Molecular dynamics at constant pH: theory and application of the stochastic titration method

António M. Baptista

Molecular Simulation Lab
Instituto de Tecnologia Química e Biológica
Universidade Nova de Lisboa
Portugal
Motivation: lack of thermodynamic parameters in MD simulations

- External thermodynamic parameters:
 - In standard molecular mechanics/dynamics (MM/MD):
 - Temperature
 - Pressure
 - Relevant for (redox) proteins and other biomolecules:
 - Temperature
 - Pressure
 - pH

- Thus, we need an MD method that includes the effect of the pH of the solution.
Addressing protonation with standard methods
Classical Hamiltonians for protein electrostatics

- Molecular mechanics (MM) Hamiltonians.
 - Atomic-level model of solute.
 - Atomic-level model of solvent.
 - Used to sample solute and solvent configurations by molecular dynamics (MD) simulations.

- Electrostatics-oriented simplified Hamiltonians.
 - Atomic-level model of solute.
 - Simplified model of solvent:
 - Poisson–Boltzmann (PB)
 - generalized Born
 - grid of dipoles (PDLD)
 - Used to sample protonation states by Monte Carlo simulations or other approximate methods (total or partial mean field, etc)

- These two approaches address protonation differently.
Molecular mechanics/molecular dynamics (MM/MD) approach

- A single “typical” protonation state is chosen for the solute.

- Energetics of that protonation state is described with a MM model:

 \[E_{\text{pot}} = \sum_{\text{bonds}} K_b (b - b_0)^2 + \sum_{\text{angles}} K_a (\theta - \theta_0)^2 + \sum_{\text{torsions}} K_t (1 \pm \cos n\phi) \]

 \[+ \sum_{\text{pairs}} \frac{q_i q_j}{r_{ij}} + \sum_{\text{pairs}} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^6} \right) + \cdots \]

- Configurations of solute and solvent are sampled using molecular dynamics (MD) simulations:

 \[\cdots \rightarrow \quad \rightarrow \quad \rightarrow \cdots \]

 \(\bullet/\circ = \text{site protonated/deprotonated} \)
• The MM/MD stochastic operator (matrix) \mathcal{M} conserves $\rho(q, p, \bar{q}, \bar{p}|n)$:

$$\mathcal{M}\rho(q, p, \bar{q}, \bar{p}|n) = \rho(q, p, \bar{q}, \bar{p}|n)$$

where

- **solute** configuration: (q, p)
- **solvent** configuration: (\bar{q}, \bar{p})
- protonation state: $n = (n_1, n_2, \ldots), n_i = 0$ or 1 (deprot. or prot.)

• Protonation/deprotonation processes can be treated with MM/MD free energy methods, but these are slow and may have problems with the treatment of long-range electrostatics.
Poisson–Boltzmann/Monte Carlo (PB/MC) approach

- A single “typical” conformation is chosen for the solute.
- Energetics of that conformation is described with a PB model:

\[
\Delta G(n) = -2.3RT \sum_i n_i p K^\text{int}_i + \sum_i \sum_{j<i} (n_i n_j + n_i z_j^o + n_j z_i^o) W_{ij}
\]

- Protonation states of solute are sampled using MC simulations:

Dielectric treatment assumes automatically relaxed solvent.
The PB/MC stochastic operator (matrix) C conserves $\rho(n|q)$:

$$C\rho(n|q) = \rho(n|q)$$

For (large) solutes with little conformational freedom, the PB/MC and similar methods (GB, PDLD, etc) gives the best pK_a predictions.

The solute dielectric constant (ε) has a clear physical meaning for a rigid solute: $\varepsilon \approx 2$, due to induced dipoles.

A higher value of ε (4–20) can be used to model a flexible solute, but ε becomes an empirical parameter, without a clear physical meaning.
Complementarity of MM/MD and PB/MC

- MM/MD samples all degrees of freedom except protonation states:

 \[\cdots \rightarrow \text{MM/MD conformation} \rightarrow \text{PB/MC conformation} \rightarrow \cdots \]

- PB/MC samples (explicitly) only protonation states:

 \[\cdots \rightarrow \text{PB/MC protonation states} \rightarrow \cdots \]

- Instead of trying to converge both methods (e.g., using conformer states in the PB model), we explored that complementarity:
 - Constant-pH MD using implicit titration
 - Constant-pH MD using stochastic titration
Constant-pH MD using stochastic titration
Hybrid Monte Carlo of protonation and solvent states

- We borrow the concept of hybrid Monte Carlo (HMC).

- The HMC move consists of the following two-step process:

 ![Diagram of HMC move](image)

 - If we devise a proper way to compute the acceptance/rejection of the HMC moves, we get a correct sampling of protonation and solvent states, at fixed solute conformation.

