Domain decomposition Fourier finite element method for the simulation of 3D marine CSEM measurements

Shaaban A Bakr1,2 David Pardo3 Trond Mannseth2,4

1University of Assiut
2Uni CIPR
3University of the Basque Country, and Ikerbasque, Bilbao
4University of Bergen
Outline

Model Setup

EM modeling approaches
 3D FE
 2.5D FE
 Fourier-FE

Numerical results
 Accuracy
 Comparison of CPU time

Conclusions
CSEM method: Model setup

source -> receivers

Reservoir

air
seawater
Maxwell’s equations (frequency domain) are:

\[\nabla \times \mathbf{E} = i \omega \mu \mathbf{H} \]
\[\nabla \times \mathbf{H} = (\sigma - i \omega \epsilon) \mathbf{E} + \mathbf{J} \]
\[\nabla \cdot (\mathbf{\epsilon E}) = 0 \]
\[\nabla \cdot (\mu \mathbf{H}) = 0 \]
3D FE approach

\[\nabla \times \left(\mu^{-1} \nabla \times E \right) - i\omega \tilde{\sigma} E = i\omega J \]

\[\tilde{\sigma} = \sigma - i\omega \epsilon \]

\[(n \times E) \mid_{\Gamma = \partial\Omega} = 0 \]
3D FE approach

\[
\int_{\Omega} (\nabla \times \mathbf{F})^* \mu^{-1} (\nabla \times \mathbf{E}) d\Omega - i\omega \int_{\Omega} \mathbf{F}^* \bar{\sigma} \mathbf{E} d\Omega = i\omega \int_{\Omega} \mathbf{F}^* \mathbf{J} d\Omega
\]

\[
\mathbf{F} \in H_\Gamma(\text{curl}; \Omega) = \{ \mathbf{F} \in H(\text{curl}; \Omega) : (\mathbf{n} \times \mathbf{F}) |_{\Gamma} = \mathbf{0} \}
\]

\[
H(\text{curl}; \Omega) = \left\{ \mathbf{F} \in (L^2(\Omega))^3 : \text{curl} \mathbf{F} \in (L^2(\Omega))^3 \right\}
\]
3D FE approach

- Discretize entire domain, Ω into a number of finite elements, e.g. tetrahedral, or hexahedra, etc.
3D FE approach

- Discretize entire domain, Ω into a number of finite elements, e.g. tetrahedral, or hexahedra, etc.

- Sparse coefficient matrix, $N \times N$.
3D FE approach

- Discretize entire domain, Ω into a number of finite elements, e.g. tetrahedral, or hexahedra, etc.

- Sparse coefficient matrix, $N \times N$.

- Computational work with direct solver, $W_{3DFE} \propto \mathcal{O}(N^2)$.
3D FE approach

- Discretize entire domain, Ω into a number of finite elements, e.g. tetrahedral, or hexahedra, etc.

- Sparse coefficient matrix, $N \times N$.

- Computational work with direct solver, $W_{3DFE} \propto O(N^2)$.

- Memory requirement is $O(N^{4/3})$.
2.5D FE approach

- Main assumption: Material properties (μ and σ) varies in two spatial dimensions and constant along the third spatial dimension.
2.5D FE approach

- Main assumption: Material properties (μ and σ) varies in two spatial dimensions and constant along the third spatial dimension.

- Sources and receivers are 3D.
2.5D FE approach

- Main assumption: Material properties (μ and σ) varies in two spatial dimensions and constant along the third spatial dimension.
- Sources and receivers are 3D.
- Then, 3D problem \Rightarrow a sequence of independent 2D problems.
- Domain, $\Omega \Rightarrow \Omega_{2D}$.
2.5D FE approach

- Discretize entire domain, Ω_{2D} into a number of finite elements, e.g. triangular, or quadrilateral.
2.5D FE approach

- Discretize entire domain, Ω_{2D} into a number of finite elements, e.g. triangular, or quadrilateral.

- Sparse coefficient matrix, $N \times N$.
2.5D FE approach

- Discretize entire domain, Ω_{2D} into a number of finite elements, e.g. triangular, or quadrilateral.

- Sparse coefficient matrix, $N \times N$.

