Theorem

Let $H_{\varepsilon, \omega}$ be an Anderson model, and consider $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2}\right) d$. There exists a finite scale $\mathcal{L}(\theta)$ with the following property: Suppose for some $\varepsilon \in (0, 1]$, $L_0 \geq \mathcal{L}(\theta)$, and $0 \leq P_0 < \frac{1}{2(800)^2d}$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } \theta\text{-polynomially localizing for } H_{\varepsilon, \omega}\} \geq 1 - P_0.$$
The bootstrap multiscale analysis

The eigensystem bootstrap multiscale analysis

Theorem

Let $H_{\epsilon, \omega}$ be an Anderson model, and consider $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d$.

There exists a finite scale $L(\theta)$ with the following property:

Suppose for some $\epsilon \in (0, 1]$, $L_0 \geq L(\theta)$, and $0 \leq P_0 < \frac{1}{2(800)^{2\alpha}}$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_{L_0}(x) \text{ is } \theta\text{-polynomially localizing for } H_{\epsilon, \omega}\} \geq 1 - P_0.$$

Then, given $0 < \xi < 1$, we can find a finite scale $\tilde{L} = \tilde{L}(\theta, \xi, L_0)$ and $m_\xi = m(\xi, \tilde{L}) > 0$ such that

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_L(x) \text{ is } m_\xi\text{-localizing for } H_{\epsilon, \omega}\} \geq 1 - e^{-L^\xi} \quad \text{for } L \geq \tilde{L}.$$
The initial step for the BMSA

Proposition

Given \(q > \frac{2d}{\alpha} \) and \(\varepsilon \in (0, 1] \), let \(\theta_{\varepsilon, L} = \frac{L}{\log L} \log \left(1 + \frac{L^{-q}}{2d\varepsilon} \right) \).
The initial step for the BMSA

Proposition

Given $q > \frac{2d}{\alpha}$ and $\varepsilon \in (0, 1]$, let $\theta_{\varepsilon, L} = \frac{L}{\log L} \log \left(1 + \frac{L^{-q}}{2d\varepsilon}\right)$.

Then

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_L(x) \text{ is } \theta_{\varepsilon, L}-polynomially localizing for } H_{\varepsilon, \omega}\} \geq 1 - \frac{1}{2} K(L + 1)^{2d} (8d\varepsilon + 2L^{-q})^\alpha.$$
The initial step for the BMSA

Proposition

Given $q > \frac{2d}{\alpha}$ and $\varepsilon \in (0, 1]$, let

$$\theta_{\varepsilon, L} = \frac{L}{20} \log \log \left(1 + \frac{L^{-q}}{2d\varepsilon}\right).$$

Then

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_L(x)\text{ is } \theta_{\varepsilon, L}\text{-polynomially localizing for } H_{\varepsilon, \omega}\} \geq 1 - \frac{1}{2} K(L + 1)^{2d} \left(8d\varepsilon + 2L^{-q}\right)^{\alpha}.$$

In particular, given $\theta > 0$ and $P_0 > 0$, there exists a finite scale $L(q, \theta, P_0)$ such that for all $L \geq L(q, \theta, P_0)$ and all $0 < \varepsilon \leq \frac{1}{4d} L^{-q}$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_L(x)\text{ is } \theta\text{-polynomially localizing for } H_{\varepsilon, \omega}\} \geq 1 - P_0.$$
Comments on the proof of the BMSA

We fix \(\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d \), \(0 < \xi < 1 \), and \(p > 0 \).
Comments on the proof of the BMSA

We fix $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d$, $0 < \xi < 1$, and $p > 0$. We introduce the following parameters:
We fix $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d$, $0 < \xi < 1$, and $p > 0$.

We introduce the following parameters:

- We fix q, γ_1 such that
 \[\frac{3d}{2\alpha - 1} < q < \frac{1}{2} \left(\theta - \frac{9}{2} d \right), \]
 \[0 < p < (2\alpha - 1)q - 3d, \quad \text{and} \quad 1 < \gamma_1 < \min \left\{ 1 + \frac{p}{p+2d}, \frac{2\theta - 4d}{5d+4q} \right\}. \]
Comments on the proof of the BMSA

We fix $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d$, $0 < \xi < 1$, and $p > 0$. We introduce the following parameters:

- We fix q, γ_1 such that $\frac{3d}{2\alpha - 1} < q < \frac{1}{2} \left(\theta - \frac{9}{2} d \right)$,
 $$0 < p < (2\alpha - 1)q - 3d, \quad \text{and} \quad 1 < \gamma_1 < \min \left\{ 1 + \frac{p}{p+2d}, \frac{2\theta - 4d}{5d+4q} \right\}.$$

- We fix $\zeta, \beta, \gamma, \tau$ such that $0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}}$
 and $\max \left\{ \frac{1 + \gamma_1}{2\gamma_1}, \frac{1 + \gamma \beta}{2}, \frac{(\gamma - 1)\beta + 1}{\gamma} \right\} < \tau < 1$.
The bootstrap multiscale analysis

Comments on the proof of the BMSA

We fix \(\theta > \left(\frac{6}{2\alpha-1} + \frac{9}{2} \right) d \), \(0 < \xi < 1 \), and \(p > 0 \).

We introduce the following parameters:

- We fix \(q, \gamma_1 \) such that \(\frac{3d}{2\alpha-1} < q < \frac{1}{2} \left(\theta - \frac{9}{2} d \right) \),
 \(0 < p < (2\alpha - 1)q - 3d \), and \(1 < \gamma_1 < \min \left\{ 1 + \frac{p}{p+2d}, \frac{2\theta-4d}{5d+4q} \right\} \).

- We fix \(\zeta, \beta, \gamma, \tau \) such that \(0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}} \)
 and \(\max \left\{ \frac{1+\gamma_1}{2\gamma_1}, \frac{1+\gamma\beta}{2}, \frac{(\gamma-1)\beta+1}{\gamma} \right\} < \tau < 1 \).

- We fix \(s \) such that \(\max \left\{ \gamma\beta, 1 - 2\gamma \left(\tau - \frac{1+\gamma\beta}{2} \right) \right\} < s < 1 \).
Comments on the proof of the BMSA

We fix $\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2}\right) d$, $0 < \xi < 1$, and $p > 0$.

We introduce the following parameters:

- We fix q, γ_1 such that $\frac{3d}{2\alpha - 1} < q < \frac{1}{2} \left(\theta - \frac{9}{2} d\right)$, $0 < p < (2\alpha - 1)q - 3d$, and $1 < \gamma_1 < \min \left\{1 + \frac{p}{p + 2d}, \frac{2\theta - 4d}{5d + 4q}\right\}$.

- We fix $\zeta, \beta, \gamma, \tau$ such that $0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}}$ and $\max\left\{\frac{1 + \gamma_1}{2\gamma_1}, \frac{1 + \gamma \beta}{2}, \frac{(\gamma - 1)\beta + 1}{\gamma}\right\} < \tau < 1$.

- We fix s such that $\max\left\{\gamma \beta, 1 - 2\gamma \left(\tau - \frac{1 + \gamma \beta}{2}\right)\right\} < s < 1$.

These parameters q, β, τ, etc. will be omitted from the dependence of the constants.
We fix \(\theta > \left(\frac{6}{2\alpha - 1} + \frac{9}{2} \right) d \), \(0 < \xi < 1 \), and \(p > 0 \).

We introduce the following parameters:

- We fix \(q, \gamma_1 \) such that \(\frac{3d}{2\alpha - 1} < q < \frac{1}{2} \left(\theta - \frac{9}{2} d \right) \),
 \(0 < p < (2\alpha - 1)q - 3d \), and \(1 < \gamma_1 < \min \left\{ 1 + \frac{p}{p + 2d}, \frac{2\theta - 4d}{5d + 4q} \right\} \).

- We fix \(\zeta, \beta, \gamma, \tau \) such that \(0 < \xi < \zeta < \beta < \frac{1}{\gamma} < 1 < \gamma < \sqrt{\frac{\zeta}{\xi}} \)
 and \(\max \left\{ \frac{1 + \gamma_1}{2\gamma_1}, \frac{1 + \gamma \beta}{2}, \frac{(\gamma - 1)\beta + 1}{\gamma} \right\} < \tau < 1 \).

- We fix \(s \) such that \(\max \left\{ \gamma \beta, 1 - 2\gamma \left(\tau - \frac{1 + \gamma \beta}{2} \right) \right\} < s < 1 \).

These parameters \(q, \beta, \tau, \) etc. will be omitted from the dependence of the constants.

The proof of the theorem proceeds by 4 multiscale analysis plus 2 intermediate steps.
The first multiscale analysis

Proposition

Fix \(Y \geq 400 \) and \(P_0 < \frac{1}{2} (2Y)^{-2d} \). There exists a finite scale \(L(Y) \) with the following property:

Suppose for some scale \(L_0 \geq L(Y) \) and \(\epsilon \in (0,1] \) we have

\[
\inf_{x \in \mathbb{R}^d} P\left\{ \Lambda_{L_0}(x) \text{ is } \theta \text{-polynomially localizing for } H_{\epsilon, \omega} \right\} \geq 1 - P_0.
\]

Then, setting \(L_k + 1 = Y L_k \) for \(k = 0, 1, \ldots \), there exists \(K_0 = K_0(Y, L_0, P_0) \in \mathbb{N} \) such that

\[
\inf_{x \in \mathbb{R}^d} P\left\{ \Lambda_{L_k}(x) \text{ is } \theta \text{-polynomially localizing for } H_{\epsilon, \omega} \right\} \geq 1 - L^{-p_k} \text{ for } k \geq K_0.
\]
Proposition

Fix $Y \geq 400$ and $P_0 < \frac{1}{2}(2Y)^{-2d}$. There exists a finite scale $\mathcal{L}(Y)$ with the following property: Suppose for some scale $L_0 \geq \mathcal{L}(Y)$ and $\varepsilon \in (0,1]$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } \theta\text{-polynomially localizing for } H_{\varepsilon,\omega}\} \geq 1 - P_0.$$
The first multiscale analysis

Proposition

Fix $Y \geq 400$ and $P_0 < \frac{1}{2} (2Y)^{-2d}$. There exists a finite scale $\mathcal{L}(Y)$ with the following property: Suppose for some scale $L_0 \geq \mathcal{L}(Y)$ and $\varepsilon \in (0, 1]$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } \theta\text{-polynomially localizing for } H_{\varepsilon, \omega}\} \geq 1 - P_0.$$

Then, setting $L_{k+1} = YL_k$ for $k = 0, 1, \ldots$, there exists $K_0 = K_0(Y, L_0, P_0) \in \mathbb{N}$ such that

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_k}(x) \text{ is } \theta\text{-polynomially localizing for } H_{\varepsilon, \omega}\} \geq 1 - L_k^{-p} \text{ for } k \geq K_0.$$
The first intermediate step

Proposition

Suppose for some scale \(\ell \) and \(\varepsilon \in (0, 1] \) we have

\[
\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_{\ell}(x) \text{ is } \theta\text{-polynomially localizing for } H_{\varepsilon, \omega} \} \geq 1 - \ell^{-p}.
\]
The first intermediate step

Proposition

Suppose for some scale ℓ and $\varepsilon \in (0, 1]$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_\ell(x) \text{ is } \theta\text{-polynomially localizing for } H_{\varepsilon, \omega}\} \geq 1 - \ell^{-p}.$$

Let $L = \ell^{\gamma_1}$. If ℓ is sufficiently large, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_L(x) \text{ is } m_0^\ast\text{-mix localizing for } H_{\varepsilon, \omega}\} \geq 1 - L^{-p},$$

where

$$m_0^\ast \geq \frac{1}{8} \left(\frac{5d}{2} + q \right) L^{-(1-\tau+\frac{1}{\gamma_1})} \log L.$$
Proposition

There exists a finite scale L with the following property:
The second multiscale analysis

Proposition

There exists a finite scale L with the following property: Suppose for some scale $L_0 \geq L$, $\varepsilon \in (0, 1)$, and $m^*_0 \geq L_0^{-\kappa}$, where $0 < \kappa < \tau$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_{L_0}(x) \text{ is } m^*_0\text{-mix localizing for } H_{\varepsilon, \omega} \} \geq 1 - L_0^{-p}.$$
The second multiscale analysis

Proposition

There exists a finite scale \mathcal{L} with the following property: Suppose for some scale $L_0 \geq \mathcal{L}$, $\epsilon \in (0, 1]$, and $m_0^* \geq L_0^{-\kappa}$, where $0 < \kappa < \tau$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } m_0^*-\text{mix localizing for } H_{\epsilon, \omega}\} \geq 1 - L_0^{-p}.$$

Then, setting $L_{k+1} = L_k^{\gamma_k}$ for $k = 0, 1, \ldots$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_k}(x) \text{ is } m_0^*-\frac{2}{2}\text{-mix localizing for } H_{\epsilon, \omega}\} \geq 1 - L_k^{-p} \text{ for } k = 0, 1, \ldots.$$
The second multiscale analysis

Proposition

There exists a finite scale L with the following property: Suppose for some scale $L_0 \geq L$, $\epsilon \in (0,1)$, and $m^* \geq L_0^{-\kappa}$, where $0 < \kappa < \tau$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } m^*-\text{mix localizing for } H_{\epsilon, \omega}\} \geq 1 - L_0^{-p}.$$

Then, setting $L_{k+1} = L_k^{\gamma_k}$ for $k = 0, 1, \ldots$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_k}(x) \text{ is } \frac{m^*}{2}\text{-mix localizing for } H_{\epsilon, \omega}\} \geq 1 - L_k^{-p} \text{ for } k = 0, 1, \ldots.$$

Λ_L is m^*-mix localizing $\implies \Lambda_L$ is $\left(1 - \frac{\log \frac{40}{m^*}}{\log L}\right)$-SEL $\implies \Lambda_L$ is s-SEL

for sufficiently large L and $m^* < 40$.