 ![Diagram of HMC move](image)

 - However, the original HMC algorithm holds for changes of momenta, being invalid for changes of protonation state.
• But the probability of the complete HMC move can be estimated by a PB/MC move or run, since the physical process is the same:

![Diagram showing protonation change and solvent relaxation](image)

• PB-estimated HMC move:

1. Solute protonation state is changed by PB/MC.
2. Solvent configuration is relaxed by MM/MD.

• PB-estimated HMC moves sample protonation and solvent states, at fixed solute conformation.

• The PB-estimated HMC stochastic operator (matrix) \mathcal{H} is assumed to conserve $\rho(\bar{q}, \bar{p}, n|q)$:

$$\mathcal{H}\rho(\bar{q}, \bar{p}, n|q) = \rho(\bar{q}, \bar{p}, n|q)$$
Stochastic titration (ST) algorithm for constant-pH MD

• Consists of alternated MM/MD and PB-estimated HMC moves:

\[
\text{... MM/MD} \rightarrow \text{PB-estimated HMC} \rightarrow \text{MM/MD} \rightarrow \text{PB-estimated HMC} \rightarrow \text{...}
\]

• The ST method samples simultaneously:

 ○ Protonation states, like PB/MC.

 ○ Solute and solvent configurations, like MM/MD.

 ○ Reflects temperature, pressure and pH.

• The ST method captures the coupling between protonation and conformation.
HMC

PB-estimated

MM/MD of Solute and Solvent

Changed Solute and Solvent configurations

PB/MC of Solute

Changed Solute protonation state

MM/MD of Solvent

Changed Solvent configuration
Markov chain of stochastic titration is ergodic

- System at constant pH: semi-grand canonical (SGC) ensemble.
- The MM/MD stochastic operator \mathcal{M} conserves the SGC distribution $\rho(q, p, \bar{q}, \bar{p}, n)$:
 \[
 \mathcal{M}\rho(q, p, \bar{q}, \bar{p}, n) = \mathcal{M}\rho(q, p, \bar{q}, \bar{p}|n)\rho(n) = \rho(n)\mathcal{M}\rho(q, p, \bar{q}, \bar{p}|n)
 \]
 \[
 = \rho(n)\rho(q, p, \bar{q}, \bar{p}|n) = \rho(q, p, \bar{q}, \bar{p}, n)
 \]
 In short, $\mathcal{M}\rho = \rho$.
- The PB-estimated HMC stochastic operator \mathcal{H} conserves the SGC distribution $\rho(q, p, \bar{q}, \bar{p}, n)$:
 \[
 \mathcal{H}\rho(q, p, \bar{q}, \bar{p}, n) = \mathcal{H}\rho(q, \bar{q}, \bar{p}, n)\rho(p) = \mathcal{H}\rho(\bar{q}, \bar{p}, n|q)\rho(q)\rho(p)
 \]
 \[
 = \rho(q)\rho(p)\mathcal{H}\rho(\bar{q}, \bar{p}, n|q) = \rho(q)\rho(p)\rho(\bar{q}, \bar{p}, n|q)
 \]
 \[
 = \rho(q, p, \bar{q}, \bar{p}, n)
 \]
 In short, $\mathcal{H}\rho = \rho$.
A stochastic operator \mathcal{P} that conserves the SGC distribution can be obtained by performing PB-estimated HMC moves:

- **Randomly**, with probability λ:
 \[
 \mathcal{P}\rho = [(1 - \lambda)\mathcal{M} + \lambda\mathcal{H}]\rho = (1 - \lambda)\mathcal{M}\rho + \lambda\mathcal{H}\rho \\
 = (1 - \lambda)\rho + \lambda\rho = \rho
 \]

- **Periodically**, once every k MM/MD steps:
 \[
 \mathcal{P}\rho = (\mathcal{H}\mathcal{M}^k)\rho = \mathcal{H}\mathcal{M}^{k-1}\mathcal{M}\rho = \mathcal{H}\mathcal{M}^{k-1}\rho \\
 = \cdots = \mathcal{H}\mathcal{M}\rho = \mathcal{H}\rho = \rho
 \]

Both approaches are valid.

- The other conditions for ergodicity (e.g., irreducibility) can also be proved or shown to be reasonable.

- Therefore, the ST method samples from the SGC ensemble, being suitable for constant-pH MD.
Some applications of the constant-pH MD method
Study of the helix–coil transition of decalysine

- Decalysine displays a pH-induced helix–coil transition:

(coil at low pH) \rightleftharpoons \text{ (helix at high pH) }

- Constant-pH MD simulations correctly predict the protonation transition midpoint and the conformational transition midpoint:
Study of hen egg white lysozyme (HEWL)

- **HEWL** is a standard benchmark system for pK_a calculations: several groups with *shifted* pK_as, both up and down.

