Multi-Scale Modeling of Heterogeneous Elastic Solids based on Control of Modeling Errors in Local Quantities of Interest

Albert Romkes, Jason A. Carter, and Tristan C. Moody

Department of Mechanical Engineering
South Dakota School of Mines & Technology
Rapid City, South Dakota, USA

Sponsored in Part by the US National Science Foundation

Seminar, Basque Center for Applied Mathematics
May 19, 2014, Bilbao, Bizkaia, Spain
Outline

1. Goal-Oriented Adaptive Modeling (GOAM) Method of Heterogeneous Elastic Materials1,2

2. Estimation of Local Modeling Error

3. Numerical Results

4. Concluding Remarks

1. GOAM Method

Example: Two-Phase Composite

1) Properties of matrix are deterministic
2) Properties of inclusions are random, governed by two random variables (E and ν) with truncated Gaussian probability distribution

3) Quantity of interest is:

\[Q(u) = \int_{\Omega} \int_{D_Q} \varepsilon_{yy}(u) \, dx\,dP \]
1. GOAM Method

Initial Surrogate Model - Classical Homogenization

Exact (stochastic)

Surrogate (deterministic)

$E(x, \omega)$

Statistical averaging

Spatial averaging

(Homogenization)

E_0
1. GOAM Method

Homogenized strain field ε_{yy}^0

Mean Strain field ε_{yy}

Relative homogenization error $\frac{Q(u) - Q(u_0)}{Q(u)} = 73\%$
1. GOAM Method

Model Enhancement

<table>
<thead>
<tr>
<th>Relative error</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>15%</td>
<td>13%</td>
<td></td>
</tr>
</tbody>
</table>
1. GOAM Method

Assessment/Estimation of Modeling Error

- In terms of micro-mechanical features of the response or quantities of interest $Q(u)$.

- Residual-Based, i.e. if given the equivalent variational statement, or primal problem:

$$\int_{\Omega} E \nabla u \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx + \int_{\Gamma_t} t \cdot v \, ds \quad \forall v \in V \subset H^1(\Omega)$$

then introduce a dual problem for each $Q(u)$:

$$B(w, p) = Q(w), \quad \forall w \in V.$$
1. GOAM Method

Summary

<table>
<thead>
<tr>
<th>Primal Elastostatics Problem</th>
<th>$B(u, v) = F(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual Problem</td>
<td>$B(v, p) = Q(v)$</td>
</tr>
</tbody>
</table>

Error Equation

If \tilde{u} is any of the surrogate solutions of u, then the modeling error of \tilde{u} in terms of the quantity of interest $Q(\cdot)$ is:

\[
Q(u) - Q(\tilde{u}) = B(u, p) - B(\tilde{u}, p)
\]

\[
= F(p) - B(\tilde{u}, p)
\]

Residual
1. GOAM Method

Drawbacks of the Error Assessment Process

- Computation of the dual problem is prohibitive if not impossible \Rightarrow surrogate or homogenized solutions p^0 of p are solved for instead to assess the error. Hence,

$$Q(u) - Q(\tilde{u}) \approx \frac{F(p^0) - B(\tilde{u}, p^0)}{\text{Error Estimate}}$$

However, estimate has often poor accuracy.

- The surrogate descriptions of the dual problems still require solution of global problems, for each quantity of interest.
1. GOAM Method

Proposed New Approach

• Develop a local dual problem which can be solved numerically at high accuracy without the need for any surrogate or homogenized descriptions for the dual problem.

• Focus on estimating homogenization errors. It indirectly provides estimates of multi-scale surrogate solutions \tilde{u}:

$$Q(u) - Q(\tilde{u}) = Q(u) - Q(u^0) + Q(u^0) - Q(\tilde{u})$$

estimated

computed
2. Local Estimation of Modeling Error

Local Elasticity Problem

\[-\nabla \cdot E \nabla u = f \text{ in } D_Q\]

\[E \nabla u \cdot n = t_u \text{ on } \partial D_Q\]

Local Variational Formulation

\[\int_{D_Q} E \nabla u \cdot \nabla v \, dx = \int_{D_Q} f \cdot v \, dx + \int_{\partial D_Q} t_u \cdot v \, ds, \quad \forall v \in H^1(D_Q)\]
2. Local Estimation of Modeling Error

Local Dual Problem

\[B_{\text{loc}}(v, p) = Q(v), \quad \forall v \]

- Since the dual problem is defined on a small domain \(D_Q \), containing a limited amount of micro-mechanical information, \(p \) can be easily numerically computed with extremely high accuracy.

- This problem is well-posed in \(H^1(D_Q)/\mathbb{R} \)

\[\Downarrow \]

Only for functionals \(Q(\cdot) \) of local gradients of the displacements (i.e. stresses and strains) a dual solution \(p \) exists.
2. Local Estimation of Modeling Error

Summary

<table>
<thead>
<tr>
<th>Local Elasticity Problem</th>
<th>$B_{\text{loc}}(u, v) = F_{\text{loc}}(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Dual Problem</td>
<td>$B_{\text{loc}}(v, p) = Q(v)$</td>
</tr>
</tbody>
</table>

Error Equation

$$Q(u) - Q(u^0) = B_{\text{loc}}(u, p) - B_{\text{loc}}(u^0, p)$$
$$= F_{\text{loc}}(p) - B_{\text{loc}}(u^0, p)$$
2. Local Estimation of Modeling Error

Problem/Issue

• Error equation is not computable due to the presence of the unknown traction t_u in $F_{\text{loc}}(p)$:

$$F_{\text{loc}}(p) = \int_{D_Q} f \cdot p \, dx + \int_{\partial D_Q} t_u \cdot p \, ds$$