- Computational work with direct solver, $W_{2.5DFE} \propto O(N^{1.5})$.
2.5D FE approach

- Discretize entire domain, Ω_{2D} into a number of finite elements, e.g. triangular, or quadrilateral.

- Sparse coefficient matrix, $N \times N$.

- Computational work with direct solver, $W_{2.5DFE} \propto O(N^{1.5})$.

- Memory requirement is $O(N \log(N))$.
2.5D FE approach

- Limitation: Because of the 2D geology assumption, the 2.5D marine CSEM modeling can not always be relied upon for a consistent treatment of the real environment.
2.5D FE approach

- Limitation: Because of the 2D geology assumption, the 2.5D marine CSEM modeling can not always be relied upon for a consistent treatment of the real environment.

- Our aim: reduce computational work to $\mathcal{O}(N_1^{1.5} + N_2^2)$ to remove the above limitation.
Fourier FE approach: Computational domains

\[\text{Subdomain}, \Omega_1 \]
\[\sigma_{2D}(x, z), \mu_{2D}(x, z) \]

\[\text{Subdomain}, \Omega_2 \]
\[\sigma(x, y, z), \mu(x, y, z) \]
Fourier FE approach: Basis functions

- $e^{i r y}$: Fourier basis function.
- $\Phi(x, z)$: 2D coupled $H(\text{curl}; \Omega_1)$ and $H^1(\Omega_1)$ basis function.
- $\Psi(x, y, z)$: 3D $H(\text{curl}; \Omega_2)$ basis function.
Fourier FE approach: Basis functions

- $e^{i\gamma y}$: Fourier basis function.
- $\Phi(x, z)$: 2D coupled $H(\text{curl}; \Omega_1)$ and $H^1(\Omega_1)$ basis function.
- $\psi(x, y, z)$: 3D $H(\text{curl}; \Omega_2)$ basis function.
- $e^{i\gamma y} \Phi(x, z)$: For Ω_1.
- $\psi(x, y, z)$: For Ω_2.
Fourier FE approach: Basis functions

- $e^{i ry}$: Fourier basis function.
- $\Phi(x, z)$: 2D coupled $H(\text{curl}; \Omega_1)$ and $H^1(\Omega_1)$ basis function.
- $\Psi(x, y, z)$: 3D $H(\text{curl}; \Omega_2)$ basis function.
- $e^{i ry} \Phi(x, z)$: For Ω_1.
- $\Psi(x, y, z)$: For Ω_2.

$$E(x, y, z) = \sum_{m=-M}^{M} \sum_{n=1}^{N} E_{1,mn} \Phi_n(x, z) e^{irmy} + \sum_{k=1}^{K} E_{2,k} \Psi_k(x, y, z).$$
Fourier FE approach: Linear system

- Ω_1: Triangular finite elements.
- Ω_2: Prismatic finite elements.
Fourier FE approach: Linear system

- Ω_1: Triangular finite elements.
- Ω_2: Prismatic finite elements.

\[
\begin{bmatrix}
A_{\Omega_1} & A_{\Omega_1 \cap \Omega_2} \\
A^*_{\Omega_1 \cap \Omega_2} & A_{\Omega_2}
\end{bmatrix} \begin{bmatrix}
E_1 \\
E_2
\end{bmatrix} = \begin{bmatrix}
b_1 \\
0
\end{bmatrix}.
\]
Fourier FE approach: Computational complexity

Table: FLOPS estimates for solving a FE system of linear equations using a direct solver.

<table>
<thead>
<tr>
<th></th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOPS</td>
<td>$\mathcal{O}(N)$</td>
<td>$\mathcal{O}(N^{1.5})$</td>
<td>$\mathcal{O}(N^2)$</td>
</tr>
<tr>
<td>Memory</td>
<td>$\mathcal{O}(N)$</td>
<td>$\mathcal{O}(N \log(N))$</td>
<td>$\mathcal{O}(N^{4/3})$</td>
</tr>
</tbody>
</table>
Fourier FE approach: Computational complexity

Table: FLOPS estimates for solving a FE system of linear equations using a direct solver.

