HEURISTIC OPTIMIZATION TO DESIGN SOLAR POWER TOWER SYSTEMS

Carmen-Ana Domínguez Bravo

July 2016
1. Introduction

2. Optimization problem

3. Analytical and computational model

4. Design of Heliostats Field

5. Design with multiple receivers
THE DESIGN OF A SOLAR POWER TOWER (SPT)

Thesis supervisors: Emilio Carrizosa (EIO-US), Enrique Fernández Cara (EDAN-US)
Thesis tutor: Manuel Quero (Abengoa Solar)
Research contract: CapTorSol 1200-0494 (Abengoa Solar and FIUS)
Solar Power Plants

Solar Thermal
- Non-Concentrating
 - Solar Chimney
- Concentrating
 - Linear
 - Linear Fresnel
 - Point
 - Parabolic Through
 - Parabolic Dish
 - Heliostat

Photovoltaic
- PV cell
SOLAR POWER TOWER PLANTS

- Heliostat: reflective mirror.
- Receiver: sunlight collector.

1. Sunlight is reflected by the heliostats field onto a receiver at the top of the tower.
2. Thermal energy is transferred through a thermodynamic cycle to produce electricity.

Source: Abengoa
Heliostat

Helio: Greek word for sun.
Stat: stationary (reflected image is fixed).

- Pedestal mounted mirror.
- Two-axis tracking system to follow the sun.

Source Abengoa and CIEMAT-PSA
HELIOSTAT

Helio: Greek word for sun.
Stat: stationary (reflected image is fixed).

- Pedestal mounted mirror.
- Two-axis tracking system to follow the sun.

Source: Abengoa and CIEMAT-PSA
Tower-Receiver(s)

$$\Theta := (h, \xi, \alpha, r)$$

Heliostats Field

$$S := \{(x_i, y_i) \in \mathbb{R}^2 : i \in [1, N]\}$$
MATHEMATICAL MODELLING
OPTIMIZATION PROBLEM

\[
(P) \begin{cases}
\min_{\Theta, S} F(\Theta, S) = C(\Theta, S) / E(\Theta, S) \\
\text{subject to} \quad \Theta \in \Theta \\
\quad \quad S \in \mathcal{S} \\
\quad \quad \Pi_0 \leq \Pi_{T_d}(\Theta, S) \leq \Pi^+
\end{cases}
\]

- Optimization criteria
 - 2 objectives: total construction cost and collected annual energy.
 - Deal with the aggregation function,
MATHEMATICAL MODELLING

Tower (height), receiver aperture (position and dimensions), and heliostats field (positions and number).

▶ Main difficulties
 ▶ unknown number of variables,
 ▶ high number of heliostats in commercial plants (up to 200,000),
 ▶ expensive objective function evaluation,
 ▶ nonclosed-form of the objective function,
 ▶ non-convex constraints.

▶ Assumptions
 ▶ circular aperture,
 ▶ the aim point is the aperture center and it is static,
 ▶ the receiver heat flux is homogeneous,
 ▶ shadowing & blocking effects consider parallel heliostats,
 ▶ costs associated with hel. are independent on the position.
ANALYTICAL AND COMPUTATIONAL MODEL

COST FUNCTION

\[
C(h, r, |S|) = \beta_1 (h + \lambda_1)^{\lambda_2} + \beta_2 \pi r^2 + c_f + c |S|
\]

- \(h\): tower height.
- \(r\): aperture radius.
- \(|S|\): number of heliostats.
- Tower-receiver and heliostats field costs.
- Easy to compute and low number of variables.
ANALYTICAL AND COMPUTATIONAL MODEL
ANNUAL THERMAL ENERGY FUNCTION

▶ Analytical models
▶ Analytical formula and numeric algorithms to evaluate the plant performance.
▶ Accurate enough for the optimization process, e.g. Fortran code NSPOC\(^1\).

Source Article\(^3\).

Analytical and Computational Model

Annual Thermal Energy Function

- **Analytical models**
 - Analytical formula and numeric algorithms to evaluate the plant performance.
 - Accurate enough for the optimization process, e.g. Fortran code *NSPOC*\(^1\).

- **Ray-tracing models**
 - Tracing light trajectories and simulate the effects of its interactions with digitized objects.
 - Traditionally used to evaluate the plant performance, e.g. *SolTRACE*\(^2\).

