INVERSE VISCOSITY BOUNDARY VALUE PROBLEM FOR THE STOKES EVOLUTIONARY EQUATION

Sebastián Zamorano Aliaga

Departamento de Ingeniería Matemática
Universidad de Chile

Workshop Chile–Euskadi

9-10 December 2014
Joint Work with

- Jaime Ortega
 Departamento de Ingeniería Matemática, Universidad de Chile, Chile.

- Rodrigo Lecaros
 Centro de Modelación Matemática (CMM), Universidad de Chile, Chile.
Contenido

1 Introduction

2 Main Result

3 Proof Main Result

4 References
Consider the parabolic problem

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \text{div} (a \nabla u) + cu &= 0, \quad \text{in } \Omega \times (0, T), \\
u &= g_0, \quad \text{on } \partial \Omega \times (0, T), \\
u(x, 0) &= 0, \quad \text{in } \Omega,
\end{aligned}
\]

We define the Dirichlet-to-Neumann map as

\[
\Gamma_I(g_0) = \frac{\partial u}{\partial n}, \quad \text{on } \partial \Omega
\]
Isakov Result

Theorem 9.4.1, Isakov [3]
Let a be a scalar matrix. Then the lateral Dirichlet-to-Neumann map Γ_1 determines a and b.
Theorem 9.4.1, Isakov [3]

Let a be a scalar matrix. Then the lateral Dirichlet-to-Neumann map Γ_l determines a and b.

- The proof is based in make use of stabilization of solutions of parabolic problem when $t \to \infty$, reducing the inverse parabolic problem to inverse elliptic problem with parameter.
Stokes Equations

\[
\begin{cases}
 u_t - \text{div} \left(\sigma_\mu(u, p) \right) = 0, & \text{in } \Omega \times (0, T), \\
 \text{div } u = 0, & \text{in } \Omega \times (0, T), \\
 u(x, 0) = u_0(x), & \text{in } \Omega,
\end{cases}
\]

where \(u = (u_1, u_2, u_3) \) is the velocity vector field and \(p \) is the pressure and

\[
\sigma_\mu(u, p) = 2\mu e(u) - pl_3
\]

is the stress tensor, where \(e(u) = \frac{1}{2} (\nabla u + (\nabla u)^T) \) and \(\mu > 0 \) is the viscosity function.
We are interested in the following inverse problem:
We are interested in the following inverse problem:

Identifiability of μ by overdetermined data.
We note that when μ is constant, the problem (1) can be reduced to the following familiar form

\[
\begin{aligned}
\left\{
 & u_t - \mu \Delta u + \nabla p = 0, & \text{in } \Omega \times (0, T), \\
 & \text{div } u = 0, & \text{in } \Omega \times (0, T), \\
 & u(x, 0) = u_0(x), & \text{in } \Omega,
\end{aligned}
\]

(2)

If u is independent of time, then problem (1) can be formulated as

\[
\begin{aligned}
\left\{
 & -\text{div } (\sigma_\mu(u, p)) = 0, & \text{in } \Omega, \\
 & \text{div } u = 0, & \text{in } \Omega
\end{aligned}
\]

(3)
Heck, Li, and Wang (2007): **Identifiability** for system (3) (Stationary Stokes Equation.)
Heck, Li, and Wang (2007): **Identifiability** for system (3) (Stationary Stokes Equation.)

Heck, Li, and Wang (2007): Identifiability for system (3) (Stationary Stokes Equation.)

Contenido

1. Introduction
2. Main Result
3. Proof Main Result
4. References
Mathematical Setup

Let $\Omega \subset \mathbb{R}^3$ be an open bounded connected domain with boundary $\partial \Omega \in C^2$.

Consider the following boundary value problem

$$
\begin{aligned}
\begin{cases}
 u_t - \text{div} \left(\sigma_\mu(u, p) \right) &= 0, & \text{in } \Omega \times (0, T), \\
 \text{div } u &= 0, & \text{in } \Omega \times (0, T), \\
 u &= g, & \text{on } \partial \Omega \times (0, T), \\
 u(x, 0) &= u_0(x), & \text{in } \Omega,
\end{cases}
\end{aligned}
$$

(4)

where g satisfies the compatibility condition

$$
\int_{\partial \Omega} g \cdot n ds = 0,
$$

where n is the unit outer normal of $\partial \Omega$,

(BCAM - Bilbao) Workshop Chile-Euskadi 9-10 December 2014 11 / 24
Assume that the solution of (4) exists and the trace

\[\sigma_\mu(u, p) \cdot n|_{\partial \Omega} \]

is well defined.
Assume that the solution of (4) exists and the trace
\[\sigma_\mu(u, p) \cdot n_{|\partial\Omega} \]
is well defined.

Physically, \(\sigma(u, p) \cdot n_{|\partial\Omega} \) is the Cauchy forces acting on the boundary \(\partial\Omega \).
Assume that the solution of (4) exists and the trace
\[\sigma_\mu(u, p) \cdot n|_{\partial \Omega} \]
is well defined.

Physically, \(\sigma(u, p) \cdot n|_{\partial \Omega} \) is the Cauchy forces acting on the boundary \(\partial \Omega \).