Solution

• Estimate $F_{\text{loc}}(p)$ by considering the local description of the homogenized primal problem.
2. Local Estimation of Modeling Error

Local Homogenized Problem

\[- \nabla \cdot E^0 \nabla u^0 = f \text{ in } D_Q \]
\[E^0 \nabla u^0 \cdot n = t_{u^0} \text{ on } \partial D_Q\]

Local Variational Formulation

\[\int_{D_Q} E^0 \nabla u^0 \cdot \nabla v \, dx = \int_{D_Q} f \cdot v \, dx + \int_{\partial D_Q} t_{u^0} \cdot v \, ds, \forall v \in H^1(D_Q)\]

\[B^0_{loc}(u^0, v) = F^0_{loc}(v)\]
2. Local Estimation of Modeling Error

Homogenized Local Problem

\[B_{loc}^0(u^0, v) = F_{loc}^0(v), \ \forall v \]

\[\downarrow v = 1 \]

\[B_{loc}^0(u^0, 1) = F_{loc}^0(1) \]

\[\downarrow \]

\[0 = \int_{D_Q} f \, dx + \int_{\partial D_Q} t_{u^0} \, ds \]

Exact Local Problem

\[B_{loc}(u, v) = F_{loc}(v), \ \forall v \]

\[\downarrow v = 1 \]

\[B_{loc}(u, 1) = F_{loc}(1) \]

\[\uparrow \]

\[0 = \int_{D_Q} f \, dx + \int_{\partial D_Q} t_u \, ds \]

\[\downarrow \]

\[\int_{\partial D_Q} t_u \, ds = \int_{\partial D_Q} t_{u^0} \, ds. \]
2. Local Estimation of Modeling Error

Homogenization Error Estimate

Since the average values of the tractions of the exact fine-scale solution t_u and the homogenized solution t_{u^0} over the edge of D_Q are the same, $F_{\text{loc}}(\cdot)$ in the error equation is estimated by the homogenized $F^0_{\text{loc}}(\cdot)$:

$$Q(u) - Q(u^0) = F_{\text{loc}}(p) - B_{\text{loc}}(u^0, p)$$

$$\approx F^0_{\text{loc}}(p) - B_{\text{loc}}(u^0, p)$$
Computable

$$= B^0_{\text{loc}}(u^0, p) - B_{\text{loc}}(u^0, p)$$

$$\overset{\text{def}}{=} \int_{D_Q} (E^0 - E) \nabla u^0 \cdot \nabla p \, dx$$

16
2. Local Estimation of Modeling Error

(Final) Estimate of Multiscale Modeling Error

Let \(u \) be the exact solution, \(\tilde{u} \) a multiscale solution, and \(u^0 \) the homogenized solution, then:

\[
Q(u) - Q(\tilde{u}) = Q(u) - Q(u^0) + Q(u^0) - Q(\tilde{u})
\]

\[
\approx \int_{D_Q} (E^0 - E) \nabla u^0 \cdot \nabla p \, dx + Q(u^0) - Q(\tilde{u})
\]
2. Local Estimation of Modeling Error

\[Q(u) - Q(\tilde{u}) \approx \int_{DQ} (E^0 - E) \nabla u^0 \cdot \nabla p \, dx + Q(u^0) - Q(\tilde{u}) \]

Local residual functional

Computing the estimate of the modeling error of a multiscale solution in terms of micro mechanical feature of interest \(Q(\cdot) \) requires:

- The first surrogate solution: the homogenized solution \(u^0 \).
- Solving for the dual solution \(p \) over a small region \(D_Q \) containing the micro mechanical feature of interest
- Computing a local residual functional over \(D_Q \) involving \(u^0 \) and \(p \).
3. Numerical Results

Two-Phase Composite Beam

1) $Q(u)$ is average strain ε_{xx} in ω_i, $i = 1, 2, 3, 4$

2) Material properties are deterministic
3. Numerical Example

Axial Strain Fields

Exact

Homog.
3. Numerical Example

Quantity of interest is average axial strain ε_{xx} over each of the small subdomains $\omega_i, i = 1, \ldots, 4$. Thus,

$$ Q_i(u) = \frac{1}{|\omega_i|} \int_{\omega_i} \frac{\partial u_x}{\partial x} \, dx $$

Local Dual Problems

$$ B_{\text{loc}}(v, p_i) = Q_i(v), \quad \forall v $$

$$ \therefore $$

$$ \int_{\omega_i} E \nabla v \cdot \nabla p_i \, dx = \frac{1}{|\omega_i|} \int_{\omega_i} \frac{\partial v_x}{\partial x} \, dx, \quad \forall v $$
3. Numerical Example

Local Dual Solution in ω_1

\[
\frac{\partial p_x}{\partial x}, \quad \frac{\partial p_y}{\partial y}
\]
3. Numerical Example

Local Domain of Interest

<table>
<thead>
<tr>
<th>Effectivity index</th>
<th>ω_1</th>
<th>ω_2</th>
<th>ω_3</th>
<th>ω_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimator $= \frac{Q(u) - Q(u^0)}{Q(u) - Q(u^0)}$</td>
<td>1.04</td>
<td>1.09</td>
<td>1.34</td>
<td>1.14</td>
</tr>
</tbody>
</table>
4. Concluding Remarks

- An estimator of modeling errors in local stresses and strains has been developed that involves solving a local dual problem and computing local residual integrals.

- The estimator exhibits high accuracy.

- Estimation of multiple local modeling errors is computationally feasible.
4. Concluding Remarks

- Estimator is currently extended to the analysis of stochastic and nonlinear problems.

- Since the dual problem is only well-posed if the quantity of interest involves gradients of the displacements, alternative local dual problems need to be investigated to broaden the applicability of the estimator.