Aeroacoustics of Aircraft Engine

Seminar Presented at
Basque Center for Applied Mathematics (BCAM)

Farzad Taghaddosi, Ph.D.

Colorado Mesa University, USA
Visiting Fellow, BCAM

June 13, 2013
Background

Assistant Professor, Colorado Mesa University (since Oct. 2012)

Mechanical Engineer, General Electric (GE) Research Center (USA)
- Aerodynamics and aeroacoustics (wind turbines, GE9X and Open Rotor engines)

Post-doctoral Fellow (McGill University, Canada)
- Rotorcraft noise simulation

Ph.D. Mechanical Engineering (McGill University, Canada)
- Parallel simulations of turbofan inlet noise propagation

M.Sc. Aerospace Engineering (Wichita State University, USA)
- Propeller/rotor noise simulation & performance analysis

M.A.Sc. Mechanical Engineering (Concordia University, Canada)
- Least-squares finite element method for Euler equations with mesh adaptation

B.Sc. Mechanical Engineering (University of Tabriz, Iran)
- Thermodynamic design of a 4-stage gas turbine
3D Parallel Computations of Turbofan Inlet Noise Propagation
Why fan noise simulation?

- Environment Impact (noise around the airports)
- Passenger comfort
- Stricter standards:
 - ICAO Chapter 4 (2006)
 - 10dB Lower margin
- NASA Challenge
 - cum margin below Stage 4:
 - N+2: -42 dB (2020)
 - N+3: -71 dB (2025)
- Business competitiveness
Motivation

- Accurate and reliable state-of-the-art analysis and design tool
- Moving from 2D to 3D simulations
- Practical solution times: hours and not weeks
- Handling complex geometries with industrial relevance
- Taking advantage of parallel computers
Mathematical Formulation

- Governing equations
 - Continuity: \[\frac{\partial \rho^*}{\partial t^*} + \nabla \cdot (\rho^* \vec{V}^*) = 0 \]
 - Momentum: \[\frac{\partial \vec{V}^*}{\partial t^*} + \vec{V}^* \cdot \nabla \vec{V}^* = -\frac{\nabla p^*}{\rho^*} \]

- Assumptions:
 - Mean flow in the x-direction; Air as an ideal gas
 - Irrotational flow: \(\vec{V}^* = \nabla \Phi^* \)
 - Linearization: \(\rho^* = \rho_0 + \rho, \quad \text{and} \quad \Phi^* = \Phi_0 + \Phi \)
Linearization

Mean flow

- **Continuity:** \(\nabla \cdot (\rho_0 \nabla \Phi_0) = 0 \)

- **Momentum:** \(\rho_0 = \left[1 - \left(\frac{\gamma - 1}{2} \right) (\nabla \Phi_0 \cdot \nabla \Phi_0 - M_\infty^2) \right]^{1/(\gamma-1)} \)

Acoustics

- **Continuity:** \(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho_0 \nabla \Phi + \rho \nabla \Phi_0) = 0 \)

- **Momentum:** \(\rho = -\frac{\rho_0}{c_0^2} \left[\frac{\partial \Phi}{\partial t} + (\nabla \Phi_0 \cdot \nabla \Phi) \right] \)

Decoupled equations
Spatial Discretization

- Spectral Element Method
 - Geometric flexibility of FEM
 - Superior to p-version FEM
 - Reduced points per wavelength (PPW)
 - Spectral accuracy
Spatial Discretization

- Function approximation:
 \[\phi = \sum_{ijk} h_i(\xi) h_j(\eta) h_k(\zeta) \phi^e_{ijk} \]

- Interpolating polynomials:
 \[h_m(\sigma) = \frac{2}{Nc_m} \sum_{n=0}^{N} \frac{1}{c_n} T_n(\sigma_m) T_n(\sigma) \]

- Chebyshev function:
 \[T_n(x) = \cos(n \cos^{-1} x) \]

- Gauss-Chebyshev-Lobatto points:
 \[\sigma_i = -\cos \left(\frac{\pi i}{N} \right), \quad i = 0, \ldots, N \]
Mean Flow Problem