Define the set of Cauchy data for (4)
\[S_\mu = \{(u|_{\partial \Omega}, \sigma_\mu(u, p) \cdot n|_{\partial \Omega}) : (u, p) \text{ solution to (4)}\}. \]
Inverse Problem: Determine μ from S_{μ}.

Theorem 1
Assume that μ_1 and μ_2 are two viscosity functions satisfying $\mu_1, \mu_2 \in C^k(\Omega)$ for $k \geq 8$ and $\mu_i \geq 1$, $\forall i = 1, 2$. (5)

$\mu_1(x) = \mu_2(x), \forall x \in \partial \Omega$. (6)

Let S_{μ_1} and S_{μ_2} be the Cauchy data associated with μ_1 and μ_2, respectively. If $S_{\mu_1} = S_{\mu_2}$, then $\mu_1 = \mu_2$.

(BCAM - Bilbao)
Workshop Chile-Euskadi
Inverse Problem: Determine μ from S_μ.

Identifiability: if $S_{\mu_1} = S_{\mu_2}$ then $\mu_1 = \mu_2$?
Inverse Problem : Determine μ from S_μ.

Identifiablity : if $S_{\mu_1} = S_{\mu_2}$ then $\mu_1 = \mu_2$?

Theorem 1

Assume that μ_1 and μ_2 are two viscosity functions satisfying $\mu_1, \mu_2 \in C^k(\bar{\Omega})$ for $k \geq 8$ and

\begin{align*}
\mu_i & \geq 1, \forall i = 1, 2. \\
\mu_1(x) & = \mu_2(x), \forall x \in \partial\Omega.
\end{align*}

Let S_{μ_1} and S_{μ_2} be the Cauchy data associated with μ_1 and μ_2, respectively. If $S_{\mu_1} = S_{\mu_2}$, then $\mu_1 = \mu_2$.

Contenido

1. Introduction
2. Main Result
3. Proof Main Result
4. References
Sketch Proof

- Stabilization of solutions of following Stokes problem

\[
\begin{align*}
\left\{ \begin{array}{ll}
 u_t - \text{div} \left(\sigma_{\mu}(u, p) \right) + u &= 0 , & \text{en } \Omega \times (0, T), \\
 \text{div } u &= 0 , & \text{en } \Omega \times (0, T), \\
 u &= g , & \text{sobre } \partial \Omega \times (0, T), \\
 u(x, 0) &= u_0(x) , & \text{en } \Omega.
\end{array} \right.
\end{align*}
\]
Sketch Proof

- Stabilization of solutions of following Stokes problem

\[
\begin{aligned}
 u_t - \text{div} \left(\sigma_{\mu}(u, p) \right) + u &= 0 \quad , \quad \text{en } \Omega \times (0, T), \\
 \text{div} u &= 0 \quad , \quad \text{en } \Omega \times (0, T), \\
 u &= g \quad , \quad \text{sobre } \partial \Omega \times (0, T), \\
 u(x, 0) &= u_0(x) \quad , \quad \text{en } \Omega.
\end{aligned}
\]

- Identifiability result for the stationary Stokes problem

\[
\begin{aligned}
 -\text{div} \left(\sigma_{\mu}(u_\infty, p_\infty) \right) + u_\infty &= 0 \quad , \quad \text{en } \Omega, \\
 \text{div} u_\infty &= 0 \quad , \quad \text{en } \Omega, \\
 u &= g(T^*) \quad , \quad \text{sobre } \partial \Omega.
\end{aligned}
\]
Sketch Proof

▶ Stabilization of solutions of following Stokes problem

\[
\begin{cases}
 u_t - \text{div} \ (\sigma_\mu(u, p)) + u = 0, & \text{en } \Omega \times (0, T), \\
 \text{div} \ u = 0, & \text{en } \Omega \times (0, T), \\
 u = g, & \text{sobre } \partial \Omega \times (0, T), \\
 u(x, 0) = u_0(x), & \text{en } \Omega.
\end{cases}
\] (7)

▶ Identifiability result for the stationary Stokes problem

\[
\begin{cases}
 -\text{div} \ (\sigma_\mu(u_\infty, p_\infty)) + u_\infty = 0, & \text{en } \Omega, \\
 \text{div} \ u_\infty = 0, & \text{en } \Omega, \\
 u = g(T^*), & \text{sobre } \partial \Omega.
\end{cases}
\]

▶ Conclusion of result.
Consider the following evolutionary Stokes system

\[
\begin{aligned}
 u_t - \text{div} \left(\sigma_\mu(u, p) \right) + u &= 0, \quad \text{in } \Omega \times (0, T), \\
 \text{div } u &= 0, \quad \text{in } \Omega \times (0, T), \\
 u &= g, \quad \text{on } \partial \Omega \times (0, T), \\
 u(x, 0) &= u_0(x), \quad \text{in } \Omega.
\end{aligned}
\]

(8)

Then, we can prove the following result for solutions of this systems
Theorem 2

Let \((u, p)\) be a solution of (8). Assume that \(g\) do not depend on \(t\), for all \(t \in (T^*/2, T)\) for some \(T^* > 0\). Then, there exists constants \(C_1, C_2 > 0\) such that

\[
\|u(t) - u_\infty\|_{H^1(\Omega)} \leq \|u(T^*/2) - u_\infty\|^2_{L^2(\Omega)} e^{-2C_1 t} + \\
\|\nabla u(T^*/2) - \nabla u_\infty\|^2_{L^2(\Omega)} e^{-2C_2 t} \mu, \quad \forall t > \frac{T^*}{2},
\]

where \((u_\infty, p_\infty) \in H^2(\Omega) \times H^1(\Omega)\) is a solution to the (stationary) Stokes problem

\[
\begin{aligned}
- \text{div} \left(\sigma_\mu(u_\infty, p_\infty) \right) + u_\infty & = 0, \quad \text{in } \Omega, \\
\text{div } u_\infty & = 0, \quad \text{in } \Omega, \\
u_\infty & = g(T^*), \quad \text{on } \partial \Omega.
\end{aligned}
\]

(9)
Let \((u, p)\) be the solution to the stationary Stokes problem

\[
\begin{align*}
-\text{div} \left(\sigma_{\mu}(v_\infty, q_\infty) \right) + v_\infty &= 0, \quad \text{in } \Omega, \\
\text{div } v_\infty &= 0, \quad \text{in } \Omega, \\
v_\infty &= g^0, \quad \text{on } \partial\Omega.
\end{align*}
\]
Theorem 3

Let \((u, p)\) be the solution to the stationary Stokes problem (10). Assume that \(\mu_1(x)\) and \(\mu_2(x)\) are two viscosity function satisfying

\[
\mu_1, \mu_2 \in C^k(\bar{\Omega}), \quad \forall k \geq 8.
\]

\[
\mu_i \geq 1, \quad \forall i = 1, 2.
\]

\[
\mu_1(x) = \mu_2(x), \quad \forall x \in \partial \Omega.
\]

Let \(S^E_{\mu_1}\) and \(S^E_{\mu_2}\) be the Cauchy data associated with \(\mu_1\) and \(\mu_2\), respectively. If \(S^E_{\mu_1} = S^E_{\mu_2}\), then \(\mu_1 = \mu_2\).
Proof Theorem 1

Consider the substitution $u = ve^{\lambda t}$, $p = qe^{\lambda t}$, with $\lambda > 0$. Then

$$\begin{aligned}
\begin{cases}
\nu_t - \text{div} \left(\sigma_{\mu}(\nu, q) \right) + \lambda \nu &= 0, & \text{en } \Omega \times (0, T), \\
\text{div } \nu &= 0, & \text{en } \Omega \times (0, T).
\end{cases}
\end{aligned}$$

(11)
Proof Theorem 1

Consider the substitution $u = ve^{\lambda t}$, $p = qe^{\lambda t}$, with $\lambda > 0$. Then

$$
\begin{aligned}
& v_t - \text{div} \left(\sigma_{\mu}(v, q) \right) + \lambda v = 0, \quad \text{en } \Omega \times (0, T), \\
& \text{div } v = 0, \quad \text{en } \Omega \times (0, T).
\end{aligned}
$$

Let $g = g^0 \phi$, where g^0 any function in $C^2(\overline{\Omega})$ and $\phi(t) \in C^\infty(\mathbb{R})$ satisfies

the conditions $\phi(t) = 0$ on $(\infty, T^*/4)$ and $\phi(t) = e^{\lambda t}$ on $(T^*/2, \infty)$.

Proof Theorem 1

Consider the substitution $u = ve^{\lambda t}$, $p = qe^{\lambda t}$, with $\lambda > 0$. Then

\[
\begin{aligned}
\nu_t - \text{div} (\sigma_{\mu}(\nu, q)) + \lambda \nu &= 0, & \text{en } \Omega \times (0, T), \\
\text{div } \nu &= 0, & \text{en } \Omega \times (0, T).
\end{aligned}
\]

Let $g = g^0 \phi$, where g^0 any function in $C^2(\Omega)$ and $\phi(t) \in C^\infty(\mathbb{R})$ satisfies the conditions $\phi(t) = 0$ on $(\infty, T^*/4)$ and $\phi(t) = e^{\lambda t}$ on $(T^*/2, \infty)$.

The boundary data of the equation (11) is independent of $t > T^*/2$.
We can define the Cauchy data, S^E_μ, associated with the stationary problem (10), using Theorem 2.
We can define the Cauchy data, S^E_μ, associated with the stationary problem (10), using Theorem 2.

Then $S_{\mu_1} = S_{\mu_2}$ then $S^E_{\mu_1} = S^E_{\mu_2}.$
Proof Main Result

We can define the Cauchy data, S^E_μ, associated with the stationary problem (10), using Theorem 2.

Then $S_{\mu_1} = S_{\mu_2}$ then $S^E_{\mu_1} = S^E_{\mu_2}$.

Theorem 3 implies that $\mu_1 = \mu_2$.
Contenido

1. Introduction
2. Main Result
3. Proof Main Result
4. References

Thank you for your attention