Perforated and multiperforated plates in linear acoustic

Sébastien Tordeux
Maître de conférences, chaire d’excellence en Analyse Numérique

Magique 3D, INRIA Bordeaux Sud-Ouest
and
LMA, UMR CNRS 5142, Université de Pau et Pays de l’Adour

June 21st 2011
Motivation

- A combustion chamber of a Turbo engine of Turbo Meca (SAFRAN Group, - Acknowledgment -).

- Goal: Study the effects of small holes on resonance frequencies using Matching of Asymptotic Expansions (MAE).
The physical problem

Why multiperforated plates in turbo engines?

- Temperature of a combustion chamber: \(\sim 2000K \)
- Temperature of the casing: \(\sim 800K \)
- Injection of "fresh" air from the casing to the combustion chamber to protect the boundary from the combustion (cooling film)

Importance of the acoustic resonance frequencies of the gaz

- For high ratio of fuel-air the combustion is unstable. The combustion can easily be perturbed by the acoustic.
- The diameter (\(\sim .5mm \)) and spacing (\(\sim 5mm \)) of the holes are chosen to ensure the cooling and the solidity of the boundary.
- Holes with small diameters have an impact on the acoustic.
The matching of asymptotic expansions

- A technique of asymptotic analysis require a small parameter
- **Very popular** in fluid mechanics due to Van Dyke (75). A method to study the effect of the boundary layers occurring in the fluids
- **Rigorous** framework for elliptic problems Il’in (92) and for Helmholtz problem Joly and Tordeux (06,08)
- Well-suited for writing approximate coupling condition between domains of different dimension
- Leads to numerical scheme **with no mesh refinement** in the neighborhood of the coupling
The matching of asymptotic expansions

2D-1D coupling: field transmitted through a slot:

The small parameter: the width of the Patch antenna.

- The slot is modelled by a 1D propagative medium
- The exterior is a 2D propagative medium
- A 2D-1D coupling should be written at the edge of the slot

Some references: McLver and Rawlins (93), Joly, Tordeux (06)
3D-2D coupling: field radiated by a Patch antenna

The small parameter: the width of the slot.

- The cavity is modelled by a 2D propagative medium
- The exterior is a 3D propagative medium
- A 3D-2D coupling should be written at the edge of the Patch

Some references: Mclver and Rawlins (93), Bendali, Makhlfouf, ST (10)

\[^1\text{image: http://en.wikipedia.org/wiki/Patch_antenna}\]
The matching of asymptotic expansions

3D-1D coupling: scattering by a small wire

The small parameter: the width ε of the wire.
- The wire is seen as a 1D medium
- The exterior is a 3D propagative medium
- A 3D-1D coupling should be written at each point of the wire

Some references: Fedoryuk (85), Il’In (92), Claeys (2009)

3image: PhD thesis of X. Claeys
The matching of asymptotic expansions

3D-0D coupling: Coupling through small holes

The small parameter: the width ε of the hole.
- The hole is seen as a pointwise perturbation
- The exterior is a 3D propagative medium
- A 3D-0D coupling should be written

A reference: Gadyl’shin (92)
A non exhaustive bibliography

- **Small holes**: Rayleigh (1877), Rauch and Taylor (75), Tuck (75), Sanchez-Hubert and Sanchez-Palencia (82), Taflov (88), Bonnet-BenDhia, Drissi and Gmati (04), Mendez and Nicoud (08), Gadyl’shin (92).
- **Dumbell problems**: Beale (73), Jimbo and Morita (92) Brown, Hislop and Martinez (95), Arrieta (95), Anné (95).
- **Quasi-mode and min-max**: Bamberger and Bonnet (90), Dauge, Djurdjevic, Faou, and Roessle (99), Bonnaillie-Noel and Dauge (06).
Outline

1. Dirichlet condition in 2D
 - Definition of the asymptotic expansions
 - Error estimates
 - Numerical simulations

2. Neumann condition in 3D
 - Definition of the asymptotic expansions
 - Error estimates
 - Numerical simulations

3. Multiperforated boundary in 3D
 - Problem definition
 - Numerical simulations
Part I

Dirichlet boundary condition in 2D

with Abderrahmane Bendali and Abdelkader Tizaoui (IMT)
A Toy Problem

Problem: Find $u^n_\delta \in H^1_0(\Omega^\delta)$ and $\lambda^n_\delta \in \mathbb{R}$ satisfying

$$
\begin{cases}
-\nabla \cdot (a(x, y) \nabla u^n_\delta)(x, y) = \lambda^n_\delta b(x, y) \ u^n_\delta(x, y) \text{ in } \Omega^\delta, \\
 u^n_\delta(x, y) = 0 \text{ on } \partial \Omega^\delta,
\end{cases}
$$

(1)

with a and b two bounded positive regular functions with two sides

$$a_{int}(0) \neq a_{ext}(0) \text{ and } a_{int}(0) \neq a_{ext}(0)$$

(2)

The small parameter $\delta > 0$ is the width of the hole in the domain Ω^δ.

Hypothesis: The eigenvalues of Ω are simple.
The Matching of Asymptotic Expansions Method

The MAE method is based on a domain decomposition with overlapping

The solution is described:
- with a **far**-field.
- with a **near**-field.
The Matched Asymptotic Expansions Method

The MAE is based on a domain decomposition with overlapping

\[\Omega^\delta \]

The solution is described:

- with a \textbf{far}-field.
- with a \textbf{near}-field.
The Matched Asymptotic Expansions Method

The MAE is based on a domain decomposition with overlapping:

\[\Omega^\delta \]

Matching zone

The solution is described:

- with a far-field.
- with a near-field.
The Asymptotic Expansions: The Eigenvalue Expansion

- The second order asymptotic expansion reads
 \[
 \lambda^\delta = \lambda^0 + \delta \lambda^1 + \delta^2 \lambda^2 + \delta^2 \ln\delta + o(\delta^2) . \tag{3}
 \]
- Polynomial gauge functions? not trivial: at fourth order
 \[
 \lambda^\delta = \lambda^0 + \delta \lambda^1 + \delta^2 \lambda^2 + \delta^3 \lambda^3 + \delta^4 \lambda^{4,0} + \delta^4 \ln\delta \lambda^{4,1} + o(\delta^4) . \tag{4}
 \]
- The coefficients \(\lambda^i \in \mathbb{R} \) and do not depend on \(\delta \)
- A proof is required
The Asymptotic Expansions: The Far-field Expansion

Far-field (Asymptotic Expansion):

$$u^\delta = u^0 + \delta u^1 + \delta^2 u^2 + o(\delta^2)$$

The coefficients of the far-field asymptotic expansion u^i will be
- defined in the far-field domain Ω: The limit of Ω^δ when $\delta \to 0$,
- independent of δ.
Asymptotic Expansion: The Far-Field Expansion

They are solutions of the following problems

\[
\begin{align*}
\begin{cases}
\text{Find } u^0 : \Omega \to \mathbb{R} \text{ and } \lambda^0 \in \mathbb{R} \text{ such that } \\
\quad \nabla \cdot (a \nabla u^0) + \lambda^0 \ b \ u^0 = 0, \quad &\text{in } \Omega, \\
\quad u^0 = 0, \quad &\text{on } \partial \Omega \setminus \{0\}.
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
\text{Find } u^1 : \Omega \to \mathbb{R} \text{ and } \lambda^1 \in \mathbb{R} \text{ such that } \\
\quad \nabla \cdot (a \nabla u^1) + \lambda^0 \ b \ u^1 = -\lambda^1 \ b \ u^0, \quad &\text{in } \Omega, \\
\quad u^1 = 0, \quad &\text{on } \partial \Omega \setminus \{0\}.
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
\text{Find } u^2 : \Omega \to \mathbb{R} \text{ and } \lambda^2 \in \mathbb{R} \text{ such that } \\
\quad \nabla \cdot (a \nabla u^2) + \lambda^0 \ b \ u^2 = -\lambda^2 \ b \ u^0 - \lambda^1 \ b \ u^1, \quad &\text{in } \Omega, \\
\quad u^2 = 0, \quad &\text{on } \partial \Omega \setminus \{0\}.
\end{cases}
\end{align*}
\]

Missing information:

- The coefficients u^0, u^1, and u^2 are possibly singular at $x = 0$.
- The problems (5) do not uniquely define u^1 and u^2.
Asymptotic Expansion: The Near-Field Expansion

Let $X = \frac{x}{\delta}$, $Y = \frac{y}{\delta}$, and we put $\Pi^\delta(X, Y) = u^\delta(\delta X, \delta Y)$.

Near-field (Asymptotic Expansion):

$$\Pi^\delta(X, Y) = \Pi^0(X, Y) + \delta \, \Pi^1(X, Y) + \delta^2 \, \Pi^2(X, Y) + \mathcal{O}_0(\delta^2).$$

(6)

These functions will be
- defined on the near-field domain $\hat{\Omega}$.
- independent of δ.

S. Tordeux
Perforated and multiperforated plates in linear acoustic
Asymptotic Expansion: The Near-Field expansion

The functions \(\Pi^0, \Pi^1 \) and \(\Pi^2 : \hat{\Omega} \rightarrow \mathbb{R} \) are solutions of elliptic problems

\[
\begin{align*}
\nabla \cdot (a^0 \nabla \Pi^0) &= 0, \quad \text{in } \hat{\Omega}, \\
\Pi^0 &= 0, \quad \text{on } \partial \hat{\Omega}. \\
\nabla \cdot (a^0 \nabla \Pi^1 + a^1 \nabla \Pi^0) &= 0, \quad \text{in } \hat{\Omega}, \\
\Pi^1 &= 0, \quad \text{on } \partial \hat{\Omega}. \\
\nabla \cdot (a^0 \nabla \Pi^2 + a^1 \nabla \Pi^1 + a^2 \nabla \Pi^0) + \lambda^0 b^0 \Pi^0 &= 0, \quad \text{in } \hat{\Omega}, \\
\Pi^2 &= 0, \quad \text{on } \partial \hat{\Omega}.
\end{align*}
\]

with the coefficients \(a^0, a^1, a^2 \) defined by part

\[
\begin{align*}
a^0_{\text{ext}}(X) &= a^0_{\text{ext}}(0) \quad \text{and} \quad a^0_{\text{int}}(X) = a^0_{\text{int}}(0), \\
a^1_{\text{ext}}(X) &= \nabla a^0_{\text{ext}}(0) \cdot X \quad \text{and} \quad a^1_{\text{int}}(X) = \nabla a^0_{\text{int}}(0) \cdot X, \\
a^2_{\text{ext}}(X) &= \frac{X \cdot Ha^0_{\text{ext}}(0)X}{2} \quad \text{and} \quad a^2_{\text{int}}(X) = \frac{X \cdot Ha^0_{\text{int}}(0)X}{2}, \\
b^0_{\text{ext}}(X) &= b^0_{\text{ext}}(0) \quad \text{and} \quad b^0_{\text{int}}(X) = b^0_{\text{int}}(0).
\end{align*}
\]

S. Tordeux
Perforated and multiperforated plates in linear acoustic
The missing information for the near-field

The standard way to prove existence and uniqueness of solution in unbounded domains

- Lax-Milgram Theorem in weighted Sobolev spaces

Missing information

- The behaviors at infinity of the near-field are missing
- The problems do not uniquely define Π^0, Π^1, and Π^2.

Matching the asympt. exp. to get the missing information

In order to ensure the uniqueness of u^0, u^1, u^2, Π^0, Π^1, and Π^2 we derive additional matching conditions. We use the following procedure to obtain these extra conditions.

1. We consider the far-field approximation of order m written with $x = \delta X$

$$\sum_{i=0}^{m} \delta^i u^i(\delta X).$$

(7)

2. Then this sum is expanded up to $o(\delta^m)$. This defines the U^i_m in the X coordinates

$$\sum_{i=0}^{m} \delta^i u^i(\delta X) = \sum_{i=0}^{m} \delta^i U^i_m(X) + o(\delta^m).$$

(8)

3. The matching conditions are the following

$$\Pi^i - U^i_m = o\left(\frac{1}{R^{m-i}}\right) \quad \forall i \in \mathbb{Z}^+.$$

(9)
Using the **matching condition**, we get the problem defining u^0, λ^0, and Π^0.

Far-field. The function u^0 is an eigenfunction of the Dirichlet Laplace:

\[
\begin{cases}
 \text{Find } u^0 \in H^1(\Omega) \text{ such that } \\
 \nabla \cdot (a \nabla u^0) + \lambda^0 b u^0 = 0, & \text{in } \Omega, \\
 u^0 = 0, & \text{on } \partial \Omega.
\end{cases}
\] (10)

Due to Dirichlet conditions $\Pi^0 \equiv 0$.

S. Tordeux
Perforated and multiperforated plates in linear acoustic
The First Order Asymptotic Expansion

Using the **matching condition**, we get the problem defining u^1, λ^1, and Π^1.