- Method of weighted residuals (MWR)
 - Weak form (Newton method):
 \[
 \int_{\Omega} \left[\rho_0 (\nabla \Psi_0 \cdot \nabla \delta \Phi_0) - \rho_0^{2-\gamma} (\nabla \Psi_0 \cdot \nabla \Phi_0) (\nabla \Phi_0 \cdot \nabla \delta \Phi_0) \right] d\Omega = \\
 - \int_{\Omega} \nabla \Psi_0 \cdot (\rho_0 \nabla \Phi_0) d\Omega + \int_{\Gamma} \Psi_0 (\rho_0 \nabla \Phi_0 \cdot \vec{n}) d\Gamma
 \]
 - Update: \(\Phi_0^{k+1} = \Phi_0^k + \delta \Phi_0 \)

- Mean flow velocity: \(\nabla \Phi_0 = (u_0, v_0, w_0) \)
Mean Flow Problem

- **Boundary conditions**

 - **Solid surfaces:** \(\nabla \Phi_0 \cdot \vec{n} = 0 \)

 - **Inlet (fan face):**
 \[
 \int_{\Gamma} \Psi_0 (\rho_0 \nabla \Phi_0 \cdot \vec{n}) \, d\Gamma = \frac{\dot{m}}{A_f} \int_{\Gamma_f} \Psi_0 \, d\Gamma
 \]

 - **Far-field:**
 \[\Phi_0 = M_\infty x \]
Acoustic Problem

- Method of weighted residuals (MWR)

Assumptions:

- **Acoustic potential**
 \[\Phi = \phi(x, y, z) e^{-i\omega t} \]

- **Test function**
 \[\Psi = \psi(x, y, z) e^{i\omega t} \]

- **Reduced frequency**
 \[\tilde{\omega} = \omega R/c_\infty \]

- **Weak form:**

\[
\int_{\Omega} \frac{\rho_0}{c_0^2} \left[\tilde{\omega}^2 \phi \psi + \left(u_0^2 - c_0^2 \right) \phi_x \psi_x + \left(v_0^2 - c_0^2 \right) \phi_y \psi_y + \left(w_0^2 - c_0^2 \right) \phi_z \psi_z + u_0 v_0 \left(\phi_x \psi_y + \phi_y \psi_x \right) + u_0 w_0 \left(\phi_x \psi_z + \phi_z \psi_x \right) + v_0 w_0 \left(\phi_y \psi_z + \phi_z \psi_y \right) + i\tilde{\omega} u_0 \left(\phi \psi_x - \phi_x \psi \right) + i\tilde{\omega} v_0 \left(\phi \psi_y - \phi_y \psi \right) + i\tilde{\omega} w_0 \left(\phi \psi_z - \phi_z \psi \right) \right] \, d\Omega = \]

\[
- \int_{\Gamma} \Psi \left(\rho_0 \nabla \Phi + \rho \nabla \Phi_0 \right) \cdot \bar{n} \, d\Gamma,
\]
Acoustic Problem

- **Boundary conditions**
 - **Solid surfaces:** \(\nabla \Phi \cdot \mathbf{n} = 0 \)
 - **Inlet (acoustic source):**
 - Circular/annular
 \[\Phi(x, r, \theta) = \varphi(r) e^{i(k_x x + m \theta - \omega t)} \]
 - Without centerbody
 \[\varphi_{ms}(r) = \sum_s A_s J_m(k_{ms} r) \]
 - With centerbody
 \[\varphi_{ms}(r) = \sum_s A_s J_m(k_{ms} r) + Y_m(k_{ms} r) \]
 - \(m \): spinning mode
 - \(s \): radial mode

Farzad Taghaddosi (6/13/2013)
Acoustic Problem

- **Far-field:**
 - Damping layer
 - Modified continuity equation
 - Damping function
 - Modified weak form

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho_0 \nabla \Phi + \rho \nabla \Phi_0) = -\nu(x) \rho
\]

\[
\nu(x) = \nu_0 \left| \frac{x - x_I}{D} \right|^n
\]

\[
-\int_{\Omega} (\nu \rho) \Psi \ d\Omega = \int_{\Omega} \frac{\nu \rho_0}{c_0^2} \left(i\omega \phi \psi + u_0 \phi_x \psi + v_0 \phi_y \psi + w_0 \phi_z \psi \right) \ d\Omega
\]
Solution Method

- Parallel approach
- Domain decomposition method:
 - Overlapping
 - Non-overlapping
Solution of the Mean Flow Problem

- Linear system: \(Au = f \)
 - Symmetric and positive-definite (SPD) matrix

- Parallel iterative solver: Conjugate Gradient (CG)

- Preconditioning
 - Additive Schwarz method (ASM)
 - Example:
Solution of the Acoustic Problem

- Linear system: \(Au = f \)
 - Complex-valued, non-symmetric & indefinite, ill-conditioned

- Parallel direct solver: SPOOLES, SuperLU, etc.
 - Prohibitively costly for large systems

- Parallel iterative solver
 - **Schur complement method**
 - Denser matrix
 - Better conditioned
 - Smaller in size
 - Computer architecture compatible
 - Complex parallel algorithm
Domain Decomposition

- Subdomain matrix:

\[A^{(i)} = \begin{bmatrix}
A^{(i)}_{II} & A^{(i)}_{IB} \\
A^{(i)}_{BI} & A^{(i)}_{BB}
\end{bmatrix} \]

- Reduced system:

\[
\begin{bmatrix}
A^{(1)}_{II} & A^{(1)}_{IB} \\
A^{(2)}_{II} & A^{(2)}_{IB} \\
\vdots & \vdots \\
A^{(i)}_{II} & A^{(i)}_{IB}
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
u^{(1)}_I \\
u^{(1)}_I \\
\vdots \\
u^{(i)}_I \\
u_B
\end{bmatrix}
\end{bmatrix} =
\begin{bmatrix}
f^{(1)}_I \\
f^{(2)}_I \\
\vdots \\
f^{(i)}_I \\
g
\end{bmatrix}
\]
Building Schur Matrix

- Schur system:

\[Su_B = g, \quad \text{where} \quad S = \sum_{i=1}^{p} \tilde{R}_i^T S_i \tilde{R}_i, \quad \text{and} \quad g = \sum_{i=1}^{p} \tilde{R}_i^T g^{(i)} \]

\[S_i = A_{BB}^{(i)} - A_{BI}^{(i)} A_{II}^{(i)}^{-1} A_{IB}^{(i)} \quad g^{(i)} = f_B^{(i)} - A_{BI}^{(i)} A_{II}^{(i)}^{-1} f_I^{(i)} \]

- Restriction matrix (scatter operator): \[u_B^{(i)} = \tilde{R}_i u_B \]

- Interior solve: \[u_I^{(i)} = A_{II}^{(i)}^{-1} (f_I^{(i)} - A_{IB}^{(i)} u_B^{(i)}), \quad i = 1, 2, \ldots, p \]

- Solution method: matrix-free GMRES
Matrix-free Algorithm

Sample operations:

\[w = Sv = \sum_{i=1}^{p} \tilde{R}_i^T \left(A_{BB}^{(i)} - A_{BI}^{(i)} A_{II}^{(i)}^{-1} A_{IB}^{(i)} \right) \tilde{R}_i v \]

- scatter \(v \): \(v_B^{(i)} = \tilde{R}_i v \),
- calculate: \(v_I^{(i)} = A_{IB}^{(i)} v_B^{(i)} \),
- solve for \(u_I^{(i)} \): \(A_{II}^{(i)} u_I^{(i)} = v_I^{(i)} \),
- calculate: \(w_B^{(i)} = A_{BB}^{(i)} v_B^{(i)} \),
- calculate: \(v_B^{(i)} = A_{BI}^{(i)} u_I^{(i)} \),
- update: \(w_B^{(i)} = w_B^{(i)} - v_B^{(i)} \),
- assemble: \(w = \sum_{i=1}^{p} \tilde{R}_i^T w_B^{(i)} \).
Preconditioner

- Proposed a preconditioner based on sub-domain Schur matrices:

$$M_P^{-1} = \sum_{i=1}^{p} \tilde{R}_i^T \tilde{D}_i A_{BB}^{(i)} \tilde{D}_i \tilde{R}_i$$

- Shorter calculations
- Local operator
- Elements of $A_{BB}^{(i)}$ are clustered around diagonal

- Other preconditioners examined:

$$M_B^{-1} = A_{BB}^{-1} = \left(\sum_{i=1}^{p} \tilde{R}_i^T A_{BB}^{(i)} \tilde{R}_i \right)^{-1}$$

$$M_J^{-1} = \left(\text{Diag}(A_{BB}) \right)^{-1}$$
Preconditioner Performance

<table>
<thead>
<tr>
<th>Preconditioner</th>
<th>None</th>
<th>M_J^{-1}</th>
<th>M_P^{-1}</th>
<th>M_B^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Time (min:sec)</td>
<td>10:55</td>
<td>9:39</td>
<td>9:29</td>
<td>14:58</td>
</tr>
<tr>
<td>No. of Iterations</td>
<td>261</td>
<td>223</td>
<td>173</td>
<td>129</td>
</tr>
</tbody>
</table>
Numerical Results
Uniform Cylinder

- $\bar{\omega} = 5.91$ (320 Hz)
- $L/R = 2.5$
- $E = 3258$, $N = 4$ (~220 000 Eqs)
Uniform Cylinder (Effect of Mean Flow)

- Effect of mean flow
 - $\bar{\omega} = 5.91$
 - $e/R = 1/8$

- $M_\infty = 0.2$
- (Mass flow rate)$_f = 50$ kg/s
Generic Scarfed Nacelle

- $\bar{\omega} = 17$ (1058 Hz)
- Propagating mode: $(13,0)$
- $E = 15328$, $N = 5$ ($\sim 2e6$ Eqs)

<table>
<thead>
<tr>
<th>No. of CPU’s</th>
<th>8</th>
<th>16</th>
<th>24</th>
<th>32</th>
<th>40</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Matrix</td>
<td>4:25</td>
<td>2:11</td>
<td>1:27</td>
<td>1:04</td>
<td>0:52</td>
<td>0:44</td>
</tr>
<tr>
<td>Solving Equations</td>
<td>7:41</td>
<td>3:40</td>
<td>2:07</td>
<td>2:19</td>
<td>2:06</td>
<td>1:05</td>
</tr>
<tr>
<td>Total (hr:min)</td>
<td>12:17</td>
<td>5:51</td>
<td>3:34</td>
<td>3:23</td>
<td>2:58</td>
<td>1:49</td>
</tr>
<tr>
<td>No. of Iterations</td>
<td>216</td>
<td>288</td>
<td>406</td>
<td>484</td>
<td>586</td>
<td>614</td>
</tr>
</tbody>
</table>
Generic Scarfed Nacelle

- Parallel efficiency

![Graph showing CPU Time vs. No. of Processors]
Acoustic Pressure Contours
Directivity

SPL directivity on horizontal plane
Directivity

SPL directivity on vertical plane (not shown)
Conclusions

What has been accomplished:
- Successful migration from 2D to 3D technology
- Richer physical modeling
- Practical solution times: hours instead of days, through:
 - Efficient new preconditioned iterative solvers
 - Efficient massive parallelism on commodity clusters
- CAD-based solution for complex industrial problems
- Thorough verification and validation against analytical, numerical and experimental results

Contributions can be classified as
- Engineering
- Mathematical
- Computational
Conclusions

- Development of a 3D aeroacoustics code
 - 14,000 line of instructions
 - Fan noise and ducted acoustic simulation
 - Accurate results
 - General 3D geometries
 - Accounting for mean flow effects
 - Symmetry formulation
 - Parallel computations

- Iterative solution
 - Schur complement
 - Novel preconditioner

- Excellent parallel efficiency
Open Rotor Project

Historical Perspective

- Born out of the energy crisis of the 1970’s

- Promise: speed and performance of a turbofan with the fuel economy of a turboprop

- 10-20% lower fuel consumption
- Thrust $\sim mv$
- Kinetic energy $\sim v^2$

- Major concern: noise

https://www.youtube.com/watch?v=zxVAalsfPIY
Noise Sources

- Blade self-noise
- Blade-Blade interaction
 - Tip vortex
 - Wake
- Pylon-Blade interaction
- Compressor
- Core

Courtesy: www.kaist.ac.kr
Noise Analysis

- **Tone**
 - Linearized Euler Equations (LEE)
 - Blade response to incoming gusts (1BPF, 2BPF, etc.)

- **Broadband**
 - Integral formulations based on acoustic analogy
 - (Amiet, etc.)
Noise Reduction

- Typically highest during take-off

- Reduce tip vortex & wake strength
 - Better blade aerodynamic design
 - Optimize blade spacing
 - Trim aft blade to avoid/reduce vortex impingement
 - Increase front rotor RPM at take-off & reduce incidence

- Wind tunnel tests done at NASA Glenn

- In July 2012, GE announced:

 “Open rotor noise NOT a barrier for entry into service”