Abel Klein
The third multiscale analysis

Proposition

Fix $Y \geq 400 \frac{1}{1-s}$ and $\tilde{P}_0 < (2(2Y)(\lfloor Y^s \rfloor + 1)^d)^{-\frac{1}{[Y^s]}}$. There exists a finite scale $\mathcal{L}(Y)$ with the following property:
The bootstrap multiscale analysis

The third multiscale analysis

Proposition

Fix $Y \geq 400^{\frac{1}{1-s}}$ and $\widetilde{P}_0 < (2(2Y)(\lceil Y^s \rceil + 1)^d)^{-\frac{1}{\lceil Y^s \rceil}}$.

There exists a finite scale $L(Y)$ with the following property:
Suppose for some scale $L_0 \geq L(Y)$ and $\varepsilon \in (0, 1]$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } s\text{-SEL for } H_{\varepsilon, \omega}\} \geq 1 - \widetilde{P}_0.$$
The third multiscale analysis

Proposition

Fix $Y \geq 400 \frac{1}{1-s}$ and $\tilde{P}_0 < (2(2Y)(\lfloor Y^s \rfloor + 1)d)^{-\frac{1}{\lfloor Y^s \rfloor}}$.

There exists a finite scale $L(Y)$ with the following property:

Suppose for some scale $L_0 \geq L(Y)$ and $\epsilon \in (0, 1]$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } s\text{-SEL for } H_{\epsilon, \omega}\} \geq 1 - \tilde{P}_0.$$

Then, setting $L_{k+1} = YL_k$ for $k = 0, 1, \ldots$, there exists $K_0 = K_0(Y, L_0, \tilde{P}_0) \in \mathbb{N}$ such that

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_k}(x) \text{ is } s\text{-SEL for } H_{\epsilon, \omega}\} \geq 1 - e^{-L_k^\zeta} \quad \text{for } k \geq K_0.$$
The second intermediate step

Proposition

Suppose for some scale ℓ and $\varepsilon \in (0, 1]$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_\ell(x) \text{ is } s\text{-SEL for } H_{\varepsilon, \omega}\} \geq 1 - e^{-\ell \zeta}.$$
The bootstrap multiscale analysis

The second intermediate step

Proposition

Suppose for some scale ℓ and $\varepsilon \in (0, 1]$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{\ell}(x) \text{ is } s\text{-SEL for } H_{\varepsilon, \omega}\} \geq 1 - e^{-\ell \zeta}.$$

Let $L = \ell^\gamma$. If ℓ is sufficiently large, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L}(x) \text{ is } m_0\text{-localizing for } H_{\varepsilon, \omega}\} \geq 1 - e^{-L \zeta},$$

where

$$m_0 \geq \frac{1}{8} L^{-\left(1 - \tau + \frac{1-s}{\gamma}\right)}.$$
The fourth multiscale analysis

Proposition

There exists a finite scale L with the following property:

$\inf_{x \in \mathbb{R}^d} P\{\Lambda_{L^0}(x) \text{ is } m_0\text{-localizing for } H_\varepsilon, \omega\} \geq 1 - e^{-L} \zeta_0$.

Then, setting $L_{k+1}^\gamma = L_k$ for $k = 0, 1, ...$, we have

$\inf_{x \in \mathbb{R}^d} P\{\Lambda_{L_k}(x) \text{ is } m_0^2\text{-localizing for } H_\varepsilon, \omega\} \geq 1 - e^{-L} \zeta_k$ for $k = 0, 1, ...$.

Moreover, we have

$\inf_{x \in \mathbb{R}^d} P\{\Lambda_{L_k}(x) \text{ is } m_0^4\text{-localizing for } H_\varepsilon, \omega\} \geq 1 - e^{-L} \xi$ for all $L \geq L_0^\gamma$.

Abel Klein
The fourth multiscale analysis

Proposition

There exists a finite scale L with the following property: Suppose for some scale $L_0 \geq L$, $\epsilon \in (0, 1]$, and $m_0 \geq L_0^{-\kappa}$, where $0 < \kappa < \tau - \gamma \beta$, we have

$$\inf_{x \in \mathbb{R}^d} P\{L_0(x) \text{ is } m_0\text{-localizing for } H_{\epsilon, \omega}\} \geq 1 - e^{-L_0^\xi}.$$
The fourth multiscale analysis

Proposition

There exists a finite scale L with the following property: Suppose for some scale $L_0 \geq L$, $\varepsilon \in (0, 1]$, and $m_0 \geq L_0^{-\kappa}$, where $0 < \kappa < \tau - \gamma \beta$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } m_0\text{-localizing for } H_{\varepsilon, \omega}\} \geq 1 - e^{-L_0 \zeta}.$$

Then, setting $L_{k+1} = L_k^{\gamma}$ for $k = 0, 1, \ldots$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_k}(x) \text{ is } m_0/2\text{-localizing for } H_{\varepsilon, \omega}\} \geq 1 - e^{-L_k \xi} \text{ for } k = 0, 1, \ldots.$$
The fourth multiscale analysis

Proposition

There exists a finite scale L with the following property: Suppose for some scale $L_0 \geq L$, $\varepsilon \in (0, 1]$, and $m_0 \geq L_0^{-\kappa}$, where $0 < \kappa < \tau - \gamma \beta$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_0}(x) \text{ is } m_0\text{-localizing for } H_{\varepsilon, \omega}\} \geq 1 - e^{-L_0\xi}.$$

Then, setting $L_{k+1} = L_k^\gamma$ for $k = 0, 1, \ldots$, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_k}(x) \text{ is } \frac{m_0}{2}\text{-localizing for } H_{\varepsilon, \omega}\} \geq 1 - e^{-L_k\xi} \text{ for } k = 0, 1, \ldots.$$

Moreover, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{L_k}(x) \text{ is } \frac{m_0}{4}\text{-localizing for } H_{\varepsilon, \omega}\} \geq 1 - e^{-L_0\xi} \text{ for all } L \geq L_0^\gamma.$$
Lemmas about eigenpairs

Let $\Psi \subset \Theta \subset \mathbb{Z}^d$. Given $t \geq 1$, we set
Lemmas about eigenpairs

Let $\Psi \subset \Theta \subset \mathbb{Z}^d$. Given $t \geq 1$, we set

$$
\partial_{\text{ex}}^\Theta \Psi = \{ v \in (\Theta \setminus \Psi); |v - u| = 1 \text{ for some } u \in \Psi \} \\
\partial_{\text{in}}^\Theta \Psi = \{ u \in \Psi; |v - u| = 1 \text{ for some } v \in \Theta \setminus \Psi \} \\
\Psi_{\Theta,t} = \{ y \in \Psi; \text{dist}(y, \Theta \setminus \Psi) > t \}, \\
\partial_{\Theta,t}^\Psi = \partial_{\text{ex}}^\Theta \Psi \cup \left(\Psi \setminus \Psi_{\Theta,t} \right).
$$
Lemmas about eigenpairs

Let $\Psi \subset \Theta \subset \mathbb{Z}^d$. Given $t \geq 1$, we set

$$
\partial_{\text{ex}}^\Theta \Psi = \{ v \in (\Theta \setminus \Psi); |v - u| = 1 \text{ for some } u \in \Psi \} \\
\partial_{\text{in}}^\Theta \Psi = \{ u \in \Psi; |v - u| = 1 \text{ for some } v \in \Theta \setminus \Psi \} \\
\Psi^{\Theta,t} = \{ y \in \Psi; \text{dist}(y, \Theta \setminus \Psi) > t \}, \\
\partial^{\Theta,t} \Psi = \partial_{\text{ex}}^\Theta \Psi \cup \left(\Psi \setminus \Psi^{\Theta,t} \right).
$$

Lemma

Let $\Phi \subset \Theta \subset \mathbb{Z}^d$ and suppose (φ, λ) is an eigenpair for H_Φ. Then

$$
\text{dist}(\lambda, \sigma(H_\Theta)) \leq \| (H_\Theta - \lambda) \varphi \| \leq (2d - 1) \varepsilon \left| \partial_{\text{ex}}^\Theta \Phi \right|^{\frac{1}{2}} \sup_{y \in \partial_{\text{in}}^\Theta \Phi} |\varphi(y)|.
$$
Lemma about localized eigenpairs

Lemma

Consider a box $\Lambda_L \subset \Theta \subset \mathbb{Z}^d$, and suppose (φ, λ) is an eigenpair for H_{Λ_L}.
Lemma about localized eigenpairs

Lemma

Consider a box $\Lambda_L \subset \Theta \subset \mathbb{Z}^d$, and suppose (φ, λ) is an eigenpair for H_{Λ_L}.

1. If φ is (x, θ)-polynomially localized for some $x \in \Lambda_L^{\Theta, \frac{L}{20}}$, we have

$$\text{dist}(\lambda, \sigma(H_\Theta)) \leq CL^{-\left(\theta - \frac{d-1}{2}\right)}.$$
Lemma about localized eigenpairs

Consider a box $\Lambda_L \subset \Theta \subset \mathbb{Z}^d$, and suppose (φ, λ) is an eigenpair for H_{Λ_L}.

1. If φ is (x, θ)-polynomially localized for some $x \in \Lambda_L^{\Theta, L/20}$, we have
 \[\text{dist}(\lambda, \sigma(H_{\Theta})) \leq CL^{-\left(\theta - \frac{d-1}{2}\right)}. \]

2. If φ is (x, s)-subexponentially localized for some $x \in \Lambda_L^{\Theta, L/20}$, we have
 \[\text{dist}(\lambda, \sigma(H_{\Theta})) \leq e^{-c_1 L^s}, \text{ where } c_1 \geq 1 - \frac{\log L}{L^s}. \]
Lemma about localized eigenpairs

Consider a box $\Lambda_L \subset \Theta \subset \mathbb{Z}^d$, and suppose (φ, λ) is an eigenpair for H_{Λ_L}.

1. If φ is (x, θ)-polynomially localized for some $x \in \Lambda_L^{\Theta, \frac{L}{20}}$, we have
 \[
 \text{dist}(\lambda, \sigma(H_{\Theta})) \leq CL^{-\left(\theta - \frac{d-1}{2}\right)}.
 \]

2. If φ is (x, s)-subexponentially localized for some $x \in \Lambda_L^{\Theta, \frac{L}{20}}$, we have
 \[
 \text{dist}(\lambda, \sigma(H_{\Theta})) \leq e^{-c_1 L^s}, \quad \text{where} \quad c_1 \geq 1 - \frac{\log L}{L^s}.
 \]

3. If φ is (x, m) localized for some $x \in \Lambda_L^{\Theta, L^\tau}$, we have
 \[
 \text{dist}(\lambda, \sigma(H_{\Theta})) \leq e^{-m_1 L^\tau}, \quad \text{where} \quad m_1 \geq m - C \frac{\log L}{L^\tau}.
 \]
Lemma

Let $\Theta \subset \mathbb{Z}^d$ and $0 < 4\delta < \eta$. Suppose:

- μ is a simple eigenvalue of H_{Θ} with normalized eigenfunction ψ_{μ}, with $\text{dist}(\mu, \sigma(H_{\Theta})\{\mu\}) \geq \eta$.
- $\| (H_{\Theta} - \lambda) \varphi \| \leq \delta$, where $\varphi \in \ell^2(\Theta)$ with $\| \varphi \| = 1$ and $\lambda \in \mathbb{R}$ with $|\lambda - \mu| \leq \delta$.

Define φ_\perp by $\varphi_\perp = \langle \psi_{\mu}, \varphi \rangle \psi_{\mu} + \varphi_\perp$. Then we have $|\langle \psi_{\mu}, \varphi \rangle|^2 \geq 1 - 2\delta^2 \eta^2$ and $\| \varphi_\perp \| \leq \sqrt{2} \delta \eta$.

Moreover, choosing φ so $\langle \psi_{\mu}, \varphi \rangle > 0$, we have $\| \varphi - \psi_{\mu} \| \leq 3\delta^2 \eta$.
Lemma about approximate eigenpairs

Lemma

Let $\Theta \subset \mathbb{Z}^d$ and $0 < 4\delta < \eta$. Suppose:

1. μ is a simple eigenvalue of H_Θ with normalized eigenfunction ψ_μ, with $\text{dist}(\mu, \sigma(H_\Theta) \setminus \{\mu\}) \geq \eta$.

\[\| (H_\Theta - \lambda) \varphi \| \leq \delta, \quad \| \varphi \| = 1, \quad \lambda \in \mathbb{R} \quad \text{with} \quad |\lambda - \mu| \leq \delta. \]

Define φ_\perp by $\varphi_\perp = \langle \psi_\mu, \varphi \rangle \psi_\mu + \varphi_\perp$. Then we have

\[\| \varphi - \psi_\mu \| \leq 3\delta^2 \eta. \]

Moreover, choosing φ so $\langle \psi_\mu, \varphi \rangle > 0$, we have

\[\| \varphi - \psi_\mu \| \leq 3\delta^2 \eta. \]
Lemma about approximate eigenpairs

Lemma

Let $\Theta \subset \mathbb{Z}^d$ and $0 < 4\delta < \eta$. Suppose:

1. μ is a simple eigenvalue of H_Θ with normalized eigenfunction ψ_μ, with $\text{dist}(\mu, \sigma(H_\Theta) \setminus \{\mu\}) \geq \eta$.

2. $\| (H_\Theta - \lambda) \varphi \| \leq \delta$, where $\varphi \in \ell^2(\Theta)$ with $\| \varphi \| = 1$ and $\lambda \in \mathbb{R}$ with $|\lambda - \mu| \leq \delta$.
Lemma about approximate eigenpairs

Lemma

Let $\Theta \subset \mathbb{Z}^d$ and $0 < 4\delta < \eta$. Suppose:

1. μ is a simple eigenvalue of H_Θ with normalized eigenfunction ψ_μ, with $\text{dist}(\mu, \sigma(H_\Theta) \setminus \{\mu\}) \geq \eta$.

2. $\|(H_\Theta - \lambda)\varphi\| \leq \delta$, where $\varphi \in \ell^2(\Theta)$ with $\|\varphi\| = 1$ and $\lambda \in \mathbb{R}$ with $|\lambda - \mu| \leq \delta$.

Define φ^\perp by $\varphi = \langle \psi_\mu, \varphi \rangle \psi_\mu + \varphi^\perp$. Then we have

$$\left| \langle \psi_\mu, \varphi \rangle \right|^2 \geq 1 - \frac{2\delta^2}{\eta^2} \quad \text{and} \quad \|\varphi^\perp\| \leq \frac{\sqrt{2}\delta}{\eta}.$$
Lemma about approximate eigenpairs

Lemma

Let $\Theta \subset \mathbb{Z}^d$ and $0 < 4\delta < \eta$. Suppose:

1. μ is a simple eigenvalue of H_Θ with normalized eigenfunction ψ_μ, with $\text{dist}(\mu, \sigma(H_\Theta) \setminus \{\mu\}) \geq \eta$.
2. $\|(H_\Theta - \lambda) \varphi\| \leq \delta$, where $\varphi \in \ell^2(\Theta)$ with $\|\varphi\| = 1$ and $\lambda \in \mathbb{R}$ with $|\lambda - \mu| \leq \delta$.

Define φ^\perp by $\varphi = \langle \psi_\mu, \varphi \rangle \psi_\mu + \varphi^\perp$. Then we have

$$|\langle \psi_\mu, \varphi \rangle|^2 \geq 1 - \frac{2\delta^2}{\eta^2} \quad \text{and} \quad \|\varphi^\perp\| \leq \frac{\sqrt{2}\delta}{\eta}.$$

Moreover, choosing φ so $\langle \psi_\mu, \varphi \rangle > 0$, we have

$$\|\varphi - \psi_\mu\| \leq \frac{3\delta}{2\eta}.$$
Localizing boxes

We will show applications of the lemmas on eigenpairs to m-localizing boxes. Similar results hold for θ-polynomially localizing, m-mix localizing, and s-subexponentially localizing boxes.
Localizing boxes

We will show applications of the lemmas on eigenpairs to m-localizing boxes. Similar results hold for θ-polynomially localizing, m-mix localizing, and s-subexponentially localizing boxes.

Lemma

Let (ψ, λ) be a generalized eigenpair for H_Θ and $\Lambda_\ell \subset \Theta$ be an m-localizing box with an m-localized eigensystem $\{\varphi_x, \lambda_x\}_{x \in \Lambda_\ell}$, and suppose

$$|\lambda - \lambda_x| \geq \frac{1}{2} e^{-L\beta} \quad \text{for all} \quad x \in \Lambda_\ell^{\Theta, \ell\tau}.$$
Localizing boxes

We will show applications of the lemmas on eigenpairs to \(m \)-localizing boxes. Similar results hold for \(\theta \)-polynomially localizing, \(m \)-mix localizing, and \(s \)-subexponentially localizing boxes.

Lemma

Let \((\psi, \lambda)\) be a generalized eigenpair for \(H_\Theta \) and \(\Lambda_\ell \subset \Theta \) be an \(m \)-localizing box with an \(m \)-localized eigensystem \(\{\varphi_x, \lambda_x\}_{x \in \Lambda_\ell} \), and suppose

\[
|\lambda - \lambda_x| \geq \frac{1}{2} e^{-L\beta} \quad \text{for all} \quad x \in \Lambda_{\ell, \tau}^\Theta.
\]

Then the following holds for sufficiently large \(L \):
Localizing boxes

We will show applications of the lemmas on eigenpairs to m-localizing boxes. Similar results hold for θ-polynomially localizing, m-mix localizing, and s-subexponentially localizing boxes.

Lemma

Let (ψ, λ) be a generalized eigenpair for H_Θ and $\Lambda_\ell \subset \Theta$ be an m-localizing box with an m-localized eigensystem $\{\varphi_x, \lambda_x\}_{x \in \Lambda_\ell}$, and suppose

$$|\lambda - \lambda_x| \geq \frac{1}{2} e^{-L^\beta} \quad \text{for all} \quad x \in \Lambda_{\Theta, \ell}^\Theta, \ell^\tau.$$

Then the following holds for sufficiently large L:

1. If $y \in \Lambda_{\ell}^{\Theta, 2\ell^\tau}$ we have $|\psi(y)| \leq e^{-m_2\ell^\tau} |\psi(y_1)|$ for some $y_1 \in \partial^{\Theta, 2\ell^\tau} \Lambda_\ell$.
Localizing boxes

We will show applications of the lemmas on eigenpairs to \(m \)-localizing boxes. Similar results hold for \(\theta \)-polynomially localizing, \(m \)-mix localizing, and \(s \)-subexponentially localizing boxes.

Lemma

Let \((\psi, \lambda)\) be a generalized eigenpair for \(H_\Theta \) and \(\Lambda_\ell \subset \Theta \) be an \(m \)-localizing box with an \(m \)-localized eigensystem \(\{\varphi_x, \lambda_x\}_{x \in \Lambda_\ell} \), and suppose

\[
|\lambda - \lambda_x| \geq \frac{1}{2} e^{-L^\beta} \quad \text{for all} \quad x \in \Lambda_{\Theta, \ell^\tau}.
\]

Then the following holds for sufficiently large \(L \):

1. If \(y \in \Lambda_{\ell}^{\Theta, 2\ell^\tau} \) we have \(|\psi(y)| \leq e^{-m_2\ell^\tau} |\psi(y_1)| \) for some \(y_1 \in \partial^{\Theta, 2\ell^\tau} \Lambda_\ell \).
2. If \(y \in \Lambda_{\ell}^{\Theta, 2\ell\tilde{\tau}} \), \(\tilde{\tau} = \frac{1 + \tau}{2} \), we have \(|\psi(y)| \leq e^{-m_3\|y_2 - y\|} |\psi(y_2)| \) for some \(y_2 \in \partial^{\Theta, \ell\tilde{\tau}} \Lambda_\ell \). In particular, \(\|y_2 - y\| > \ell\tilde{\tau} \).
The induction step for the 4th multiscale analysis

Lemma

Suppose for some scale ℓ, $\epsilon \in (0, 1]$, and $m \geq m_- > 0$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{\Lambda_{\ell}(x) \text{ is } m\text{-localizing for } H_{\epsilon, \omega}\} \geq 1 - e^{-\ell \xi}.$$
The induction step for the 4th multiscale analysis

Lemma

Suppose for some scale ℓ, $\varepsilon \in (0, 1]$, and $m \geq m_- > 0$ we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_{\ell}(x) \text{ is } m\text{-localizing for } H_{\varepsilon, \omega} \} \geq 1 - e^{-\ell \zeta}.$$

Let $L = \ell^\gamma$. If ℓ is sufficiently large, we have

$$\inf_{x \in \mathbb{R}^d} \mathbb{P}\{ \Lambda_{L}(x) \text{ is } M\text{-localizing for } H_{\varepsilon, \omega} \} \geq 1 - e^{-L \zeta},$$

where $M \geq m \left(1 - C_{d, m_- , \varepsilon_0} \ell^{-\min\left\{ \frac{1-\tau}{2} , \gamma \tau - (\gamma-1) \tilde{\zeta} - 1 \right\}} \right)$.
Starting the proof of the induction step

♦ We cover the box $\Lambda_L = \Lambda(x_0), \, x_0 \in \mathbb{R}^d$, by boxes Λ_ℓ:

$$\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda_\ell(a), \text{ where } \Xi_{L,\ell} := \left\{x_0 + \rho \ell \mathbb{Z}^d\right\} \cap \Lambda_L^\mathbb{R}(x_0) \text{ with } \frac{3}{5} \leq \rho \leq \frac{4}{5}.$$
Starting the proof of the induction step

♦ We cover the box $\Lambda_L = \Lambda(x_0)$, $x_0 \in \mathbb{R}^d$, by boxes Λ_ℓ:

$$\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda_\ell(a), \text{ where } \Xi_{L,\ell} := \left\{ x_0 + \rho \ell \mathbb{Z}^d \right\} \cap \Lambda_R^\mathbb{R}(x_0) \text{ with } \frac{3}{5} \leq \rho \leq \frac{4}{5}. $$

♦ Let B_N denote the event that there exist at most N disjoint boxes Λ_ℓ in the cover that are not m-localizing for $H_{\varepsilon, \omega}$. We take

$$N = N_\ell = \left\lfloor \ell (\gamma^{-1}) \tilde{\zeta} \right\rfloor \quad \implies \quad \mathbb{P}\left\{ B_{N_\ell}^c \right\} \leq \frac{1}{2} e^{-L \xi}. $$
Starting the proof of the induction step

♦ We cover the box $\Lambda_L = \Lambda(x_0)$, $x_0 \in \mathbb{R}^d$, by boxes Λ_ℓ:

$$
\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda_\ell(a), \text{ where } \Xi_{L,\ell} := \left\{ x_0 + \rho \ell \mathbb{Z}^d \right\} \cap \Lambda_L^\mathbb{R}(x_0) \text{ with } \frac{3}{5} \leq \rho \leq \frac{4}{5}.
$$

♦ Let \mathcal{B}_N denote the event that there exist at most N disjoint boxes Λ_ℓ in the cover that are not m-localizing for $H_{\epsilon, \omega}$. We take

$$
N = N_\ell = \left\lfloor \ell (\gamma^{-1}) \tilde{\zeta} \right\rfloor \implies \mathbb{P} \left\{ \mathcal{B}_N^c \right\} \leq \frac{1}{2} e^{-L \tilde{\zeta}}.
$$

♦ Fix $\omega \in \mathcal{B}_{N_\ell}$. There exist $a_1, a_2, \ldots, a_R \in \Xi_{L,\ell}$, with $R \leq N_\ell$, such that $|a_i - a_j| \geq \ell$ for $i \neq j$ (the boxes $\{\Lambda_\ell(a_r)\}_{r=1}^R$ are disjoint, possibly non-localizing), and

$$
a \in \Xi_{L,\ell} \text{ with } \min_{r=1}^R |a - a_r| \geq \ell \implies \Lambda_\ell(a) \text{ is } m\text{-localizing}.
$$
Lemma
Let $\Lambda_\ell(a) \subset \Theta \subset \mathbb{Z}^d$, where the box $\Lambda_\ell(a)$ is m-localizing with an m-localized eigensystem $\{(\varphi_x^{(a)}, \lambda_x^{(a)})\}_{x \in \Lambda_\ell(a)}$, Θ is e^{-L^β}-level spacing, and $\{\psi_{\lambda}, \lambda\}_{\lambda \in \sigma(H_\Theta)}$ is an eigensystem for H_Θ.

1. There exists an injection $x \in \Lambda_\Theta$, ℓ $\tau_\ell(a) \xrightarrow{\sim} \tilde{\lambda}_x(a) x \in \sigma(H_\Theta)$, such that $|\tilde{\lambda}_x(a) x - \lambda_x(a) x| \leq e^{-m_1 \tau_\ell(a)}$ for all $x \in \Lambda_\Theta$, ℓ $\tau_\ell(a)$, and, multiplying each $\varphi_x^{(a)} x$ by a suitable phase factor, $\|\psi_{\tilde{\lambda}_x(a)} x - \varphi_x^{(a)} x\| \leq e^{-m'_1 \ell \tau_\ell(a)}$.