- **Very good pK_a predictions in the acidic pH range:**

<table>
<thead>
<tr>
<th>Residue</th>
<th>Experimental “pK_a”</th>
<th>Calculated $pK_{a\text{mid}}$</th>
<th>GRF</th>
<th>PME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Avg.</td>
<td>pK_a</td>
<td>Error</td>
</tr>
<tr>
<td>Glu-7</td>
<td>2.60–3.10</td>
<td>2.85</td>
<td>4.04</td>
<td>1.19</td>
</tr>
<tr>
<td>His-15</td>
<td>5.29–5.43</td>
<td>5.36</td>
<td>4.22</td>
<td>1.14</td>
</tr>
<tr>
<td>Asp-18</td>
<td>2.58–2.74</td>
<td>2.66</td>
<td>4.11</td>
<td>1.45</td>
</tr>
<tr>
<td>Glu-35</td>
<td>6.1–6.3</td>
<td>6.20</td>
<td>5.50</td>
<td>0.70</td>
</tr>
<tr>
<td>Asp-48</td>
<td>1.2–2.0</td>
<td>1.60</td>
<td>2.56</td>
<td>0.96</td>
</tr>
<tr>
<td>Asp-52</td>
<td>3.60–3.76</td>
<td>3.68</td>
<td>3.96</td>
<td>0.28</td>
</tr>
<tr>
<td>Asp-66</td>
<td>0.4–1.4</td>
<td>0.90</td>
<td>1.50</td>
<td>0.60</td>
</tr>
<tr>
<td>Asp-87</td>
<td>1.92–2.22</td>
<td>2.07</td>
<td>2.68</td>
<td>0.61</td>
</tr>
<tr>
<td>Asp-101</td>
<td>4.02–4.16</td>
<td>4.09</td>
<td>3.77</td>
<td>0.32</td>
</tr>
<tr>
<td>Asp-119</td>
<td>3.11–3.29</td>
<td>3.20</td>
<td>2.97</td>
<td>0.23</td>
</tr>
<tr>
<td>Cter-129</td>
<td>2.63–2.97</td>
<td>2.75</td>
<td>3.23</td>
<td>0.48</td>
</tr>
<tr>
<td>RMSD</td>
<td></td>
<td></td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>

(\textcolor{red}{\textbf{Grayed cells}}: error > 1)

- **Excellent prediction**: errors comparable to experimental uncertainty.
pH-induced misfolding of the human prion

- **What is known:**
 - Involved in amyloid diseases: Creutzfeldt-Jakob, scrapie, ...
 - The prion or prionic protein (PrP) is probably the only infectious agent.
 - Known structure for the native or cellular (PrPC) form, but not for the misfolded or scrapie (PrPSc) form.
 - Contradictory experimental evidences about the misfolded region: N-terminal versus C-terminal.
 - It was suggested that the endosome low pH induces prion misfolding:
 \[\text{PrPC} \xrightarrow{\text{low pH}} \text{PrPSc} \xrightarrow{\text{aggregation}} \text{amyloid fibrils} \]

- To study this we did constant-pH MD of PrP at acidic pH.
The simulations indicate that low pH induces:

- Loss of helical structure:

- Gain of β structure:

This is in agreement with experimental results.
- Localization of structural changes:
 - pH has a clear effect on the prion average structure and fluctuations:
 [chain width = fluctuations]
 - Example of formation of persistent β structure on C-terminal region:
Conclusions

- Low pH:
 - loss of helical structure
 - gain of \(\beta \) structure

- Structural changes:
 - globular part
 - C-terminal region

- Persistent \(\beta \)-rich structure:
 - \(\text{PrP}^{\text{Sc}} \)?
 - intermediate to \(\text{PrP}^{\text{Sc}} \)?

- Low pH may be enough to induce misfolding, without other factors (protein X, etc).
Concluding remarks
Current state of the stochastic titration method

• Extensions to:
 ◦ Inclusion of proton isomerism [Proteins 2008, 72:289]
 ◦ MD at constant pH and reduction potential [JACS 2009, 131:12586]
 ◦ Titration of lipidic membranes [in progress]
 ◦ Membrane electrochemical gradients [in progress]

• Other applications from our Lab:
 ◦ Cytochrome c3 [JACS 2009, 131:12586]
 ◦ PrP reversibility [submitted]
 ◦ Peptide dendrimers [in preparation]

• Currently the best approach to treat protonation–conformation coupling.

• But other constant-pH MD methods remain to be explored: implicit titration, etc.
Acknowledgments

- People involved:
 - Molecular Simulation Laboratory at ITQB-UNL:
 - Miguel Machuqueiro (implementation, decalysine, HEWL, prion)
 Now Researcher at Faculty of Sciences, University of Lisbon
 - Sara Campos (prion, implementation)
 - Pedro Magalhães (kyotorphin, implementation)
 - Luís Filipe (peptide dendrimers, implementation)
 - Protein Modelling Laboratory at ITQB-UNL
 - Cláudio Soares (initial implementation, discussions)

- Funding:
 Fundação para a Ciência e a Tecnologia
 MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR