Vanishing viscosity method for solutions to an optimal control problem of hyperbolic conservation laws in the presence of shocks

Yaobin Ou

Renmin University of China, Beijing, China

joint work with Peicheng Zhu(EHU/UPV, Spain)
I. Optimal control problem and vanishing viscosity limit:

Scalar hyperbolic conservation law:

\[u_t + F(u)_x = 0, \quad (x,t) \in \mathbb{R} \times (0,T); \quad u(x,0) = u^I(x), \] (1)

where \(F \) is smooth and \(F_{uu} > 0 \). Assume the solution \(u \) is the unique entropy solution with a single shock discontinuity \(\Sigma = \{ x = \varphi(t) \} \), satisfying the Rankine-Hugoniot jump condition on the discontinuity \(x = \varphi(t) \):

\[\varphi'(t)[u]_{\varphi(t)} = [F(u)]_{\varphi(t)}, \]

and the Oleinik’s one-sided Lipschitz condition (OSLC):

\[(f(u(x,t)) - f(u(y,t)))(x-y) \leq \alpha(t)(x-y)^2. \]

Given a target function \(u^D \in L^2(\mathbb{R}) \), we consider the cost functional \(J : L^1(\mathbb{R}) \to \mathbb{R} \), which is defined by

\[J(u^I) = \int_{\mathbb{R}} |u(x,T) - u^D(x)|^2 \, dx, \] (2)
where \(u(x, t) \) is the unique entropy solution to (1) with a single shock.

We introduce the set of admissible initial data \(\mathcal{U}_{ad} \subset L^1(\mathbb{R}) \), which is

\[
\mathcal{U}_{ad} = \{ f \in L^\infty(\mathbb{R}) \mid \text{supp}(f) \subset K, \| f \|_{L^\infty(\mathbb{R})} \leq C \},
\]

(3)

where \(K \subset \mathbb{R} \) is a bounded interval and \(C > 0 \) a constant. Then we shall solve the existence of the following optimization problem:

Find \(u^{I, \text{min}} \in \mathcal{U}_{ad} \) such that \(J(u^{I, \text{min}}) = \min_{u^I \in \mathcal{U}_{ad}} J(u^I) \).

For the conservation law (1), the corresponding viscous problem is

\[
u_t + (F(u))_x = \nu u_{xx}, \text{ in } \mathbb{R} \times (0, T), \quad u(x, 0) = g^\epsilon,
\]

(4)

where \(g^\epsilon \to u^I \) as \(\epsilon \to 0 \) and \(\epsilon = \epsilon(\nu) \) is to be determined.

Similar minimization problem for (4): Find \(g^{\epsilon, \text{min}} \in \mathcal{U}_{ad} \) such that

\[
J_\nu(g^{\epsilon, \text{min}}) = \min_{g^\epsilon \in \mathcal{U}_{ad}} J_\nu(g^\epsilon).
\]

Conclusion 1. \(J_\nu(g^{\epsilon, \text{min}}) \to J(u^{I, \text{min}}) \) as \(\nu \to 0 \) (\(\Gamma \)-convergence).
II. Sensitivity analysis by vanishing viscosity method.

Question. Could we carry out the sensitivity analysis for the inviscid minimization problem in the presence of shocks by the vanishing viscosity method?

(1) **Sensitivity analysis of \(J \): Inviscid case**

Let \(\delta u \) be the variations of the solution \(u \) with respect to the initial datum \(u_0 \), and \(\delta \varphi \) be the variation of the shock position \(\varphi(t) \) with respect to \(\varphi(t = 0) \).

Lemma. (Bressan & Marson 1995) \((\delta u, \delta \varphi)\) is the solution to the linearized problem

\[
(\delta u)_t + (f(u)\delta u)_x = 0, \text{ in } Q^+ \cup Q^-,
\]

\[
(\delta \varphi)'(t)[u]\varphi(t) + \delta \varphi(t) \left(\varphi'(t)[u_x]\varphi(t) - [f(u)u_x]\varphi(t) \right) = [f(u)\delta u]\varphi(t) - \varphi'(t)[\delta u]\varphi(t), \quad t \in (0, T),
\]

\[
\delta \varphi(0) = \delta \varphi^I,
\]

\[
\delta u(x, 0) = \delta u^I(x), \quad x \in \{x < \varphi^I\} \cup \{x > \varphi^I\}.
\]
Definition. (Bressan & Marson 1995) \(J \) is Gateaux differentiable at \(u^I \) in a generalized sense if \(\delta J = \lim_{\varepsilon \to 0} \frac{J(u^{I,\varepsilon}) - J(u^I)}{\varepsilon} \) exists.

Lemma. (Castro, Palacios & Zuazua 2008) Assume that \(u^D \) is continuous at \(x = \varphi(T) \). Then

\[
\delta J = 2 \int_{\{x < \varphi^I\} \cup \{x > \varphi^I\}} p(x, 0) \delta u^I(x) dx + 2q(0) [u^I]_{\varphi^I} \delta \varphi^I,
\]

where the adjoint state pair \((p, q)\) satisfies the adjoint problem:

\[
-\partial_t p - f(u) \partial_x p = 0, \text{ in } Q^- \cup Q^+,
\]

\[
[p]_{\Sigma} = 0,
\]

\[
q(t) = p(\varphi(t), t), \ t \in (0, T'),
\]

\[
q'(t) = 0, \ t \in (0, T),
\]

\[
p(x, T) = u(x, T) - u^D(x), \ x \in \{x < \varphi(T)\} \cup \{x > \varphi(T)\},
\]

\[
q(T') = \frac{[(u(x, T) - u^D)^2]_{\varphi(T)}}{[u]_{\varphi(T)}},
\]
(2) Viscose case and Vanishing viscosity limit

Viscous conservation law:

\[u_t + F(u)_x = \nu u_{xx}, \quad u(x, 0) = g^\epsilon(x). \]

Viscous linearized equation (let \(v = \delta u \)):

\[v_t + (f(u)v)_x = \nu v_{xx}, \quad v(x, 0) = h^\epsilon(x). \]

and its adjoint problem:

\[-p_t - f(u)p_x = \nu p_{xx}, \quad p(x, t = T) = p^T_\epsilon(x). \]

Proposition. On \(x = \varphi(t) \), \(\delta u \) and \(\delta \varphi \) satisfy

\[
[u]_{\varphi(t)} \delta \varphi'(t) = \delta \varphi(t) \left(-[u_x]_{\varphi(t)} \varphi'(t) + [f(u)u_x]_{\varphi(t)} \right) \\
+ \left(-[\delta u]_{\varphi(t)} \varphi'(t) + [f(u)\delta u]_{\varphi(t)} \right) + \frac{1}{\sigma} \left([u_x]_{\varphi(t)} - ([w]_{\varphi(t)} \varphi'(t) - [f(u)w]_{\varphi(t)}) \right).
\]
Proposition. $p^\nu \rightarrow \text{constant as } \nu \rightarrow 0 \text{ in a “triangular region”}$.

Main Theorems: Assume that \(\max_{x \in [-R,R]} p^T(x) \leq C \) for some constant \(R > 0 \) and

\[
\int_0^T \int_{\{x \neq \varphi(t), t \in [0,T]\}} \sum_{i=1}^6 \left(|\partial_x^i u(x,t)|^2 + |\partial_x^i v(x,t)|^2 + |\partial_x^i p(x,t)|^2 \right) \, dx \, dt \leq C. \tag{18}
\]

Then the viscous solutions \((u^\nu, v^\nu, p^\nu) \rightarrow (u, v, p)\) in \([L^\infty(0, T; L^2(\mathbb{R}))]^3\) as \(\nu \rightarrow 0 \), and the following estimates hold

\[
\sup_{0 \leq t \leq T} \left(\|u^\nu(t) - u(t)\| + \|v^\nu(t) - v(t)\| + \|p^\nu(t) - p(t)\| \right) \leq C \eta \nu^\eta, \tag{19}
\]

where \(\eta = \frac{1+\gamma}{2} \) and \(\eta \in \left(\frac{5}{6}, 1\right) \). Moreover, as \(\nu \rightarrow 0 \), we have the interior estimate

\[
\sup_{0 \leq t \leq T} \|p^\nu - p\|_{L^\infty(\Omega_h)} \leq C_h \nu \rightarrow 0, \tag{20}
\]

where

\[
\Omega_h = \{(x, t) \in Q_T \mid |x - \varphi(t)| > h\}.
\]