Far-field.

\[
\begin{cases}
\text{Find } u^1 \in H^1(\Omega) \text{ and } \lambda^1 \in \mathbb{R} \text{ such that } \\
\nabla \cdot \left(a \nabla u^1 \right) + \lambda^0 b u^1 = -\lambda^1 b u^0, & \text{in } \Omega, \\
u^1 = 0, & \text{on } \partial \Omega.
\end{cases}
\] (11)

Note that u^1 is regular. Due to the Fredholm alternative, the second member has to be orthogonal to u^0

\[
\lambda^1 \int_{\Omega} b(x, y) \left(u^0(x, y) \right)^2 \, dx \, dy = 0.
\] (12)

We obtain $\lambda^1 = 0$.

The function u^1 is still defined up to its u^0-component, which is classical for eigenvalue problems. Then

\[
u^1 = \gamma u^0 \text{ in } \Omega_{int} \text{ and } u^1 = 0 \text{ in } \Omega_{ext}, \quad \text{with } \gamma \in \mathbb{R}.
\] (13)

We add the condition

\[
\int_{\Omega} b(x, y) u^1(x, y) u^0(x, y) \, dx \, dy = 0 \Rightarrow u^1 \equiv 0.
\]
The Second Order Asymptotic Expansion

The matching procedure leads to the following problem

\[
\begin{cases}
\text{Find } u^2 : \Omega \rightarrow \mathbb{R} \text{ and } \lambda^2 \in \mathbb{R} \text{ such that } \\
\quad \nabla \cdot (a \nabla u^2) + \lambda^0 \, b \, u^2 = -\lambda^2 \, b \, u^0, \text{ in } \Omega, \\
\quad u^2 = 0, \text{ on } \partial \Omega \setminus \{0\}. \\
\quad u^2_{\text{int}}(x) - \partial_x u^0_{\text{int}}(0) \frac{1}{8} \frac{a_{\text{int}}(0)}{a_{\text{int}}(0) + a_{\text{ext}}(0)} \frac{\sin(\theta)}{r} = O(r^{-1}), \\
\quad u^2_{\text{ext}}(x) + \partial_x u^0_{\text{int}}(0) \frac{1}{8} \frac{a_{\text{ext}}(0)}{a_{\text{int}}(0) + a_{\text{ext}}(0)} \frac{\sin(\theta)}{r} = O(r^{-1}),
\end{cases}
\] (14)

- Note that \(u^2 \) is singular \(u^2 \notin H^1(\Omega) \).
- Due to the singularity of \(u^2 \), the Fredholm alternative theory cannot be directly applied to obtain \(\lambda^2 \).

Proposition: The problem (14) has solutions. Moreover if \((u^2, \lambda^2)\) and \((u^*_2, \lambda^*_2)\) are solutions, one has

\[
\lambda^2 = \lambda^2_* = -\frac{\pi}{8} \frac{(a_{\text{int}}(0))^2}{a_{\text{int}}(0) + a_{\text{ext}}(0)} \frac{|\partial_x u^0_{\text{int}}(0)|^2}{\int_{\Omega} b(u^0)^2} \quad \text{and} \quad \exists \gamma \in \mathbb{R} : u^*_2 - u^2 = \gamma u^0.
\]
The Second Order Asymptotic Expansion

Sketch of proof: We introduce the auxiliary function ω^2

$$\omega_{int, ext}^2 = u_{int, ext}^2 - (1 - \chi(r)) \partial_x u_{int, ext}^0(0) \alpha_{int, ext} \frac{\sin(\theta)}{r} \in H^1(\Omega_{int, ext}), \quad (15)$$

with χ the regular cut-off function:

![Cut-off function graph](image)

Applying Fredholm alternative to ω^2 which is regular, we obtain λ^2.
Asymptotic Expansion of the Eigenvalues

Theorem:

Let λ^0 be a simple eigenvalue of Ω. For all $\delta > 0$, there exists an eigenvalue λ^δ of the Dirichlet laplacian in Ω^δ, see (8), satisfying

$$\left| \lambda^\delta - (\lambda^0 + \delta^2 \lambda^2) \right| \leq C \delta^3 |\ln(\delta)| \quad (16)$$

with λ^2 given by

$$\begin{cases}
\lambda^2 = -\frac{\pi}{8} \frac{(a_{int}(0))^2}{a_{int}(0) + a_{ext}(0)} \frac{|\partial_x u^0_{int}(0)|^2}{\int_\Omega b(u^0)^2}, & \text{if } u^0_{ext} = 0, \\
\lambda^2 = -\frac{\pi}{8} \frac{(a_{ext}(0))^2}{a_{int}(0) + a_{ext}(0)} \frac{|\partial_x u^0_{ext}(0)|^2}{\int_\Omega b(u^0)^2}, & \text{if } u^0_{int} = 0.
\end{cases} \quad (17)$$

Generalization of the result of Gadyl’shin (92) that has looked to the case of constant coefficients.
Do we have missed some eigenvalues?

The last result reveals:

- There exists a λ_n^{δ} in a small neighborhood of each λ_n
- $0 < \lambda_{\sigma(n)}^{\delta} \leq \lambda_n$ for δ small enough.

Some questions

- only one λ_n^{δ} in the neighborhood of λ_n?
- other λ_n^{δ}?
Do we have missed some eigenvalues?

The last result reveals:

- There exists a λ_δ^δ in a small neighborhood of each λ_n
- $0 < \lambda_\sigma^\delta(n) \leq \lambda_n$ for δ small enough

Some answers (with min-max)

- only one λ_δ^δ in the neighborhood of λ_n? no.
- other λ_δ^δ? no.
Let Ω^δ be the domain defined by the following figure with

$$\Omega_{int} =]-2, 0[\times]-2.5, 1.5[\quad \text{and} \quad \Omega_{ext} =]0, 2.5[\times]-1.5, 1[. \quad (18)$$

A computational mesh.

We recall that the eigenmodes of the limit problem in a domain $[0, a] \times [0, b]$ are

$$\lambda_{nm} = \pi \sqrt{\frac{n^2}{a^2} + \frac{m^2}{b^2}}, \quad U_{nm}(x, y) = \sin \left(\frac{n\pi}{a} x\right) \sin \left(\frac{m\pi}{b} y\right). \quad (19)$$
The λ_n^2, δ are numerically computed

The λ_n and λ_n^2 are analytically computed

<table>
<thead>
<tr>
<th>n</th>
<th>λ_n</th>
<th>λ_n^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.38</td>
<td>−0.087</td>
</tr>
<tr>
<td>1</td>
<td>3.08</td>
<td>−0.207</td>
</tr>
<tr>
<td>2</td>
<td>4.80</td>
<td>−0.135</td>
</tr>
<tr>
<td>3</td>
<td>4.93</td>
<td>−0.121</td>
</tr>
<tr>
<td>4</td>
<td>7.12</td>
<td>−0.347</td>
</tr>
<tr>
<td>5</td>
<td>8.02</td>
<td>−0.036</td>
</tr>
</tbody>
</table>
The Relative Errors

\[|\lambda^n_0 - \lambda^n_{0,\delta}| / \lambda^n_0 \]

\[n = 0 \]

\[|\lambda^n_2 - \lambda^n_{2,\delta}| / \lambda^n_2 \]

\[n = 2 \]

\[|\lambda^n_4 - \lambda^n_{4,\delta}| / \lambda^n_4 \]

\[n = 4 \]

\[|\lambda^n_1 - \lambda^n_{1,\delta}| / \lambda^n_1 \]

\[n = 1 \]

\[|\lambda^n_3 - \lambda^n_{3,\delta}| / \lambda^n_3 \]

\[n = 3 \]

\[|\lambda^n_5 - \lambda^n_{5,\delta}| / \lambda^n_5 \]

\[n = 5 \]

S. Tordeux

Perforated and multiperforated plates in linear acoustic
Second experiment

With continuous varying coefficients

\[
\begin{align*}
 a(x, y) &= 2 - \cos(x) \sin(y) \\
 b(x, y) &= 3 + \cos(x + y)
\end{align*}
\]
Third experiment

With **discontinuous constant coefficients**

\[
\begin{aligned}
a|_{\Omega_{\text{ext}}} &= 2, & a|_{\Omega_{\text{int}}} &= 1, \\
b|_{\Omega_{\text{ext}}} &= 0.5, & b|_{\Omega_{\text{int}}} &= 1,
\end{aligned}
\]
Part II

Neumann boundary condition in 3D

with Bendali (IMT), Fares (Cerfacs), Tizaoui (IMT)
The model problem

The problem:

Find \(u_\delta^n \in H^1(\Omega^\delta) \) and \(\lambda_\delta^n \in \mathbb{R} \) such that

\[
\begin{align*}
- \nabla \cdot (a \nabla u_\delta^n) &= \lambda_\delta^n b u_\delta^n \text{ in } \Omega^\delta, \\
\partial_n u_\delta^n &= 0 \text{ on } \partial \Omega^\delta,
\end{align*}
\]

with \(a \) and \(b \) two regular positive functions with two sides

\(a|_{\Omega_{\text{int}}(0)} \neq a|_{\Omega_{\text{ext}}(0)} \) and \(b|_{\Omega_{\text{int}}(0)} \neq b|_{\Omega_{\text{ext}}(0)} \)

- The small parameter \(\delta > 0 \) is the diameter of the hole.
- The hole is autosimilar \(\Sigma_\delta = \delta \Sigma \).
The limit problem:

The problem:

Find \(u_n \in H^1(\Omega) \) et \(\lambda_n \in \mathbb{R} \) such that

\[
\begin{align*}
-\nabla \cdot (a \nabla u_n) &= \lambda_n b u_n \text{ in } \Omega, \\
\partial_n u_n &= 0 \text{ on } \partial \Omega,
\end{align*}
\]

- The limit corresponds to \(\delta = 0 \)
- The first eigenvalue is 0 and has multiplicity 2.
- \textbf{no hypothesis on the multiplicity}
Classical theory of eigenvalue problems

The λ_n and λ_δ are countable:

\[
\begin{cases}
0 = \lambda_\delta^1 < \lambda_\delta^2 \leq \lambda_\delta^3 \leq \cdots \leq \lambda_\delta^{n-1} \leq \lambda_\delta^n
\rightarrow +\infty \\
0 = \lambda_1 = \lambda_2 < \lambda_3 \leq \cdots \leq \lambda_{n-1} \leq \lambda_n
\rightarrow +\infty
\end{cases}
\]

The min-max principle:

\[\lambda_\delta^\delta \geq \lambda_n \quad \forall \delta > 0 \quad \forall n \in \mathbb{N}\]

Some natural questions:

\[\lambda_\delta^n \rightarrow \lambda_n ?\]

Could we derive an efficient method to compute the λ_δ^n without local mesh refinement?
The expansion of the eigenvalues

- The first order expansion reads
 \[\lambda^\delta = \lambda^0 + \delta \lambda^1 + o(\delta). \]

- The coefficients \(\lambda^i \in \mathbb{R} \) are independent of \(\delta \).

- Logarithmic gauge function at order 2
 \[\lambda^\delta = \lambda^0 + \delta \lambda^1 + \delta^2 \lambda^{2,0} + \delta^2 \ln \delta \lambda^{2,1} + o(\delta^2). \]

- Very surprising in 3D (variable coefficients)
The far-field expansion

\[u^\delta = u^0 + \delta u^1 + o(\delta) \]

The coefficients \(u^i \) are
- defined on the limit domain \(\Omega \)
- independent of \(\delta \)
The far-field coefficients

The coefficients are solution of

\[
\begin{align*}
\text{Find } u^0 : \Omega &\rightarrow \mathbb{R} \text{ and } \lambda^0 \in \mathbb{R} \text{ such that } \\
\nabla \cdot (a \nabla u^0) + \lambda^0 b u^0 &= 0 \text{ in } \Omega, \\
\partial_n u^0 &= 0 \text{ on } \partial \Omega \setminus \{0\}.
\end{align*}
\]

\[
\begin{align*}
\text{Find } u^1 : \Omega &\rightarrow \mathbb{R} \text{ and } \lambda^1 \in \mathbb{R} \text{ such that } \\
\nabla \cdot (a \nabla u^1) + \lambda^0 b u^1 &= -\lambda^1 b u^0 \text{ in } \Omega, \\
\partial_n u^1 &= 0 \text{ on } \partial \Omega \setminus \{0\}.
\end{align*}
\]

- The \(u^i \) can be singular at 0.
- The missing information: the behavior of \(u^i \) at 0.
The near-field expansion

The first order expansion:

\[\Pi^\delta(X) = u^\delta(X\delta) \quad \text{and} \quad \Pi^\delta = \Pi^0 + \delta \Pi^{1,0} + \delta \ln \delta \Pi^{1,1} + o(\delta) \]

The coefficients \(\Pi^i \) are

- defined on the limit domain \(\hat{\Omega} \)
- independent of \(\delta \)
The near-field coefficients

Find $\Pi^0 \in H^1_{\text{loc}}(\hat{\Omega})$ such that
\[
\nabla \cdot (a_0 \nabla \Pi^0) = 0 \text{ in } \hat{\Omega},
\]
\[
\partial_n \Pi^0 = 0 \text{ on } \partial \hat{\Omega}.
\]

Find $\Pi^1 \in H^1_{\text{loc}}(\hat{\Omega})$ such that
\[
\nabla \cdot (a_0 \nabla \Pi^1) = -\nabla \cdot (a_1 \nabla \Pi^0) \text{ in } \hat{\Omega},
\]
\[
\partial_n \Pi^1 = 0 \text{ on } \partial \hat{\Omega}.
\]

- a_0 and a_1 are functions with two sides
 \[
 a_0|_{\hat{\Omega}_{\text{int}}} (X) = a|_{\Omega_{\text{int}}}(0)
 \]
 \[
 a_0|_{\hat{\Omega}_{\text{ext}}} (X) = a|_{\Omega_{\text{ext}}}(0),
 \]
 \[
 a_1|_{\hat{\Omega}_{\text{int}}} (X) = \nabla a|_{\Omega_{\text{int}}}(0) \cdot X,
 \]
 \[
 a_1|_{\hat{\Omega}_{\text{ext}}} (X) = \nabla a|_{\Omega_{\text{ext}}}(0) \cdot X.
 \]

- The behavior at $+\infty$ are missing.
The limit coefficients

The far-field limit

\[\begin{cases} \text{Find } u^0 \in H^1(\Omega) \text{ and } \lambda^0 \in \mathbb{R} \text{ such that} \\ \nabla \cdot (a \nabla u^0) + \lambda^0 b u^0 = 0 \text{ in } \Omega, \\ \partial_n u^0 = 0 \text{ on } \partial \Omega \setminus \{0\}. \end{cases} \]

To simplify simple eigenvalue and \(u^0|_{\Omega_{\text{ext}}} = 0 \).

The near field limit

\[\begin{cases} \Pi^0 \in H^1_{\text{loc}}(\hat{\Omega}) \text{ such that} \\ \nabla \cdot (a_0 \nabla \Pi^0) = 0 \text{ in } \hat{\Omega}, \\ \partial_n \Pi^0 = 0 \text{ on } \partial \hat{\Omega}, \\ \Pi^0|_{\Omega_{\text{int}}(X)} = u^0|_{\Omega_{\text{int}}(0)} + o(1), \\ \Pi^0|_{\Omega_{\text{ext}}(X)} = o(1). \end{cases} \]

\[\text{A laplacian with two sides} \]
The limit coefficients

Solution of the near-field problem

- The coefficient a_0 is piecewise constant. We can use a boundary element formulation.
- By linearity, the problem can be put in a canonical form

\[
\begin{cases}
\text{Find } \Pi^* \in H^1_{\text{loc}}(\hat{\Omega}) \text{ such that } \\
\quad \nabla \cdot (a_0 \nabla \Pi^*) = 0 \text{ in } \hat{\Omega}, \\
\quad \partial_n \Pi^* = 0 \text{ on } \partial \hat{\Omega}, \\
\quad \Pi^*|_{\hat{\Omega}_{\text{int}}(X)} = 1 + o(1), \\
\quad \Pi^*|_{\hat{\Omega}_{\text{ext}}(X)} = o(1), \\
\end{cases}
\]

- **Outgoing fields** are identified

\[
\Pi^*|_{\hat{\Omega}_{\text{int}}} = 1 + \Pi^*|_{\hat{\Omega}_{\text{int}}} \text{ and } \Pi^*|_{\hat{\Omega}_{\text{ext}}} = \Pi^*|_{\hat{\Omega}_{\text{ext}}}
\]
The limit coefficients

Solution of the near field problem

\[
\begin{aligned}
\Delta \Pi^*_{\text{out}} &= 0 \quad \text{in } \hat{\Omega}_{\text{int}}, \\
\Delta \Pi^*_{\text{out}} &= 0 \quad \text{in } \hat{\Omega}_{\text{int}}, \\
\partial_n \Pi^*_{\text{out}} &= 0 \quad \text{on } \partial \hat{\Omega}.
\end{aligned}
\]

Integral representation in \(\hat{\Omega}_{\text{int}} \) and in \(\hat{\Omega}_{\text{ext}} \) (image principle)

\[
\begin{aligned}
\Pi^*_{\text{out}} &= -2S \frac{\partial \Pi^*}{\partial z} \bigg|_{\Sigma_{\text{int}}} \quad \iff \quad \Pi^* = 1 - 2S \frac{\partial \Pi^*}{\partial z} \bigg|_{\Sigma_{\text{int}}}, \\
\Pi^*_{\text{out}} &= 2S \frac{\partial \Pi^*}{\partial z} \bigg|_{\Sigma_{\text{ext}}} \quad \iff \quad \Pi^* = 2S \frac{\partial \Pi^*}{\partial z} \bigg|_{\Sigma_{\text{ext}}}.
\end{aligned}
\]

with \(S \) the simple layer operator

\[
S : (H^1_2(\Sigma))^* \mapsto H^1_2(\Sigma), \quad \lambda \mapsto S\lambda(X) = \frac{1}{4\pi} \int_{\Sigma} \frac{\lambda(X')}{\|X - X'\|} dX'.
\]
The limit coefficients

Solution of the near-field problem

transmission condition through Σ

$$\Pi^*|_{\Sigma_{\text{int}}} = \Pi^*|_{\Sigma_{\text{ext}}} \text{ and } a|_{\Omega_{\text{int}}(0)} \partial_z \Pi^*|_{\Sigma_{\text{int}}} = a|_{\Omega_{\text{ext}}(0)} \partial_z \Pi^*|_{\Sigma_{\text{ext}}}$$

\implies obtention of the unknown potential λ^*

$$\partial_z \Pi^*|_{\Sigma_{\text{int}}} = -\frac{a|_{\Omega_{\text{ext}}(0)}}{a|_{\Omega_{\text{ext}}(0)} + a|_{\Omega_{\text{int}}(0)}} \frac{\lambda^*}{2}$$

$$\partial_z \Pi^*|_{\Sigma_{\text{ext}}} = -\frac{a|_{\Omega_{\text{int}}(0)}}{a|_{\Omega_{\text{int}}(0)} + a|_{\Omega_{\text{ext}}(0)}} \frac{\lambda^*}{2}.$$
The limit coefficients

The near-field Π^* is given by an integral representation

$$
\Pi^* = \begin{cases}
1 - \frac{a|\Omega_{\text{ext}}(0)}{a|\Omega_{\text{ext}}(0) + a|\Omega_{\text{int}}(0)} \left(\frac{1}{4\pi} \int_\Sigma \frac{\lambda^*(X')}{||X - X'||} dX' \right) & \text{in } \hat{\Omega}_{\text{int}}, \\
+ \frac{a|\Omega_{\text{int}}(0)}{a|\Omega_{\text{ext}}(0) + a|\Omega_{\text{int}}(0)} \left(\frac{1}{4\pi} \int_\Sigma \frac{\lambda^*(X')}{||X - X'||} dX' \right) & \text{in } \hat{\Omega}_{\text{ext}}.
\end{cases}
$$

Behavior at infinity

$$
\Pi^*|_{\hat{\Omega}_{\text{int}}}(X) = 1 - \frac{a|\Omega_{\text{ext}}(0)}{a|\Omega_{\text{ext}}(0) + a|\Omega_{\text{int}}(0)} \frac{\alpha}{||X||}
$$

$$
\Pi^*|_{\hat{\Omega}_{\text{ext}}}(X) = \frac{a|\Omega_{\text{int}}(0)}{a|\Omega_{\text{ext}}(0) + a|\Omega_{\text{int}}(0)} \frac{\alpha}{||X||}
$$

with $\alpha = \frac{1}{4\pi} \int_\Sigma \lambda^*(X') dX'$.

When Σ is a circle with radius ρ, $\alpha = \frac{2}{\pi} \rho$.

In classical theory of acoustic, $\alpha \delta$ is the effective size of the hole.
Approximation of the effective size of the hole $\alpha \delta$

- The computation of a numerical approximation of α requires a boundary element code.
- Approximation of the effective size by the of the effective size of the circle with same area

$$\alpha_{\text{app}} \delta = \frac{2}{\pi} \sqrt{\frac{A}{\pi}}$$ with A the area of the hole.

- The error is small for not too elongated structure.

![Graphs showing the error in effective size approximation](image)
The first order coefficients

First order far-field

Find $u_n^1 : \Omega \rightarrow \mathbb{R}$,

\[\nabla \cdot (a \nabla u_n^1) + \lambda_n b u_n^1 = -\lambda_n^1 b u_n \text{ in } \Omega, \]

\[\partial_n u_n^1 = 0 \text{ on } \partial \Omega \setminus \{0\}, \]

\[u_n^1 + \frac{a_{\mid \Omega_{\text{ext}}(0)}}{a_{\mid \Omega_{\text{int}}(0)} + a_{\mid \Omega_{\text{ext}}(0)}} u_n_{\mid \Omega_{\text{int}}(0)} \frac{1}{\|x\|} \in H^1(\Omega_{\text{int}}), \]

\[u_n^1 - \frac{a_{\mid \Omega_{\text{int}}(0)}}{a_{\mid \Omega_{\text{int}}(0)} + a_{\mid \Omega_{\text{ext}}(0)}} u_n_{\mid \Omega_{\text{int}}(0)} \frac{1}{\|x\|} \in H^1(\Omega_{\text{ext}}), \]

We can apply the Fredholm alternative

\[v = u_n^1 + \frac{a_{\mid \Omega_{\text{ext}}(0)}}{a_{\mid \Omega_{\text{int}}(0)} + a_{\mid \Omega_{\text{ext}}(0)}} u_n_{\mid \Omega_{\text{int}}(0)} \frac{1}{\|x\|} \in H^1(\Omega_{\text{ext}}). \]
The first order coefficients

The coefficient u_n^1 exists and is uniquely defined modulo u_n and

$$\lambda_n^1 = 2 \pi \alpha \frac{a|_{\Omega_{\text{int}}}(0)a|_{\Omega_{\text{ext}}}(0)}{a|_{\Omega_{\text{int}}}(0) + a|_{\Omega_{\text{ext}}}(0)} \frac{(\bar{u}_n(0))^2}{\int_{\Omega} b(u_n)^2}.$$

Asymptotic expansion in the neighborhood of 0 of u_n^1 (**Kondratiev theory**)

$$u_n^1|_{\Omega_{\text{int}}}(x) = -\frac{a|_{\Omega_{\text{ext}}}(0) \alpha}{a|_{\Omega_{\text{int}}}(0) + a|_{\Omega_{\text{ext}}}(0)} u_n|_{\Omega_{\text{int}}}(0) \left(\frac{1}{r} - \frac{s_n^1(x)}{2} + r_n^1(x)\right), \quad (20)$$

with

$$s_n^1|_{\Omega_{\text{int}}}(x) = \frac{\nabla a|_{\Omega_{\text{int}}}(0)}{a|_{\Omega_{\text{int}}}(0)} \cdot \frac{x}{||x||} + \frac{\partial z a|_{\Omega_{\text{int}}}(0)}{a|_{\Omega_{\text{int}}}(0)} \ln \left(\frac{||x|| - z}{2}\right)$$

and $r_n^1 : \Omega_{\text{int}} \rightarrow \mathbb{R}$ a continuous function.

For the first order near field coefficient, it becomes much more complicated!
The main results

Theorem: simple eigenvalue

If λ_n is an eigenvalue with multiplicity 1 of the limit problem, then λ_δ^n can be expanded with the form

$$\lambda_\delta^n = \lambda_n + 2 \pi \frac{a|_{\Omega_{\text{int}}(0)}a|_{\Omega_{\text{ext}}(0)}}{a|_{\Omega_{\text{int}}(0)} + a|_{\Omega_{\text{ext}}(0)}} \frac{(\bar{u}_n(0))^2}{\int_{\Omega} b(u_n)^2} \alpha \delta + O(\delta^2 \ln \delta),$$

with α a coefficient only dependent of the form of the hole and with the convention

$$\bar{u}(0) = u|_{\Omega_{\text{ext}}(0)} \quad \text{if } u|_{\Omega_{\text{int}}} = 0,$$

$$\bar{u}(0) = u|_{\Omega_{\text{int}}(0)} \quad \text{if } u|_{\Omega_{\text{ext}}} = 0.$$

All these quantities do not require any mesh refinement.
The main result

Theorem: multiple eigenvalue

If λ_n is an eigenvalue of the limit problem with multiplicity $N + 1$ ($\lambda_n = \cdots = \lambda_{n+N}$), then

\[
\begin{align*}
\lambda_\delta &= \lambda_n + O(\delta^2), \\
\lambda_{\delta,n+1} &= \lambda_n + O(\delta^2), \\
\lambda_{\delta,n+N-1} &= \lambda_n + O(\delta^2), \\
\lambda_{\delta,n+N} &= \lambda_n + 2\pi \frac{a_{\Omega_{\text{int}}}(0) a_{\Omega_{\text{ext}}}(0)}{a_{\Omega_{\text{int}}}(0) + a_{\Omega_{\text{ext}}}(0)} \sum_{p=0}^{N} \left(\bar{u}_{n+p}(0) \right)^2 \alpha \delta + O(\delta^2 \ln \delta),
\end{align*}
\]

with α a coefficient only dependent of the form of the hole.
Numerical simulations

- Two series of simulations with two geometries and two sets of functions a and b
- 10 values for δ from 10^{-2} to 1

 $$\delta = 10^{-\frac{n}{5}} \text{ with } n = 0, \cdots, 10$$

- **computation code**: a mesher and a parallel code from CERFACS
 - **Altair Hypermesh**:
 - **CESC**: (Fares and Bendali)
 - 3D P_1-finite elements.
 - 3D P_1-boundary elements.
 - **ARPACK**: eigenvalue solver (Sorensen and al.)
- Computation of λ_n^δ with mesh refinement ($\#dof \simeq 4 \times 10^6$)
- Computation of the λ_n without mesh refinement
First experiment

The classical laplacian

\[a = 1 \quad \text{and} \quad b = 1. \] \hspace{1cm} (21)

Definition of the computational domain: two straight cavities

\[\Omega_{\text{int}} = \left[-\frac{\ell^\text{int}_x}{2}, \frac{\ell^\text{int}_x}{2} \right] \times \left[-\frac{\ell_y}{3}, \frac{2\ell_y}{3} \right] \times [0, \ell_z], \]
\[\Omega_{\text{ext}} = \left[-\frac{\ell^\text{ext}_x}{4}, \frac{3\ell^\text{ext}_x}{4} \right] \times \left[-\frac{\ell_y}{3}, \frac{2\ell_y}{3} \right] \times [0, \ell_z]. \]

with \(\ell^\text{int}_x = .6, \ell^\text{ext}_x = 1., \ell_y = .8, \ell_z = .3. \)

The hole \(\Sigma \): the polygon linking the points

points \(A = (0, 0), B = (0, .1), \)
\(C = (-.08, .1), D = (-.08, -.08), \)
\(E = (.1, -.08) \) and \(F = (.1, 0) \)

\[\alpha = 0.0578 \]
The geometry

- Dirichlet condition in 2D
- Neumann condition in 3D
- Multiperforated boundary in 3D
- Definition of the asymptotic expansions
- Error estimates
- Numerical simulations

S. Tordeux
Perforated and multiperforated plates in linear acoustic
The first results

<table>
<thead>
<tr>
<th>n</th>
<th>λ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9.87</td>
</tr>
<tr>
<td>4</td>
<td>15.4</td>
</tr>
<tr>
<td>5</td>
<td>15.4</td>
</tr>
</tbody>
</table>

$\lambda_n + \delta \lambda^1_n$

λ_n^δ

λ_n

λ_n and λ_n^δ for different values of n. The table shows the values of λ_n for $n = 1, 2, 3, 4, 5$. The graph illustrates the asymptotic expansions for $n = 1, 2, 3, 4, 5$. The equation $\lambda_n + \delta \lambda^1_n$ is plotted for each n. The graph also shows the difference between λ_n and λ_n^δ. The table and graph are used to analyze the behavior of the asymptotic expansions for different values of n. The results are obtained through numerical simulations.
The relative errors

First eigenvalues

The eigenvector 1 has multiplicity 2 for the limit problem
\[\lambda_1 = \lambda_2 = 0. \]
and multiplicity 1 for the model problem
\[\lambda_1^\delta = \lambda_1 = 0 \]
The relative errors

The relative errors for the first eigenvalues

- $\lambda_3^{\delta} - \lambda_3^{1,\delta} / \lambda_3$
 - $1 - 10^{-1}$
 - 10^{-2}
 - 10^{-3}
 - 10^{-4}
 - 10^{-5}
 - 10^{-6}
 - δ

- $\lambda_4^{\delta} - \lambda_4^{1,\delta} / \lambda_4$
 - $1 - 10^{-1}$
 - 10^{-2}
 - 10^{-3}
 - 10^{-4}
 - 10^{-5}
 - 10^{-6}
 - δ

- $\lambda_5^{\delta} - \lambda_5^{1,\delta} / \lambda_5$
 - $1 - 10^{-1}$
 - 10^{-2}
 - 10^{-3}
 - 10^{-4}
 - 10^{-5}
 - δ

Simple eigenvalue $\lambda_3 = 9.87$

Double eigenvalue $\lambda_4 = \lambda_5 = 15.4$

Accuracy problem of the solver.
Second experiment

A laplacian with two sides

\[a|_{\Omega_{\text{int}}} = 2, \quad a|_{\Omega_{\text{ext}}} = 1, \quad b|_{\Omega_{\text{int}}} = 1, \quad b|_{\Omega_{\text{ext}}} = 2. \]

The computational domain: a straight cavity and a pyramid

\[\Omega_{\text{int}} = \left[-\frac{\ell_x}{4}, \frac{3\ell_x}{4} \right] \times \left[-\frac{\ell_y}{3}, \frac{2\ell_y}{3} \right] \times \ell_z, 0[, \]

\[\Omega_{\text{ext}} = \text{simplex}(A, B, C, D, E). \]

with

- \(\ell_x = 1, \ell_y = 0.8, \ell_z = 0.3. \)
- \(A = (0.3, -0.4, 0), \quad B = (-0.7, -0.4, 0), \)
 \(\quad C = (-0.5, 0.2, 0) \) and \(D = (0.3, 0.2, 0) \) et
 \(\quad E = (0.1, 0.1, 0.7). \)

The hole \(\Sigma \): a circle with radius \(0.1. \)

\[\alpha = 0.0636 \]
The geometry
First results

<table>
<thead>
<tr>
<th>n</th>
<th>λ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9.24</td>
</tr>
<tr>
<td>4</td>
<td>16.7</td>
</tr>
<tr>
<td>5</td>
<td>19.7</td>
</tr>
</tbody>
</table>

\[\lambda_n + \delta \lambda_n^1 \]

\[\lambda_n^\delta \]

\[\lambda_n \]
The relative errors

The relative errors for the double eigenvalue

The eigenvector 1 has multiplicity 2 for the limit problem

$$\lambda_1 = \lambda_2 = 0.$$

1 is also an eigenvector for the model problem

$$\lambda_1^\delta = \lambda_1 = 0$$

$$\lambda_2 = 0$$
The relative errors

The relative errors for the simple eigenvalues

\[|\lambda_3^\delta - \lambda_3^{1,\delta}|/\lambda_3 \]
\[|\lambda_4^\delta - \lambda_4^{1,\delta}|/\lambda_4 \]
\[|\lambda_5^\delta - \lambda_5^{1,\delta}|/\lambda_5 \]

\[\lambda_3 = 9.24 \]
\[\lambda_4 = 16.7 \]
\[\lambda_5 = 19.7 \]

Accuracy problem of the solver.
Part III

Multiperforated plates in 3D

with A. Bendali (IMT), M. Fares (Cerfacs), S. Laurens (IMT)
The propagation domain