2. Let $\sigma^\{a\} (H_\Theta) := \{\tilde{\lambda}_x(a) x, x \in \Lambda_\Theta, \ell \tau_\ell(a)\}$. Then for $\lambda \in \sigma^\{a\} (H_\Theta)$ we have $|\psi_{\lambda}(y)| \leq e^{-m'_1 \ell \tau_\ell(a)}$ for all $y \in \Theta \setminus \Lambda_\ell(a)$.

3. If $\lambda \in \sigma(H_\Theta) \setminus \sigma^\{a\} (H_\Theta)$, we have $|\lambda - \lambda_x(a) x| \geq \frac{1}{2} e^{-L^\beta}$ for $x \in \Lambda_\Theta, \ell$ $\tau_\ell(a)$.

4. If $\Lambda_\ell(a), \Lambda_\ell(b) \subset \Theta$ are both as above, and $x \in \Lambda_\ell(a), y \in \Lambda_\ell(b)$, $\tilde{\lambda}_x(a) x = \tilde{\lambda}_x(b) y \Rightarrow \|x - y\| < 2 \ell \tau_\ell(a)$.

Abel Klein
Lemma

Let $\Lambda_\ell(a) \subset \Theta \subset \mathbb{Z}^d$, where the box $\Lambda_\ell(a)$ is m-localizing with an m-localized eigensystem $\{(\phi_x^{(a)}, \lambda_x^{(a)})\}_{x \in \Lambda_\ell(a)}$, Θ is e^{-L^β}-level spacing, and $\{(\psi_\lambda, \lambda)\}_{\lambda \in \sigma(H_\Theta)}$ is an eigensystem for H_Θ.

1. There exists an injection $x \in \Lambda_\ell^{\Theta,\ell^\tau}(a) \mapsto \tilde{\lambda}_x^{(a)} \in \sigma(H_\Theta)$, such that $|\tilde{\lambda}_x^{(a)} - \lambda_x^{(a)}| \leq e^{-m_1\ell^\tau}$ for all $x \in \Lambda_\ell^{\Theta,\ell^\tau}(a)$, and, multiplying each $\phi_x^{(a)}$ by a suitable phase factor, $\|\psi_{\tilde{\lambda}_x^{(a)}} - \phi_x^{(a)}\| \leq e^{-m_1'\ell^\tau}$.
Lemma

Let \(\Lambda_\ell(a) \subset \Theta \subset \mathbb{Z}^d \), where the box \(\Lambda_\ell(a) \) is \(m \)-localizing with an \(m \)-localized eigensystem \(\{ (\varphi^{(a)}_x, \lambda^{(a)}_x) \}_{x \in \Lambda_\ell(a)}, \Theta \) is \(e^{-L\beta} \)-level spacing, and \(\{ (\psi_\lambda, \lambda) \}_{\lambda \in \sigma(H_\Theta)} \) is an eigensystem for \(H_\Theta \).

1. There exists an injection \(x \in \Lambda^{\Theta, \ell^\tau}(a) \mapsto \tilde{\lambda}^{(a)}_x \in \sigma(H_\Theta) \), such that \(|\tilde{\lambda}^{(a)}_x - \lambda^{(a)}_x| \leq e^{-m_1 \ell^\tau} \) for all \(x \in \Lambda^{\Theta, \ell^\tau}(a) \), and, multiplying each \(\varphi^{(a)}_x \) by a suitable phase factor, \(\| \psi^{(a)}_{\tilde{\lambda}^{(a)}_x} - \varphi^{(a)}_x \| \leq e^{-m'_1 \ell^\tau} \).

2. Let \(\sigma\{a\}(H_\Theta) := \{ \tilde{\lambda}^{(a)}_x, x \in \Lambda^{\Theta, \ell^\tau}(a) \} \). Then for \(\lambda \in \sigma\{a\}(H_\Theta) \) we have \(|\psi_\lambda(y)| \leq e^{-m'_1 \ell^\tau} \) for all \(y \in \Theta \setminus \Lambda_\ell(a) \).
Lemma

Let $\Lambda_\ell(a) \subset \Theta \subset \mathbb{Z}^d$, where the box $\Lambda_\ell(a)$ is m-localizing with an m-localized eigensystem $\{((\varphi_x^{(a)}, \lambda_x^{(a)}))_{x \in \Lambda_\ell(a)}, \Theta \text{ is } e^{-L\beta} \text{-level spacing, and} \{((\psi_\lambda, \lambda))_{\lambda \in \sigma(H_\Theta)} \}$ is an eigensystem for H_Θ.

1. There exists an injection $x \in \Lambda_\ell^{\Theta,\ell^\tau}(a) \mapsto \tilde{\lambda}_x^{(a)} \in \sigma(H_\Theta)$, such that $|\tilde{\lambda}_x^{(a)} - \lambda_x^{(a)}| \leq e^{-m_1\ell^\tau}$ for all $x \in \Lambda_\ell^{\Theta,\ell^\tau}(a)$, and, multiplying each $\varphi_x^{(a)}$ by a suitable phase factor, $\|\psi_{\tilde{\lambda}_x^{(a)}} - \varphi_x^{(a)}\| \leq e^{-m'_1\ell^\tau}$.

2. Let $\sigma\{a\}(H_\Theta) := \{\tilde{\lambda}_x^{(a)}, x \in \Lambda_\ell^{\Theta,\ell^\tau}(a)\}$. Then for $\lambda \in \sigma\{a\}(H_\Theta)$ we have $|\psi_\lambda(y)| \leq e^{-m'_1\ell^\tau}$ for all $y \in \Theta \setminus \Lambda_\ell(a)$.

3. If $\lambda \in \sigma(H_\Theta) \setminus \sigma\{a\}(H_\Theta)$, we have $|\lambda - \lambda_x^{(a)}| \geq \frac{1}{2}e^{-L\beta}$ for $x \in \Lambda_\ell^{\Theta,\ell^\tau}(a)$.
Lemma

Let $\Lambda_\ell(a) \subset \Theta \subset \mathbb{Z}^d$, where the box $\Lambda_\ell(a)$ is m-localizing with an m-localized eigensystem $\{(\varphi_x^{(a)}, \lambda_x^{(a)})\}_{x \in \Lambda_\ell(a)}$, Θ is $e^{-L\beta}$-level spacing, and $\{(\psi_\lambda, \lambda)\}_{\lambda \in \sigma(H_\Theta)}$ is an eigensystem for H_Θ.

1. There exists an injection $x \in \Lambda^{\Theta,\ell^\tau}(a) \mapsto \tilde{\lambda}_x^{(a)} \in \sigma(H_\Theta)$, such that $|\tilde{\lambda}_x^{(a)} - \lambda_x^{(a)}| \leq e^{-m_1\ell^\tau}$ for all $x \in \Lambda^{\Theta,\ell^\tau}(a)$, and, multiplying each $\varphi_x^{(a)}$ by a suitable phase factor, $\|\psi_{\tilde{\lambda}_x^{(a)}}(a) - \varphi_x^{(a)}\| \leq e^{-m_1'\ell^\tau}$.

2. Let $\sigma_{\{a\}}(H_\Theta) := \{\tilde{\lambda}_x^{(a)}, \ x \in \Lambda^{\Theta,\ell^\tau}(a)\}$. Then for $\lambda \in \sigma_{\{a\}}(H_\Theta)$ we have $|\psi_\lambda(y)| \leq e^{-m_1'\ell^\tau}$ for all $y \in \Theta \setminus \Lambda_\ell(a)$.

3. If $\lambda \in \sigma(H_\Theta) \setminus \sigma_{\{a\}}(H_\Theta)$, we have $|\lambda - \lambda_x^{(a)}| \geq \frac{1}{2} e^{-L\beta}$ for $x \in \Lambda^{\Theta,\ell^\tau}(a)$.

4. If $\Lambda_\ell(a), \Lambda_\ell(b) \subset \Theta$ are both as above, and $x \in \Lambda_\ell(a)$, $y \in \Lambda_\ell(b)$, $\tilde{\lambda}_x^{(a)} = \tilde{\lambda}_y^{(b)} \implies \|x - y\| < 2\ell^\tau$.

Abel Klein
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.

Definition

We call $\Upsilon \subset \Lambda_L$ a buffered subset of Λ_L if the following holds:
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.

Definition

We call $\Upsilon \subset \Lambda_L$ a buffered subset of Λ_L if the following holds:

1. Υ is a connected set in \mathbb{Z}^d of the form $\Upsilon = \bigcup_{j=1}^{J} \Lambda_{R_j}(a_j) \cap \Lambda_L$, where $J \in \mathbb{N}$, $a_1, a_2, \ldots, a_J \in \Lambda_L^R$, and $\ell \leq R_j \leq L$ for $j = 1, 2, \ldots, J$.

Abel Klein
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.

Definition
We call $\Upsilon \subset \Lambda_L$ a buffered subset of Λ_L if the following holds:

1. Υ is a connected set in \mathbb{Z}^d of the form $\Upsilon = \bigcup_{j=1}^J \Lambda_{R_j}(a_j) \cap \Lambda_L$, where $J \in \mathbb{N}$, $a_1, a_2, \ldots, a_J \in \Lambda_L^\mathbb{R}$, and $\ell \leq R_j \leq L$ for $j = 1, 2, \ldots, J$.

2. Υ is e^{-L^β}-level spacing for H.
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.

Definition
We call $\Upsilon \subset \Lambda_L$ a buffered subset of Λ_L if the following holds:

1. Υ is a connected set in \mathbb{Z}^d of the form $\Upsilon = \bigcup_{j=1}^J \Lambda_{R_j}(a_j) \cap \Lambda_L$, where $J \in \mathbb{N}$, $a_1, a_2, \ldots, a_J \in \Lambda_R^L$, and $\ell \leq R_j \leq L$ for $j = 1, 2, \ldots, J$.
2. Υ is e^{-L^β}-level spacing for H.
3. There exists $\mathcal{G}_\Upsilon \subset \Lambda_L^R$ such that:
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.

Definition
We call $\Upsilon \subset \Lambda_L$ a buffered subset of Λ_L if the following holds:

1. Υ is a connected set in \mathbb{Z}^d of the form $\Upsilon = \bigcup_{j=1}^{J} \Lambda_{R_j}(a_j) \cap \Lambda_L$, where $J \in \mathbb{N}$, $a_1, a_2, \ldots, a_J \in \Lambda_R^L$, and $\ell \leq R_j \leq L$ for $j = 1, 2, \ldots, J$.

2. Υ is e^{-L^β}-level spacing for H.

3. There exists $G_\Upsilon \subset \Lambda_L^R$ such that:
 4. For all $a \in G_\Upsilon$ we have $\Lambda_\ell(a) \subset \Lambda_L$, $\Lambda_\ell(a)$ is an m-localizing box for H.
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.

Definition

We call $\Upsilon \subset \Lambda_L$ a buffered subset of Λ_L if the following holds:

1. Υ is a connected set in \mathbb{Z}^d of the form $\Upsilon = \bigcup_{j=1}^J \Lambda_{R_j}(a_j) \cap \Lambda_L$, where $J \in \mathbb{N}$, $a_1, a_2, \ldots, a_J \in \Lambda_L^R$, and $\ell \leq R_j \leq L$ for $j = 1, 2, \ldots, J$.

2. Υ is e^{-L^β}-level spacing for H.

3. There exists $\mathcal{G}_\Upsilon \subset \Lambda_L^R$ such that:
 1. For all $a \in \mathcal{G}_\Upsilon$ we have $\Lambda_\ell(a) \subset \Lambda_L$, $\Lambda_\ell(a)$ is an m-localizing box for H.
 2. For all $y \in \partial_{\text{in}}^{\Lambda_L}\Upsilon$ there exists $a_y \in \mathcal{G}_\Upsilon$ such that $y \in \Lambda_{\ell,2^\tau}(a_y)$.
Buffered subsets

If boxes $\Lambda_\ell \subset \Lambda_L$ are not m-localizing, we surround them with a buffer of m-localizing boxes and study eigensystems for the augmented subset.

Definition
We call $\Upsilon \subset \Lambda_L$ a buffered subset of Λ_L if the following holds:

1. Υ is a connected set in \mathbb{Z}^d of the form $\Upsilon = \bigcup_{j=1}^{J} \Lambda_{R_j}(a_j) \cap \Lambda_L$, where $J \in \mathbb{N}$, $a_1, a_2, \ldots, a_J \in \Lambda_L^R$, and $\ell \leq R_j \leq L$ for $j = 1, 2, \ldots, J$.
2. Υ is e^{-L^β}-level spacing for H.
3. There exists $\mathcal{G}_\Upsilon \subset \Lambda_L^R$ such that:
 1. For all $a \in \mathcal{G}_\Upsilon$ we have $\Lambda_\ell(a) \subset \Lambda_L$, $\Lambda_\ell(a)$ is an m-localizing box for H.
 2. For all $y \in \partial_{\text{in}}^\Upsilon \Upsilon$ there exists $a_y \in \mathcal{G}_\Upsilon$ such that $y \in \Lambda_{\Upsilon,2\ell^\tau}(a_y)$.

In this case we set

$$
\widehat{\Upsilon} = \bigcup_{a \in \mathcal{G}_\Upsilon} \Lambda_\ell(a), \quad \widehat{\Upsilon}^\tau = \bigcup_{a \in \mathcal{G}_\Upsilon} \Lambda_{\Upsilon,2\ell^\tau}(a), \quad \hat{\Upsilon} = \Upsilon \setminus \widehat{\Upsilon}, \quad \text{and} \quad \hat{\Upsilon}^\tau = \Upsilon \setminus \widehat{\Upsilon}^\tau.
$$
Lemma

Let γ be a buffered subset of Λ_L, and let $\{(\psi_v, v)\}_{v \in \sigma(H_\gamma)}$ be an eigensystem for H_γ.
Lemma

Let Υ be a buffered subset of Λ_L, and let $\{(\psi_v, \nu)\}_{\nu \in \sigma(H_\Upsilon)}$ be an eigensystem for H_Υ. Let

$$\sigma_{G_\Upsilon}(H_\Upsilon) = \bigcup_{a \in G_\Upsilon} \sigma_{\{a\}}(H_\Upsilon) \quad \text{and} \quad \sigma_B(H_\Upsilon) = \sigma(H_\Upsilon) \setminus \sigma_{G_\Upsilon}(H_\Upsilon).$$
Lemma

Let \(\Upsilon \) be a buffered subset of \(\Lambda_L \), and let \(\{(\psi_v, \nu)\}_{\nu \in \sigma(H_\Upsilon)} \) be an eigensystem for \(H_\Upsilon \). Let

\[
\sigma_{G_\Upsilon}(H_\Upsilon) = \bigcup_{a \in G_\Upsilon} \sigma_{\{a\}}(H_\Upsilon) \quad \text{and} \quad \sigma_{B}(H_\Upsilon) = \sigma(H_\Upsilon) \setminus \sigma_{G_\Upsilon}(H_\Upsilon).
\]

For all \(\nu \in \sigma_{B}(H_\Upsilon) \) we have

\[
|\psi_\nu(y)| \leq e^{-m_2 \ell^\tau} \text{ for all } y \in \Upsilon^\tau.
\]
Lemma

Let Υ be a buffered subset of Λ_L, and let $\{(\psi_\nu, \nu)\}_{\nu \in \sigma(H_\Upsilon)}$ be an eigensystem for H_Υ. Let

$$\sigma_{G_\Upsilon}(H_\Upsilon) = \bigcup_{a \in G_\Upsilon} \sigma_{\{a\}}(H_\Upsilon) \quad \text{and} \quad \sigma_B(H_\Upsilon) = \sigma(H_\Upsilon) \setminus \sigma_{G_\Upsilon}(H_\Upsilon).$$

1. For all $\nu \in \sigma_B(H_\Upsilon)$ we have

$$|\psi_\nu(y)| \leq e^{-m_2 \ell^\tau} \quad \text{for all } y \in \Upsilon^\tau.$$

2. Let Λ_L be level spacing for H, and let $\{(\phi_{\lambda}, \lambda)\}_{\lambda \in \sigma(H_{\Lambda_L})}$ be an eigensystem for H_{Λ_L}.

Abel Klein
Lemma

Let Υ be a buffered subset of Λ_L, and let $\{(\psi_\nu, \nu)\}_{\nu \in \sigma(H_\Upsilon)}$ be an eigensystem for H_Υ. Let

$$\sigma_{g_\Upsilon}(H_\Upsilon) = \bigcup_{a \in G_\Upsilon} \sigma_{\{a\}}(H_\Upsilon) \quad \text{and} \quad \sigma_B(H_\Upsilon) = \sigma(H_\Upsilon) \setminus \sigma_{g_\Upsilon}(H_\Upsilon).$$

1. For all $\nu \in \sigma_B(H_\Upsilon)$ we have

$$|\psi_\nu(y)| \leq e^{-m_2 \ell^\tau} \text{ for all } y \in \cdots^\tau.$$

2. Let Λ_L be level spacing for H, and let $\{(\phi_\lambda, \lambda)\}_{\lambda \in \sigma(H_{\Lambda_L})}$ be an eigensystem for H_{Λ_L}. There exists an injection

$$\nu \in \sigma_B(H_\Upsilon) \mapsto \tilde{\nu} \in \sigma(H_{\Lambda_L}) \setminus \sigma_{g_\Upsilon}(H_{\Lambda_L}),$$

such that

$$|\tilde{\nu} - \nu| \leq e^{-m_4 \ell^\tau} \text{ for all } \nu \in \sigma_B(H_\Upsilon) \text{ and, multiplying each } \psi_\nu \text{ by a suitable phase factor,} \quad \|\phi_{\tilde{\nu}} - \psi_\nu\| \leq e^{-m_4' \ell^\tau}.$$
Lemma

Let Υ be a buffered subset of Λ_L, and let $\{(\psi_\nu, \nu)\}_{\nu \in \sigma(H_\Upsilon)}$ be an eigensystem for H_Υ. Let

$$\sigma_{G_\Upsilon}(H_\Upsilon) = \bigcup_{a \in G_\Upsilon} \sigma_{\{a\}}(H_\Upsilon) \quad \text{and} \quad \sigma_B(H_\Upsilon) = \sigma(H_\Upsilon) \setminus \sigma_{G_\Upsilon}(H_\Upsilon).$$

1. For all $\nu \in \sigma_B(H_\Upsilon)$ we have

$$|\psi_\nu(y)| \leq e^{-m_2 \ell \tau} \quad \text{for all } y \in \tilde{\Upsilon}^\tau.$$

2. Let Λ_L be level spacing for H, and let $\{(\phi_\lambda, \lambda)\}_{\lambda \in \sigma(H_{\Lambda_L})}$ be an eigensystem for H_{Λ_L}. There exists an injection

$$\nu \in \sigma_B(H_\Upsilon) \mapsto \tilde{\nu} \in \sigma(H_{\Lambda_L}) \setminus \sigma_{G_\Upsilon}(H_{\Lambda_L}),$$

such that

$$|\tilde{\nu} - \nu| \leq e^{-m_4 \ell \tau} \quad \text{for all } \nu \in \sigma_B(H_\Upsilon) \quad \text{and, multiplying each } \psi_\nu \text{ by a suitable phase factor,} \quad \|\phi_{\tilde{\nu}} - \psi_\nu\| \leq e^{-m'_4 \ell \tau}.$$

We set

$$\sigma_\Upsilon(\Lambda_L) := \{\tilde{\nu}; \nu \in \sigma_B(H_\Upsilon)\} \subset \sigma(H_{\Lambda_L}) \setminus \sigma_{G_\Upsilon}(H_{\Lambda_L}).$$
Back to the proof of the induction step

\[\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda_\ell(a), \text{ where } \Xi_{L,\ell} := \{ x_0 + \rho \ell \mathbb{Z}^d \} \cap \Lambda^R_L(x_0) \text{ with } \frac{3}{5} \leq \rho \leq \frac{4}{5}. \]
Back to the proof of the induction step

$\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda_\ell(a)$, where $\Xi_{L,\ell} := \{x_0 + \rho \ell \mathbb{Z}^d\} \cap \Lambda_L^{\mathbb{R}}(x_0)$ with $\frac{3}{5} \leq \rho \leq \frac{4}{5}$.

\mathcal{B}_N is the event that there exist at most $N = N_\ell = \left\lfloor \ell(\gamma - 1) \tilde{\zeta} \right\rfloor$ disjoint boxes Λ_ℓ in the cover that are not m-localizing for $H_{\varepsilon, \omega}$.
Back to the proof of the induction step

♦ $\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda_\ell(a)$, where $\Xi_{L,\ell} := \{x_0 + \rho \ell \mathbb{Z}^d\} \cap \Lambda_L^\mathbb{R}(x_0)$ with $\frac{3}{5} \leq \rho \leq \frac{4}{5}$.

♦ \mathcal{B}_N is the event that there exist at most $N = N_\ell = \left\lfloor \ell(\gamma-1)\tilde{\zeta} \right\rfloor$ disjoint boxes Λ_ℓ in the cover that are not m-localizing for $H_{\varepsilon,\omega}$.

♦ We have $\mathbb{P}\{\mathcal{B}_N^c\} \leq \frac{1}{2} e^{-L\zeta}$.
Back to the proof of the induction step

♦ $\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda_\ell(a)$, where $\Xi_{L,\ell} := \{x_0 + \rho \ell \mathbb{Z}^d\} \cap \Lambda_L^R(x_0)$ with $\frac{3}{5} \leq \rho \leq \frac{4}{5}$.

♦ \mathcal{B}_N is the event that there exist at most $N = N_\ell = \lfloor \ell(\gamma-1)\tilde{\zeta} \rfloor$ disjoint boxes Λ_ℓ in the cover that are not m-localizing for $H_{\varepsilon,\omega}$.

♦ We have $\mathbb{P}\{\mathcal{B}_N^c\} \leq \frac{1}{2} e^{-L\zeta}$.

♦ Fix $\omega \in \mathcal{B}_N$, and put the $\leq N$ possibly non-localizing boxes inside subsets Υ_r, $r = 1, 2, \ldots, R$, which clearly satisfies all the requirements to be a buffered subset of Λ_L, except that we do not know if each Υ_r is L-level spacing for $H_{\varepsilon,\omega}$.
Key ingredients for the proof of the BMSA

Back to the proof of the induction step

♦ $\Lambda_L = \bigcup_{a \in \Xi_L, \ell} \Lambda_{\ell}(a)$, where $\Xi_L, \ell := \{x_0 + \rho \ell \mathbb{Z}^d\} \cap \Lambda_L^R(x_0)$ with $\frac{3}{5} \leq \rho \leq \frac{4}{5}$.

♦ \mathcal{B}_N is the event that there exist at most $N = N_\ell = \left\lfloor \ell(\gamma - 1) \tilde{\zeta} \right\rfloor$ disjoint boxes Λ_{ℓ} in the cover that are not m-localizing for $H_{\varepsilon, \omega}$.

♦ We have $\mathbb{P}\{\mathcal{B}_N^c\} \leq \frac{1}{2} e^{-L\zeta}$.

♦ Fix $\omega \in \mathcal{B}_N$, and put the $\leq N$ possibly non-localizing boxes inside subsets Υ_r, $r = 1, 2, \ldots, R$, which clearly satisfies all the requirements to be a buffered subset of Λ_L, except that we do not know if each Υ_r is L-level spacing for $H_{\varepsilon, \omega}$. Letting \mathcal{S}_N be the event that the box Λ_L and the possible choices for the subsets Υ_r are all L-level spacing for $H_{\varepsilon, \omega}$, we get

$$\mathbb{P}\{\mathcal{S}_N^c\} \leq Y_{\varepsilon_0} \left(1 + (L + 1)^d N_\ell! \left(d 4^d \right)^{N_\ell - 1} \right) (L + 1)^{2d} e^{-(2\alpha - 1)L\beta} < \frac{1}{2} e^{-L\zeta}.$$
Back to the proof of the induction step

\[\Lambda_L = \bigcup_{a \in \Xi_L, \ell} \Lambda(\ell(a)), \text{ where } \Xi_L, \ell := \{x_0 + \rho \ell \mathbb{Z}^d\} \cap \Lambda_L^R(x_0) \text{ with } \frac{3}{5} \leq \rho \leq \frac{4}{5}. \]

\[\mathcal{B}_N \text{ is the event that there exist at most } N = N_\ell = \left\lfloor \ell(\gamma - 1)\tilde{\zeta} \right\rfloor \text{ disjoint boxes } \Lambda_\ell \text{ in the cover that are not } m\text{-localizing for } H_{E, \omega}. \]

\[\mathbb{P}\{\mathcal{B}_N^c\} \leq \frac{1}{2} e^{-L\zeta}. \]

\[\text{Fix } \omega \in \mathcal{B}_N, \text{ and put the } \leq N \text{ possibly non-localizing boxes inside subsets } \Upsilon_r, r = 1, 2, \ldots, R, \text{ which clearly satisfies all the requirements to be a buffered subset of } \Lambda_L, \text{ except that we do not know if each } \Upsilon_r \text{ is } L\text{-level spacing for } H_{E, \omega}. \text{ Letting } \mathcal{L}_N \text{ be the event that the box } \Lambda_L \text{ and the possible choices for the subsets } \Upsilon_r \text{ are all } L\text{-level spacing for } H_{E, \omega}, \text{ we get} \]

\[\mathbb{P}\{\mathcal{L}_N^c\} \leq Y_{E_0} \left(1 + (L + 1)^d N_\ell! \left(d4^d\right)^{N_\ell - 1}\right) (L + 1)^{2d} e^{-(2\alpha - 1)L^\beta} < \frac{1}{2} e^{-L\zeta}. \]

\[\text{We now define the event } \mathcal{E}_N = \mathcal{B}_N \cap \mathcal{L}_N, \text{ so } \mathbb{P}\{\mathcal{E}_N\} > 1 - e^{-L\zeta}. \]
Back to the proof of the induction step

♦ \(\Lambda_L = \bigcup_{a \in \Xi_{L,\ell}} \Lambda(\ell(a)) \), where \(\Xi_{L,\ell} := \{ x_0 + \rho \ell \mathbb{Z}^d \} \cap \Lambda_L^R(x_0) \) with \(\frac{3}{5} \leq \rho \leq \frac{4}{5} \).

♦ \(\mathcal{B}_N \) is the event that there exist at most \(N = N_\ell = \left\lfloor \ell (\gamma-1) \tilde{\zeta} \right\rfloor \) disjoint boxes \(\Lambda_\ell \) in the cover that are not \(m \)-localizing for \(H_{\varepsilon,\omega} \).

♦ We have \(\mathbb{P}\{ \mathcal{B}_N^c \} \leq \frac{1}{2} e^{-L \zeta} \).

♦ Fix \(\omega \in \mathcal{B}_N \), and put the \(\leq N \) possibly non-localizing boxes inside subsets \(\Upsilon_r \), \(r = 1, 2, \ldots, R \), which clearly satisfies all the requirements to be a buffered subset of \(\Lambda_L \), except that we do not know if each \(\Upsilon_r \) is \(L \)-level spacing for \(H_{\varepsilon,\omega} \). Letting \(\mathcal{S}_N \) be the event that the box \(\Lambda_L \) and the possible choices for the subsets \(\Upsilon_r \) are all \(L \)-level spacing for \(H_{\varepsilon,\omega} \), we get

\[
\mathbb{P}\{ \mathcal{S}_N^c \} \leq Y_{\varepsilon_0} \left(1 + (L + 1)^d N_\ell! \left(d4^d \right)^{N_\ell-1} \right) (L + 1)^{2d} e^{-(2\alpha-1)L^\beta} < \frac{1}{2} e^{-L \zeta}.
\]

♦ We now define the event \(\mathcal{E}_N = \mathcal{B}_N \cap \mathcal{S}_N \), so \(\mathbb{P}\{ \mathcal{E}_N \} > 1 - e^{-L \zeta} \).

♦ To finish the proof we need to show that for all \(\omega \in \mathcal{E}_N \) the box \(\Lambda_L \) is \(M \)-localizing for \(H_{\varepsilon,\omega} \).
Fix \(\omega \in G_N \). We have

\[
\Lambda_L = \left\{ \bigcup_{a \in G} \Lambda_{\ell, \frac{\ell}{10}}(a) \right\} \cup \left\{ \bigcup_{r=1}^{R} \Upsilon_{r, \frac{\ell}{10}} \right\},
\]

where \(G = \{ a \in \Xi_{L, \ell}; \Lambda_{\ell}(a) \text{ is } m\text{-localizing for } H_{\varepsilon, \omega} \} \) and \(\{ \Upsilon_r \}_{r=1}^{R} \) are buffering subsets of \(\Lambda_L \).
♦ Fix $\omega \in \mathcal{E}_N$. We have

$$\Lambda_L = \left\{ \bigcup_{a \in \mathcal{G}} \Lambda_{\ell, \frac{\ell}{10}}(a) \right\} \cup \left\{ \bigcup_{r=1}^{R} \gamma_{r, \frac{\ell}{10}} \right\},$$

where $\mathcal{G} = \{ a \in \Xi_{L, \ell} ; \, \Lambda_\ell(a) \text{ is } m\text{-localizing for } H_{\varepsilon, \omega} \}$ and $\{ \gamma_r \}_{r=1}^{R}$ are buffering subsets of Λ_L.

♦ We set (we omit ε and ω from the notation.)

$$\sigma_{\mathcal{G}}(H_{\Lambda_L}) = \bigcup_{a \in \mathcal{G}} \sigma_{\{a\}}(H_{\Lambda_L}) \quad \text{and} \quad \sigma_{\mathcal{B}}(H_{\Lambda_L}) = \bigcup_{r=1}^{R} \sigma_{\gamma_r}(H_{\Lambda_L}).$$
Fix $\omega \in \mathcal{E}_N$. We have

$$\Lambda_L = \left\{ \bigcup_{a \in \mathcal{G}} \Lambda_{\ell, \frac{\ell}{10}}(a) \right\} \cup \left\{ \bigcup_{r=1}^{R} \Upsilon_{r, \frac{\ell}{10}} \right\},$$

where $\mathcal{G} = \left\{ a \in \Xi_{L, \ell} ; , \; \Lambda_{\ell}(a) \text{ is } m\text{-localizing for } H_{\varepsilon, \omega} \right\}$ and $\{ \Upsilon_r \}_{r=1}^{R}$ are buffering subsets of Λ_L.

We set (we omit ε and ω from the notation.)

$$\sigma_{\mathcal{G}}(H_{\Lambda_L}) = \bigcup_{a \in \mathcal{G}} \sigma_{\{a\}}(H_{\Lambda_L}) \quad \text{and} \quad \sigma_{\mathcal{B}}(H_{\Lambda_L}) = \bigcup_{r=1}^{R} \sigma_{\Upsilon_r}(H_{\Lambda_L}).$$

We prove

$$\sigma(H_{\Lambda_L}) = \sigma_{\mathcal{G}}(H_{\Lambda_L}) \cup \sigma_{\mathcal{B}}(H_{\Lambda_L}).$$
Fix $\omega \in \mathcal{E}_N$. We have

$$\Lambda_L = \left\{ \bigcup_{a \in \mathcal{G}} \Lambda_{\ell}^{\Lambda_L, \ell/10}(a) \right\} \cup \left\{ \bigcup_{r=1}^{R} \gamma_r^{\Lambda_L, \ell/10} \right\},$$

where $\mathcal{G} = \{ a \in \Xi_{L,\ell};, \, \Lambda_{\ell}(a) \text{ is } m\text{-localizing for } H_{\varepsilon,\omega} \}$ and $\{ \gamma_r \}_{r=1}^{R}$ are buffering subsets of Λ_L.

We set (we omit ε and ω from the notation.)

$$\sigma_{\mathcal{G}}(H_{\Lambda_L}) = \bigcup_{a \in \mathcal{G}} \sigma_{\{a\}}(H_{\Lambda_L}) \quad \text{and} \quad \sigma_{\mathcal{B}}(H_{\Lambda_L}) = \bigcup_{r=1}^{R} \sigma_{\gamma_r}(H_{\Lambda_L}).$$

We prove

$$\sigma(H_{\Lambda_L}) = \sigma_{\mathcal{G}}(H_{\Lambda_L}) \cup \sigma_{\mathcal{B}}(H_{\Lambda_L}).$$

We now index the eigenvalues and eigenvectors of H_{Λ_L} by sites in Λ_L using Hall’s Marriage Theorem, which states a necessary and sufficient condition for the existence of a perfect matching in a bipartite graph.
Hall's Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with vertex sets A and B and edge set $E \subset A \times B$ (the bipartite condition).
Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with vertex sets A and B and edge set $E \subset A \times B$ (the bipartite condition).

$M \subset E$ is called a matching if every vertex of G coincides with at most one edge from M;
Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with vertex sets A and B and edge set $E \subseteq A \times B$ (the bipartite condition).

$M \subseteq E$ is called a matching if every vertex of G coincides with at most one edge from M; it is a perfect matching if every vertex of G coincides with exactly one edge from M, i.e., every vertex of G is matched.
Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with vertex sets A and B and edge set $E \subseteq A \times B$ (the bipartite condition). $M \subseteq E$ is called a matching if every vertex of G coincides with at most one edge from M; it is a perfect matching if every vertex of G coincides with exactly one edge from M, i.e., every vertex of G is matched. Clearly $|A| = |B|$ is a necessary condition for the existence of a perfect matching.
Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with vertex sets A and B and edge set $E \subset A \times B$ (the bipartite condition).

$M \subset E$ is called a matching if every vertex of G coincides with at most one edge from M; it is a perfect matching if every vertex of G coincides with exactly one edge from M, i.e., every vertex of G is matched.

Clearly $|A| = |B|$ is a necessary condition for the the existence of a perfect matching.

Given a vertex $a \in A$, let $\mathcal{N}(a) = \{b \in B; (a, b) \in E\}$, the set of neighbors of a. Let $\mathcal{N}(U) = \bigcup_{u \in U} \mathcal{N}(u)$ for $U \subset A$.
Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with vertex sets A and B and edge set $E \subset A \times B$ (the bipartite condition).

$M \subset E$ is called a matching if every vertex of G coincides with at most one edge from M; it is a perfect matching if every vertex of G coincides with exactly one edge from M, i.e., every vertex of G is matched.

Clearly $|A| = |B|$ is a necessary condition for the existence of a perfect matching.

Given a vertex $a \in A$, let $N(a) = \{ b \in B; (a, b) \in E \}$, the set of neighbors of a. Let $N(U) = \bigcup_{u \in U} N(u)$ for $U \subset A$.

Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with $|A| = |B|$.
Hall’s Marriage Theorem

Let \(G = (A, B; E) \) be a bipartite graph with vertex sets \(A \) and \(B \) and edge set \(E \subset A \times B \) (the bipartite condition).

\(M \subset E \) is called a matching if every vertex of \(G \) coincides with at most one edge from \(M \); it is a perfect matching if every vertex of \(G \) coincides with exactly one edge from \(M \), i.e., every vertex of \(G \) is matched.

Clearly \(|A| = |B| \) is a necessary condition for the existence of a perfect matching.

Given a vertex \(a \in A \), let \(N(a) = \{ b \in B; (a, b) \in E \} \), the set of neighbors of \(a \). Let \(N(U) = \bigcup_{u \in U} N(u) \) for \(U \subset A \).

Hall’s Marriage Theorem

Let \(G = (A, B; E) \) be a bipartite graph with \(|A| = |B| \). There exists a perfect matching in \(G \) if and only if the graph \(G \) fulfills Hall’s condition.
Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with vertex sets A and B and edge set $E \subseteq A \times B$ (the bipartite condition). $M \subseteq E$ is called a matching if every vertex of G coincides with at most one edge from M; it is a perfect matching if every vertex of G coincides with exactly one edge from M, i.e., every vertex of G is matched. Clearly $|A| = |B|$ is a necessary condition for the existence of a perfect matching.

Given a vertex $a \in A$, let $N(a) = \{b \in B; (a, b) \in E\}$, the set of neighbors of a. Let $N(U) = \bigcup_{u \in U} N(u)$ for $U \subseteq A$.

Hall’s Marriage Theorem

Let $G = (A, B; E)$ be a bipartite graph with $|A| = |B|$. There exists a perfect matching in G if and only if the graph G fulfills Hall’s condition

$$|U| \leq |N(U)| \quad \text{for all} \quad U \subseteq A.$$
We consider the bipartite graph $\mathcal{G} = (\Lambda_L, \sigma(H_{\Lambda_L}); \mathbb{E})$, where the edge set $\mathbb{E} \subset \Lambda_L \times \sigma(H_{\Lambda_L})$ is defined as follows.

\bullet $N(x)$ was defined to ensure $|\psi_\lambda(x)| \ll 1$ for $\lambda \not\in N(x)$.

\bullet We set $N(\Theta) = \bigcup_{x \in \Theta} N(x)$ for $\Theta \subset \Lambda_L$. Abi Klein
We consider the bipartite graph \(G = (\Lambda_L, \sigma(H_{\Lambda_L}); E) \), where the edge set \(E \subset \Lambda_L \times \sigma(H_{\Lambda_L}) \) is defined as follows. For each \(\lambda \in \sigma(H_{\Lambda_L}) \) we fix \(\lambda^{(a_\lambda)} \) such that \(\lambda = \tilde{\lambda}^{(a_\lambda)} \), and set

\[
N_0(x) = \begin{cases}
\{ \lambda \in \sigma(H_{\Lambda_L}); \| x_\lambda - x \| < \ell^\tau \} & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^R \hat{\Gamma}_r \\
\emptyset & \text{for } x \in \bigcup_{r=1}^R \hat{\Gamma}_r
\end{cases}
\]
We consider the bipartite graph $G = (\Lambda_L, \sigma(H_{\Lambda_L}); \mathcal{E})$, where the edge set $\mathcal{E} \subset \Lambda_L \times \sigma(H_{\Lambda_L})$ is defined as follows. For each $\lambda \in \sigma_{\mathcal{G}}(H_{\Lambda_L})$ we fix $\lambda^{(a_{\lambda})}_{x_{\lambda}}$ such that $\lambda = \lambda^{(a_{\lambda})}_{x_{\lambda}}$, and set

$$\mathcal{N}_0(x) = \begin{cases}
\{ \lambda \in \sigma_{\mathcal{G}}(H_{\Lambda_L}); \| x_{\lambda} - x \| < \ell^r \} & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^{R} \hat{\gamma}_r \\
\emptyset & \text{for } x \in \bigcup_{r=1}^{R} \hat{\gamma}_r
\end{cases}$$

We define

$$\mathcal{N}(x) = \begin{cases}
\mathcal{N}_0(x) & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^{R} \hat{\gamma}_{r,\tau} \\
\sigma_{\mathcal{G}_r}(H_{\Lambda_L}) & \text{for } x \in \hat{\gamma}_r, \; r = 1, 2, \ldots, R \\
\mathcal{N}_0(x) \cup \sigma_{\mathcal{G}_r}(H_{\Lambda_L}) & \text{for } x \in \hat{\gamma}_{r,\tau} \setminus \hat{\gamma}_r, \; r = 1, 2, \ldots, R
\end{cases}$$
We consider the bipartite graph $\mathcal{G} = (\Lambda_L, \sigma(H_{\Lambda_L}); \mathcal{E})$, where the edge set $\mathcal{E} \subset \Lambda_L \times \sigma(H_{\Lambda_L})$ is defined as follows. For each $\lambda \in \sigma_{\mathcal{G}}(H_{\Lambda_L})$ we fix $\lambda^{(a_\lambda)}$, such that $\lambda = \lambda^{(a_\lambda)}$, and set

$$N_0(x) = \begin{cases}
\{ \lambda \in \sigma_{\mathcal{G}}(H_{\Lambda_L}); \|x_\lambda - x\| < \ell^r \} & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^R \hat{\Gamma}_r \\
\emptyset & \text{for } x \in \bigcup_{r=1}^R \hat{\Gamma}_r
\end{cases}$$

We define

$$N(x) = \begin{cases}
N_0(x) & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^R \hat{\Gamma}_{r,\tau} \\
\sigma_{\mathcal{G}}(H_{\Lambda_L}) & \text{for } x \in \hat{\Gamma}_r, \ r = 1, 2, \ldots, R \\
N_0(x) \cup \sigma_{\mathcal{G}}(H_{\Lambda_L}) & \text{for } x \in \hat{\Gamma}_{r,\tau} \setminus \hat{\Gamma}_r, \ r = 1, 2, \ldots, R
\end{cases}$$

and set $\mathcal{E} = \{(x, \lambda) \in \Lambda_L \times \sigma(H_{\Lambda_L}); \lambda \in N(x)\}$.
We consider the bipartite graph $G = (\Lambda_L, \sigma(H\Lambda_L); E)$, where the edge set $E \subset \Lambda_L \times \sigma(H\Lambda_L)$ is defined as follows. For each $\lambda \in \sigma_g(H\Lambda_L)$ we fix $\lambda_{x_\lambda}^{(a_\lambda)}$ such that $\lambda = \tilde{\lambda}_{x_\lambda}^{(a_\lambda)}$, and set

\[
N_0(x) = \begin{cases}
\{ \lambda \in \sigma_g(H\Lambda_L); \|x_\lambda - x\| < \ell \tau \} & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^{R} \hat{\Upsilon}_r \\
\emptyset & \text{for } x \in \bigcup_{r=1}^{R} \hat{\Upsilon}_r
\end{cases}
\]

We define

\[
N(x) = \begin{cases}
N_0(x) & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^{R} \hat{\Upsilon}_{r,\tau} \\
\sigma_{\Upsilon_r}(H\Lambda_L) & \text{for } x \in \hat{\Upsilon}_r, \ r = 1, 2, \ldots, R \\
N_0(x) \cup \sigma_{\Upsilon_r}(H\Lambda_L) & \text{for } x \in \hat{\Upsilon}_{r,\tau} \setminus \hat{\Upsilon}_r, \ r = 1, 2, \ldots, R
\end{cases}
\]

and set $E = \{(x, \lambda) \in \Lambda_L \times \sigma(H\Lambda_L); \lambda \in N(x)\}$.

$N(x)$ was defined to ensure $|\psi_\lambda(x)| \ll 1$ for $\lambda \not\in N(x)$.

Abel Klein
We consider the bipartite graph $G = (\Lambda_L, \sigma(H_{\Lambda_L}); E)$, where the edge set $E \subset \Lambda_L \times \sigma(H_{\Lambda_L})$ is defined as follows. For each $\lambda \in \sigma_{G}(H_{\Lambda_L})$ we fix $\lambda_{x_\lambda}^{(a_\lambda)}$ such that $\lambda = \lambda_{x_\lambda}^{(a_\lambda)}$, and set

$$N_0(x) = \begin{cases} \{ \lambda \in \sigma_{G}(H_{\Lambda_L}); \|x_\lambda - x\| < \ell^\tau \} & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^{R} \hat{\Upsilon}_r, \\ \emptyset & \text{for } x \in \bigcup_{r=1}^{R} \hat{\Upsilon}_r \end{cases}.$$

We define

$$N(x) = \begin{cases} N_0(x) & \text{for } x \in \Lambda_L \setminus \bigcup_{r=1}^{R} \hat{\Upsilon}_r, \\ \sigma_{\Upsilon_r}(H_{\Lambda_L}) & \text{for } x \in \hat{\Upsilon}_r, \ r = 1, 2, \ldots, R, \\ N_0(x) \cup \sigma_{\Upsilon_r}(H_{\Lambda_L}) & \text{for } x \in \hat{\Upsilon}_{r, \tau} \setminus \hat{\Upsilon}_r, \ r = 1, 2, \ldots, R \end{cases},$$

and set $E = \{(x, \lambda) \in \Lambda_L \times \sigma(H_{\Lambda_L}); \lambda \in N(x)\}$.

$N(x)$ was defined to ensure $|\psi_\lambda(x)| \ll 1$ for $\lambda \notin N(x)$.

We set $N(\Theta) = \bigcup_{x \in \Theta} N(x)$ for $\Theta \subset \Lambda_L$.

 Abel Klein
Since $|\Lambda_L| = |\sigma(H_{\Lambda_L})|$, to apply Hall’s Marriage Theorem we verify Hall’s condition:

$$|\Theta| \leq |\mathcal{N}(\Theta)| \quad \text{for all} \quad \Theta \subset \Lambda_L.$$
Since $|\Lambda_L| = |\sigma(H_{\Lambda_L})|$, to apply Hall’s Marriage Theorem we verify Hall’s condition:

$$|\Theta| \leq |\mathcal{N}(\Theta)| \quad \text{for all} \quad \Theta \subset \Lambda_L.$$
Since $|\Lambda_L| = |\sigma(H_{\Lambda_L})|$, to apply Hall’s Marriage Theorem we verify Hall’s condition:

$$|\Theta| \leq |\mathcal{N}(\Theta)| \quad \text{for all} \quad \Theta \subset \Lambda_L.$$

We apply Hall’s Marriage Theorem, concluding that there exists a bijection

$$x \in \Lambda_L \mapsto \lambda_x \in \sigma(H_{\Lambda_L}), \quad \text{where} \quad \lambda_x \in \mathcal{N}(x).$$

We set $\psi_x = \psi_{\lambda_x}$ for all $x \in \Lambda_L$.
Since $|\Lambda_L| = |\sigma(H_{\Lambda_L})|$, to apply Hall’s Marriage Theorem we verify Hall’s condition:

$$|\Theta| \leq |\mathcal{N}(\Theta)| \quad \text{for all} \quad \Theta \subset \Lambda_L.$$

We apply Hall’s Marriage Theorem, concluding that there exists a bijection

$$x \in \Lambda_L \mapsto \lambda_x \in \sigma(H_{\Lambda_L}), \quad \text{where} \quad \lambda_x \in \mathcal{N}(x).$$

We set $\psi_x = \psi_{\lambda_x}$ for all $x \in \Lambda_L$.

To finish the proof we show that $\{(\psi_x, \lambda_x)\}_{x \in \Lambda_L}$ is an M-localized eigensystem for Λ_L.
\{(\psi_x, \lambda_x)\}_{x \in \Lambda_L} \text{ is an } M\text{-localized eigensystem for } \Lambda_L

We fix } \psi \in \Lambda_L \text{ and take } y \in \Lambda_L \text{ such that } \|x - y\| \gg N_{\ell \ell} \approx \ell^{(\gamma-1)\zeta+1}, \text{ and consider two cases:} \)
\{ (\psi_x, \lambda_x) \}_{x \in \Lambda_L} \text{ is an } M\text{-localized eigensystem for } \Lambda_L

We fix \(x \in \Lambda_L \) and take \(y \in \Lambda_L \) such that \(\|x - y\| \gg N_{\ell \ell} \approx \ell (\gamma^{-1}) \tilde{\zeta} + 1 \), and consider two cases:

1. If \(y \in \Lambda^{\Lambda_L, \ell \frac{\ell}{10}} (a) \) for some \(a \in \mathcal{G} \), we must have \(\lambda_x \notin \sigma_{\{a\}} (H_{\Lambda_L}) \), so

\[
|\psi_x(y)| \leq e^{-m_3} \|y_1 - y\| |\psi_x(y_1)| \quad \text{for some} \quad y_1 \in \partial^{\Lambda_L, \ell \tilde{\zeta}} \Lambda_\ell (a).
\]
\[(\psi_x, \lambda_x)\] is an M-localized eigensystem for Λ_L

We fix $x \in \Lambda_L$ and take $y \in \Lambda_L$ such that $\|x - y\| \gg N_\ell \ell \approx \ell(\gamma^{-1})^{\tilde{\zeta}} + 1$, and consider two cases:

1. If $y \in \Lambda^{\ell, 10}_L(a)$ for some $a \in \mathcal{G}$, we must have $\lambda_x \notin \sigma_{\{a\}}(H_{\Lambda_L})$, so

\[
|\psi_x(y)| \leq e^{-m_3\|y_1 - y\|} |\psi_x(y_1)| \quad \text{for some} \quad y_1 \in \partial^{\Lambda_L, \ell, \tilde{\tau}}_L(a).
\]

2. If $y \in \gamma^{\ell, 10}_r$ for some $r \in \{1, 2, \ldots, R\}$, we must have $\lambda_x \notin \sigma_{\mathcal{G}, \gamma_r}(H_{\Lambda_L}) \cup \sigma_{\gamma_r}(H_{\Lambda_L})$, so

\[
|\psi_x(y)| \leq e^{-m_5\ell^\tau} |\psi_x(v)| \quad \text{for some} \quad v \in \partial^{\Lambda_L, 2\ell^\tau}_L \gamma_r.
\]
• Now let let us fix $x \in \Lambda_L$, and take $y \in \Lambda_L$ such that $\|y - x\| \geq L^\tau$.
• Now let us fix $x \in \Lambda_L$, and take $y \in \Lambda_L$ such that $\|y - x\| \geq L^\tau$.
• Take $|\psi_x(y)| > 0$, since otherwise there is nothing to prove.
• Now let us fix \(x \in \Lambda_L \), and take \(y \in \Lambda_L \) such that \(\|y - x\| \geq L^\tau \).
• Take \(|\psi_x(y)| > 0 \), since otherwise there is nothing to prove.
• We estimate \(|\psi_x(y)| \) using the two possibilities repeatedly, as appropriate, stopping when we get too close to \(x \). (Note that this must happen since \(|\psi_x(y)| > 0 \).)
Key ingredients for the proof of the BMSA

- Now let us fix $x \in \Lambda_L$, and take $y \in \Lambda_L$ such that $\|y - x\| \geq L^\tau$.
- Take $|\psi_x(y)| > 0$, since otherwise there is nothing to prove.
- We estimate $|\psi_x(y)|$ using the two possibilities repeatedly, as appropriate, stopping when we get too close to x. (Note that this must happen since $|\psi_x(y)| > 0$.)
- We accumulate decay only when we use the first possibility, and just use $e^{-m_5 L^\tau} < 1$ otherwise, getting
• Now let us fix $x \in \Lambda_{L}$, and take $y \in \Lambda_{L}$ such that $\|y - x\| \geq L^{\tau}$.
• Take $|\psi_x(y)| > 0$, since otherwise there is nothing to prove.
• We estimate $|\psi_x(y)|$ using the two possibilities repeatedly, as appropriate, stopping when we get too close to x. (Note that this must happen since $|\psi_x(y)| > 0$.)
• We accumulate decay only when we use the first possibility, and just use $e^{-m_{5}^{\ell} \tau} < 1$ otherwise, getting

$$|\psi_x(y)| \leq e^{-m_{3}\left(\|y-x\| - \sum_{r=1}^{R} \text{diam } \gamma_{r} - 2\ell\right)} \leq e^{-m_{3}\left(\|y-x\| - 5\ell(y-1)\tilde{\zeta} + 1 - 2\ell\right)} \leq e^{-M\|y-x\|},$$
• Now let us fix $x \in \Lambda_L$, and take $y \in \Lambda_L$ such that $\|y - x\| \geq L^\tau$.

• Take $|\psi_x(y)| > 0$, since otherwise there is nothing to prove.

• We estimate $|\psi_x(y)|$ using the two possibilities repeatedly, as appropriate, stopping when we get too close to x. (Note that this must happen since $|\psi_x(y)| > 0$.)

• We accumulate decay only when we use the first possibility, and just use $e^{-m_5 \ell^\tau} < 1$ otherwise, getting

$$|\psi_x(y)| \leq e^{-m_3(\|y-x\| - \sum_{r=1}^R \text{diam } \gamma_{r-2\ell})} \leq e^{-m_3(\|y-x\| - 5\ell(\gamma^{-1}\tilde{\zeta}+1)-2\ell)} \leq e^{-M\|y-x\|},$$

where

$$M \geq m \left(1 - C_{d,m_-,\varepsilon_0} \ell^{-\min\left\{ \frac{1-\tau}{2}, \gamma\tau-(\gamma-1)\tilde{\zeta}-1 \right\}} \right).$$
• Now let let us fix $x \in \Lambda_L$, and take $y \in \Lambda_L$ such that $\|y - x\| \geq L^\tau$.
• Take $|\psi_x(y)| > 0$, since otherwise there is nothing to prove.
• We estimate $|\psi_x(y)|$ using the two possibilities repeatedly, as appropriate, stopping when we get too close to x. (Note that this must happen since $|\psi_x(y)| > 0$.)
• We accumulate decay only when we use the first possibility, and just use $e^{-m_5 \ell^\tau} < 1$ otherwise, getting

$$|\psi_x(y)| \leq e^{-m_3(\|y - x\| - \sum_{r=1}^R \text{diam } \Gamma_r - 2\ell)} \leq e^{-m_3(\|y - x\| - 5\ell(\gamma^{-1})\tilde{\zeta} + 1 - 2\ell)} \leq e^{-M\|y - x\|},$$

where $M \geq m \left(1 - C_{d,m_-,\varepsilon_0} \ell^{-\min\left\{\frac{1-\tau}{2}, \gamma \tau - (\gamma - 1)\tilde{\zeta} - 1\right\}}\right)$.

• We conclude that $\{(\psi_x, \lambda_x)\}_{x \in \Lambda_L}$ is an M-localized eigensystem for Λ_L, so the box is Λ_L is M-localizing for $H_{\varepsilon, \omega}$.

Abel Klein
Generalized eigenfunctions and eigenvalues

We fix $\nu > \frac{d}{2}$, and set $\langle x \rangle = \sqrt{1 + \|x\|^2}$.
Generalized eigenfunctions and eigenvalues

We fix $\nu > \frac{d}{2}$, and set $\langle x \rangle = \sqrt{1 + \|x\|^2}$.

- $\psi: \Theta \subset \mathbb{Z}^d \to \mathbb{C}$ is a ν-generalized eigenfunction for H_Θ with generalized eigenvalue $\lambda \in \mathbb{R}$ if

 $0 < \|\langle x \rangle^{-\nu} \psi\| < \infty$ and $(H\phi)(x) = \lambda \phi(x)$ for all $x \in \Theta$.

Abel Klein
Generalized eigenfunctions and eigenvalues

We fix \(\nu > \frac{d}{2} \), and set \(\langle x \rangle = \sqrt{1 + \|x\|^2} \).

- \(\psi : \Theta \subset \mathbb{Z}^d \rightarrow \mathbb{C} \) is a \(\nu \)-generalized eigenfunction for \(H_\Theta \) with generalized eigenvalue \(\lambda \in \mathbb{R} \) if

 \[
 0 < \left\| \langle x \rangle^{-\nu} \psi \right\| < \infty \quad \text{and} \quad (H\varphi)(x) = \lambda \varphi(x) \quad \text{for all} \quad x \in \Theta.
 \]

- Given \(\lambda \in \mathbb{R} \) we let \(\mathcal{V}(\lambda) \) denote the collection of \(\nu \)-generalized eigenfunctions for \(H_\Omega \) with generalized eigenvalue \(\lambda \).
Generalized eigenfunctions and eigenvalues

We fix \(\nu > \frac{d}{2} \), and set \(\langle x \rangle = \sqrt{1 + \|x\|^2} \).

- \(\psi : \Theta \subset \mathbb{Z}^d \to \mathbb{C} \) is a \(\nu \)-generalized eigenfunction for \(H_\Theta \) with generalized eigenvalue \(\lambda \in \mathbb{R} \) if

 \[0 < \|\langle x \rangle^{-\nu} \psi\| < \infty \quad \text{and} \quad (H \phi)(x) = \lambda \phi(x) \quad \text{for all} \quad x \in \Theta. \]

- Given \(\lambda \in \mathbb{R} \) we let \(\mathcal{V}(\lambda) \) denote the collection of \(\nu \)-generalized eigenfunctions for \(H_\omega \) with generalized eigenvalue \(\lambda \).

- Given \(\lambda \in \mathbb{R} \) and \(a, b \in \mathbb{Z}^d \), we set

 \[W^{(a)}_\lambda(b) := \sup_{\psi \in \mathcal{V}(\lambda)} \frac{|\psi(b)|}{\|\langle x - a \rangle^{-\nu} \psi\|} \quad \text{if} \quad \mathcal{V}(\lambda) \neq \emptyset \quad \text{and} \quad 0 \quad \text{otherwise}. \]
Generalized eigenfunctions and eigenvalues

We fix $\nu > \frac{d}{2}$, and set $\langle x \rangle = \sqrt{1 + \|x\|^2}$.

- $\psi : \Theta \subset \mathbb{Z}^d \to \mathbb{C}$ is a ν-generalized eigenfunction for H_Θ with generalized eigenvalue $\lambda \in \mathbb{R}$ if

 $$0 < \|\langle x \rangle^{-\nu} \psi\| < \infty \quad \text{and} \quad (H\varphi)(x) = \lambda \varphi(x) \quad \text{for all} \quad x \in \Theta.$$

- Given $\lambda \in \mathbb{R}$ we let $\mathcal{V}(\lambda)$ denote the collection of ν-generalized eigenfunctions for H_ω with generalized eigenvalue λ.

- Given $\lambda \in \mathbb{R}$ and $a, b \in \mathbb{Z}^d$, we set

 $$W_\lambda^{(a)}(b) := \sup_{\psi \in \mathcal{V}(\lambda)} \frac{|\psi(b)|}{\|\langle x - a \rangle^{-\nu} \psi\|} \quad \text{if} \quad \mathcal{V}(\lambda) \neq \emptyset \quad \text{and} \quad 0 \quad \text{otherwise}.$$

- For all $a, b \in \mathbb{Z}^d$ we have

 $$W_\lambda^{(a)}(b) \leq \langle a - b \rangle^\nu, \quad \text{and, in particular,} \quad W_\lambda^{(a)}(a) \leq 1.$$
Theorem encapsulating localization for the Anderson model

Theorem

Let \(H_{\varepsilon, \omega} \) be an Anderson model. There exists \(\varepsilon_0 > 0 \) such that, given \(\xi \in (0, 1) \), we can find a scale \(\hat{L}_\xi \) and \(m_\xi > 0 \), such that for all \(0 < \varepsilon \leq \varepsilon_0 \), \(L \geq \hat{L}_\xi \) with \(L \in 2\mathbb{N} \), and \(a \in \mathbb{Z}^d \) there exists an event \(\mathcal{Y}_{\varepsilon, L,a} \) with the following properties:

1. \(\mathcal{Y}_{\varepsilon, L,a} \) depends only on the random variables \(\{\omega_x\} x \in \Lambda_{5L}(a) \), and \(\mathbb{P}\{\mathcal{Y}_{\varepsilon, L,a}\} \geq 1 - C\varepsilon_0 e^{-L_\xi} \).
2. For all \(\omega \in \mathcal{Y}_{\varepsilon, L,a} \) and \(\lambda \in \mathbb{R} \) we have, with \(W(a)_{\omega, \varepsilon, \lambda} \frac{W(y)}{y} > e^{-1/4} m_\xi L = \Rightarrow W(a)_{\omega, \varepsilon, \lambda} \leq e^{-7/132} m_\xi \|y - a\| \) for all \(y \in A_{L}(a) \).

In particular, \(W(a)_{\omega, \varepsilon, \lambda} \leq e^{-7/132} m_\xi \|y - a\| \) for all \(y \in A_{2\varepsilon, L,a} \).
Theorem encapsulating localization for the Anderson model

Theorem

Let $H_{\varepsilon,\omega}$ be an Anderson model. There exists $\varepsilon_0 > 0$ such that, given $\xi \in (0,1)$, we can find a scale \hat{L}_ξ and $m_\xi > 0$, such that for all $0 < \varepsilon \leq \varepsilon_0$, $L \geq \hat{L}_\xi$ with $L \in 2\mathbb{N}$, and $a \in \mathbb{Z}^d$ there exists an event $Y_{\varepsilon,L,a}$ with the following properties:

1. $Y_{\varepsilon,L,a}$ depends only on the random variables $\{\omega_x\}_{x \in \Lambda_{5L}(a)}$, and $\mathbb{P}\{Y_{\varepsilon,L,a}\} \geq 1 - C_\varepsilon e^{-L_\xi}$.
Theorem encapsulating localization for the Anderson model

Theorem

Let $H_{\varepsilon,\omega}$ be an Anderson model. There exists $\varepsilon_0 > 0$ such that, given $\xi \in (0, 1)$, we can find a scale \hat{L}_ξ and $m_\xi > 0$, such that for all $0 < \varepsilon \leq \varepsilon_0$, $L \geq \hat{L}_\xi$ with $L \in 2\mathbb{N}$, and $a \in \mathbb{Z}^d$ there exists an event $\mathcal{Y}_{\varepsilon,L,a}$ with the following properties:

1. $\mathcal{Y}_{\varepsilon,L,a}$ depends only on the random variables $\{\omega_x\}_{x \in \Lambda_5 L(a)}$, and
 \[\mathbb{P} \{ \mathcal{Y}_{\varepsilon,L,a} \} \geq 1 - C_{\varepsilon_0} e^{-L_\xi}. \]

2. For all $\omega \in \mathcal{Y}_{\varepsilon,L,a}$ and $\lambda \in \mathbb{R}$ we have, with
 \[W_{\omega,\varepsilon,\lambda}^{(a)}(a) > e^{-\frac{1}{4} m_\xi L} \implies W_{\omega,\varepsilon,\lambda}^{(a)}(y) \leq e^{-\frac{7}{132} m_\xi \|y-a\|} \text{ for all } y \in A_L(a), \]
 where $A_L(a) := \left\{ y \in \mathbb{Z}^d; \frac{8}{7} L \leq \|y-a\| \leq \frac{33}{14} L \right\}$.

Abel Klein
Theorem encapsulating localization for the Anderson model

Let $H_{\varepsilon, \omega}$ be an Anderson model. There exists $\varepsilon_0 > 0$ such that, given $\xi \in (0, 1)$, we can find a scale \hat{L}_ξ and $m_\xi > 0$, such that for all $0 < \varepsilon \leq \varepsilon_0$, $L \geq \hat{L}_\xi$ with $L \in 2\mathbb{N}$, and $a \in \mathbb{Z}^d$ there exists an event $\mathcal{Y}_{\varepsilon, L, a}$ with the following properties:

1. $\mathcal{Y}_{\varepsilon, L, a}$ depends only on the random variables $\{\omega_x\}_{x \in \Lambda_{5L}(a)}$, and
 $$\mathbb{P}\{\mathcal{Y}_{\varepsilon, L, a}\} \geq 1 - C_0 e^{-L_\xi}.$$

2. For all $\omega \in \mathcal{Y}_{\varepsilon, L, a}$ and $\lambda \in \mathbb{R}$ we have, with
 $$W_{\omega, \varepsilon, \lambda}^{(a)}(a) > e^{-\frac{1}{4} m_\xi L} \implies W_{\omega, \varepsilon, \lambda}^{(a)}(y) \leq e^{-\frac{7}{132} m_\xi \|y-a\|}$$ for all $y \in A_L(a)$,
 where
 $$A_L(a) := \left\{ y \in \mathbb{Z}^d; \frac{8}{7} L \leq \|y-a\| \leq \frac{33}{14} L \right\}.$$
 In particular,
 $$W_{\omega, \varepsilon, \lambda}^{(a)}(a) W_{\omega, \varepsilon, \lambda}^{(a)}(y) \leq e^{-\frac{7}{132} m_\xi \|y-a\|}$$ for all $y \in A_L(a)$.
The theorem encapsulates localization, as shown by Germinet and Klein. It implies Anderson localization, dynamical localization, and more.
Localization for the Anderson model

- The theorem encapsulates localization, as shown by Germinet and Klein. It implies Anderson localization, dynamical localization, and more.
- Anderson localization (pure point spectrum with exponentially decaying eigenfunctions with probability one) follows from the Theorem by a simple Borel-Cantelli argument.
The theorem encapsulates localization, as shown by Germinet and Klein. It implies Anderson localization, dynamical localization, and more.

Anderson localization (pure point spectrum with exponentially decaying eigenfunctions with probability one) follows from the Theorem by a simple Borel-Cantelli argument.

Dynamical localization with probability one follows from the last inequality in the theorem by another Borel-Cantelli argument.
Localization for the Anderson model

- The theorem encapsulates localization, as shown by Germinet and Klein. It implies Anderson localization, dynamical localization, and more.

- Anderson localization (pure point spectrum with exponentially decaying eigenfunctions with probability one) follows from the Theorem by a simple Borel-Cantelli argument.

- Dynamical localization with probability one follows from the last inequality in the theorem by another Borel-Cantelli argument.

- The theorem yields dynamical localization in expectation with any desired subexponential decay.
Localization for the Anderson model

- The theorem encapsulates localization, as shown by Germinet and Klein. It implies Anderson localization, dynamical localization, and more.

- Anderson localization (pure point spectrum with exponentially decaying eigenfunctions with probability one) follows from the Theorem by a simple Borel-Cantelli argument.

- Dynamical localization with probability one follows from the last inequality in the theorem by another Borel-Cantelli argument.

- The theorem yields dynamical localization in expectation with any desired subexponential decay.

- Infinite volume localization results for the Anderson model at high disorder are well known.