<table>
<thead>
<tr>
<th></th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOPS</td>
<td>$O(N)$</td>
<td>$O(N^{1.5})$</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Memory</td>
<td>$O(N)$</td>
<td>$O(N \log(N))$</td>
<td>$O(N^{4/3})$</td>
</tr>
</tbody>
</table>

- N_1: Number of dofs in Ω_1.
- N_2: Number of dofs in Ω_2.
Fourier FE approach: Computational complexity

Table: FLOPS estimates for solving a FE system of linear equations using a direct solver.

<table>
<thead>
<tr>
<th></th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOPS</td>
<td>$O(N)$</td>
<td>$O(N^{1.5})$</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Memory</td>
<td>$O(N)$</td>
<td>$O(N \log(N))$</td>
<td>$O(N^{4/3})$</td>
</tr>
</tbody>
</table>

- N_1: Number of dofs in Ω_1.
- N_2: Number of dofs in Ω_2.
- The cost corresponding to Ω_1: $O(N_1^{1.5})$.
- The cost corresponding to Ω_2: $O(N_2^2)$.
Fourier FE approach: Computational complexity

Table: FLOPS estimates for solving a FE system of linear equations using a direct solver.

<table>
<thead>
<tr>
<th></th>
<th>1D</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOPS</td>
<td>$O(N)$</td>
<td>$O(N^{1.5})$</td>
<td>$O(N^2)$</td>
</tr>
<tr>
<td>Memory</td>
<td>$O(N)$</td>
<td>$O(N \log(N))$</td>
<td>$O(N^{4/3})$</td>
</tr>
</tbody>
</table>

- N_1: Number of dofs in Ω_1.
- N_2: Number of dofs in Ω_2.
- The cost corresponding to Ω_1: $O(N_1^{1.5})$.
- The cost corresponding to Ω_2: $O(N_2^2)$.
- The total cost with FFE: FLOPS = $O(N_1^{1.5} + N_2^2)$.
Numerical results: Accuracy: 1D model
Numerical results: Accuracy: 1D model
Numerical results: Accuracy: 3D model
Numerical results: Accuracy: 3D model

\[|E_x| (V/m) \]

\[|E_z| (V/m) \]

- 9 modes
- 3D FE
- IE
Numerical results: Accuracy: 3D complex model
Numerical results: Accuracy: 3D complex model

- $|E_x| (V/m)$ vs $x (m)$
- $|E_z| (V/m)$ vs $x (m)$
Numerical results: Comparison of CPU time

![Graph showing comparison of CPU time for 2.5D FE, 3D FFE, and 3D FE methods. The x-axis represents the number of unknowns, and the y-axis represents CPU time (s). The graph shows that CPU time increases with the number of unknowns for all methods, with 3D FE showing the highest CPU time.]
Conclusions

- We have developed a novel hybrid method, FFE, for modeling a 3D marine CSEM measurements.
Conclusions

We have developed a novel hybrid method, FFE, for modeling a 3D marine CSEM measurements.

The method combines a 2D FEM in two spatial dimensions with a hybrid discretization based on a Fourier-FEM along the third dimension.
Conclusions

- We have developed a novel hybrid method, FFE, for modeling a 3D marine CSEM measurements.
- The method combines a 2D FEM in two spatial dimensions with a hybrid discretization based on a Fourier-FEM along the third dimension.
- FFE delivers high-accuracy simulations of marine CSEM problems with arbitrary 3D geometries.
Conclusions

- We have developed a novel hybrid method, FFE, for modeling a 3D marine CSEM measurements.

- The method combines a 2D FEM in two spatial dimensions with a hybrid discretization based on a Fourier-FEM along the third dimension.

- FFE delivers high-accuracy simulations of marine CSEM problems with arbitrary 3D geometries.

- Very limited number of Fourier modes (typically between five and fifteen) is enough to deliver very accurate simulations.
Conclusions

- We have developed a novel hybrid method, FFE, for modeling a 3D marine CSEM measurements.

- The method combines a 2D FEM in two spatial dimensions with a hybrid discretization based on a Fourier-FEM along the third dimension.

- FFE delivers high-accuracy simulations of marine CSEM problems with arbitrary 3D geometries.

- Very limited number of Fourier modes (typically between five and fifteen) is enough to deliver very accurate simulations.

- FFE reduces the computational complexity of traditional 3D simulators.