A wave guide with rectangular section

Reproduce the test bench B2A of ONERA (collaboration with Franck Simon and Estelle Piot) $h_2 = 5cm$ et $h_3 = 5cm$
The geometry of the multiperforated plate

Perforations with radius \(\delta \) and spacing de \(\eta = (\eta_1, \eta_2) \)

\[
\chi_{m,n} = \left(0, \frac{\eta_2}{2}, \frac{\eta_3}{2}\right) + \left(0, (m + \alpha n)\eta_2, n\eta_3\right) \tag{22}
\]

\(\alpha = 0 \): straight grating (left); \(\alpha \in]0, 1[\): inclined grating (right)

Perforation with similar size to the real perforation of SNECMA

\(\eta_2 = \eta_3 = 5\, mm \) et \(\delta = .5\, mm \)
The model problem in time domain

Wave equation for the pressure

\[
\frac{\partial^2 p^{\eta,\delta}}{\partial t^2}(x, t) - c^2 \Delta p^{\eta,\delta}(x, t) = 0 \quad \text{in } \Omega^{\eta,\delta}
\] \hspace{1cm} (23)

The fluid velocity field \(\mathbf{v} \) satisfies

\[
\rho \frac{\partial \mathbf{v}^{\eta,\delta}}{\partial t}(x, t) + \nabla p^{\eta,\delta}(x, t) = 0
\] \hspace{1cm} (24)

Rigid wall boundary condition

\[
\mathbf{v}^{\eta,\delta} \cdot \mathbf{n} = 0
\] \hspace{1cm} (25)

with \(\mathbf{n} \) the outgoing normal
A Helmholtz problem

Harmonic regime (wave number $k = \frac{\omega}{c}$)

$p^{\eta,\delta}(\mathbf{x}, t) = p^{\eta,\delta}(\mathbf{x}) \exp(-i\omega t)$ and $\mathbf{v}^{\eta,\delta}(\mathbf{x}, t) = \mathbf{v}^{\eta,\delta}(\mathbf{x}) \exp(-i\omega t)$.

Helmholtz equation for pressure

$$\begin{cases}
\Delta p^{\eta,\delta}(\mathbf{x}) + k^2 p^{\eta,\delta}(\mathbf{x}) = 0 \quad \text{in } \Omega^{\eta,\delta}, \\
\frac{\partial p^{\eta,\delta}}{\partial n}(\mathbf{x}) = 0 \quad \text{on } \partial \Omega^{\eta,\delta}.
\end{cases}$$

The velocity field can be obtained by

$$-i\omega \rho \mathbf{v}^{\eta,\delta}(\mathbf{x}) + \nabla p^{\eta,\delta}(\mathbf{x}) = 0$$

Outgoing wave equation

$$u^{\eta,\delta}(\mathbf{x}) = \exp(ikx_1) + \text{outgoing}.$$
The approximate model

This model is based on the hypothesis

1. The holes are isolated $\delta \ll \eta$ (no hole-hole interaction);
2. The wave length λ is much bigger than the characteristic lengths of the holes
3. The linear acoustic is a valid model in the vicinity of the perforations (no aeroacoustic effect and no viscous effect).

$$\lambda >> \eta >> \delta$$ (26)

This model can be entirely justified by a rigorous asymptotic analysis
The Rayleigh coefficient

local quantity: ratio **flux of fluid** through one perforation / **pressure jump**

\[i \omega \rho \phi = K_R (p_+ - p_-). \]

\(K_R \) is rigorously defined via the solution of an unbounded problem

\[
\begin{cases}
\Delta p^\delta = 0 & \text{dans } \Omega^\delta, \\
\partial_n p^\delta = 0 & \text{sur } \partial \Omega^\delta, \\
p^\delta = p_+ + o \left(\frac{1}{\|x\|} \right) & \text{pour } x_1 > 0, \\
p^\delta = p_- + o \left(\frac{1}{\|x\|} \right) & \text{pour } x_1 < 0,
\end{cases}
\]

Rayleigh Coefficient

\[
K_R = \frac{\int_{x_2^2 + x_3^2 \leq \delta} \partial_1 p(0, x_2, x_3) \, dx_2 \, dx_3}{p_+ - p_-} = 2\delta.
\]
homogenized wall condition

- The flux is distributed over one cell with area $A = \eta_1 \eta_2$

 $$\mathbf{v}_1^+ = \mathbf{v}_1^- = \frac{\Phi}{A} \text{ en } x = 0.$$

- Translation in term of pressure

 $$
 \frac{\partial p^+}{\partial x_1} = \frac{\partial p^-}{\partial x_1} = \frac{K_R}{A} \left(p^+ - p^- \right) \text{ en } x = 0.
 $$

1D Problem \implies analytical resolution

$$
\begin{cases}
 p(x) = \exp(ikx_1) + R \exp(-ikx_1) \quad \text{pour } x_1 < 0, \\
 p(x) = T \exp(ikx_1) \quad \text{pour } x_1 > 0.
\end{cases}
$$
Direct numerical solution

Boundary element method:

- Refined mesh in the neighborhood of one hole

Full matrix $\#dof \simeq 1.6 \times 10^5$
Direct numerical solution

Boundary element method:

- Refined mesh in the neighborhood of one hole

- Full matrix $\text{#dof} \simeq 1.6 \times 10^5$
Direct numerical solution

Boundary element method:

- Refined mesh in the neighborhood of one hole
- Full matrix $\#dof \simeq 1.6 \times 10^5$
Validation of the approximate model: straight grating

Comparison of the modules of the reflexion coefficients (direct computation and approximate model)
Validation of the approximate model: straight grating

Comparison of the phases of the reflected wave

\[\phi(R) \]

frequence \(s^{-1} \)

S. Tordeux
Perforated and multiperforated plates in linear acoustic
Validation of the approximate model: the inclined grating

Comparison of the modules of the reflection coefficients (direct computation and approximate model)
Validation du modèle approché : cas incliné

\[\phi(R) \]

Comparison of the phases of the reflected wave

Frequency \(s^{-1} \)
Conclusion

Main results: an approximation of eigenvalues with

- A theoretical background
- No mesh refinement required

Some publications:

- Bendali, Huard, Tizaoui, Tordeux and Vila, CRAS (2010)
- Bendali, Fares, Tizaoui, Tordeux, CICP (2011)
- Bendali, Fares, Laurens, Tordeux, submitted

Acknowledgment: This work has been supported by the French National Agency (ANR) in the frame of its programm Systèmes Complexes et Modélisation: project APAM (Acoustique et Paroi Multi-perforée).
Thank you!