ANNUAL THERMAL ENERGY FUNCTION

\[E(\Theta, S) = \int_0^T \Pi_t(\Theta, S) \, dt - \gamma_1 \]

\[l(t) \sum_{(x,y) \in S} \varphi(t, x, y, \Theta, S)A(x, y) - \gamma_2 \pi r^2 \]
ANNNUAL THERMAL ENERGY FUNCTION

\[E(\Theta, S) = \int_0^T \Pi_t(\Theta, S) \, dt - \gamma_1 \]

\[l(t) \sum_{(x, y) \in S} \varphi(t, x, y, \Theta, S) A(x, y) - \gamma_2 \pi r^2 \]

- \(I \): solar radiation,
- \(A \): heliostat area,
- \(\varphi \): solar efficiency functions: \(\prod_{i=1}^{5} \nu_i \) with \(\nu_i \in [0, 1] \).
ANNUAL THERMAL ENERGY FUNCTION
SOLAR EFFICIENCY FUNCTIONS

1. Reflectivity

2. Cosine

\[
\sqrt{\frac{1}{2} + \frac{\vec{w}(x,y) \cdot \vec{v}_{\text{sun}}(t)}{2 ||\vec{w}(x,y)||}}
\]

3. Interception

\[
f_1(t, x, y) \int \int_S \exp \left(-\frac{f_2(u,v,x,y)}{2 f_3^2(t,x,y,\Theta)} \right) \, du \, dv
\]

4. Atmospheric

\[
\alpha_1 - \alpha_2 ||\vec{w}(x,y)|| + \alpha_3 ||\vec{w}(x,y)||^2
\]

5. Shading & blocking

Sassi’s algorithm\(^1\)

\(^1\) G. Sassi. “Some notes on shadow and blockage effects”. In: Solar Energy 31.3 (1983), pp. 331–333

Solar Efficiency Functions Variations

- **Cosine**
- **Interception**
- **Atmospheric**
- **Shading and blocking**
OPTIMIZATION PROBLEM
TOWER-RECEIVER AND HELIOSTATS FIELD

\[
(\mathcal{P}) \begin{cases}
\min_{\Theta, S} & F(\Theta, S) = \frac{C(\Theta, S)}{E(\Theta, S)} \\
\text{subject to} & \Theta \in \Theta \\
& S \in \mathcal{S} \\
& \Pi_0 \leq \Pi_{T_0}(\Theta, S)
\end{cases}
\]

- Separate \((\mathcal{P})\) into 2 sub-problems:
 1. \((\mathcal{P}_S)\): fixed heliostats field, optimize tower and receiver.
 2. \((\mathcal{P}_\Theta)\): fixed tower-receiver, optimize heliostat field.
Optimal Design (\mathcal{P})
* Tower-Receiver
* Heliostat Field

Alternating algorithm

Start
Initial Tower-Receiver Design

Calculate Initial Hel. Field

Optimize Tower-Receiver

Optimize Heliostat Field

Objective value improved?

Yes

Best Configuration

No

Stop
Receiver variables and feasible set:

- $\Theta = (h, r, \xi, \alpha)$,

- $\Theta = \{ \Theta \in \mathbb{R}^4 : r_{\text{min}} \leq r \leq \min(h, r_{\text{max}}) \leq h_{\text{max}} \}$.

![Diagram of tower-receiver design with variables and coordinates labeled: x-North, y-West, z-axis, q_e, d_ap, r, h, ξ.](image)
DESIGN TOWER-RECEIVER

\[
\begin{align*}
(\mathcal{P}_S) \quad & S \text{ fixed} \\
& \max_{\Theta} \quad F(\Theta, S) = \frac{C(\Theta, S)}{E(\Theta, S)} \\
& \text{subject to} \quad \Theta \in \Theta \\
& \Pi_0 \leq \Pi_{T_d}(\Theta, S)
\end{align*}
\]

- Number of variables fixed and low.
- Non-convex objective function.
- Seems easy to solve (empirically unimodal).
Design Tower-receiver

\[(P_S) \quad S \text{ fixed} \]

\[
\begin{align*}
\max_{\Theta} & \quad F(\Theta, S) = \frac{C(\Theta, S)}{E(\Theta, S)} \\
\text{subject to} & \quad \Theta \in \Theta \\
& \quad \Pi_0 \leq \Pi_{Td}(\Theta, S)
\end{align*}
\]

Resolution

Cyclic coordinate method and local searches for each variable.

<table>
<thead>
<tr>
<th>(\cdot \in [r_{\min}, r_{\max}])</th>
<th>(h \in [h_{\min}, h_{\max}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>0.00 0.00 29.54 27.44 24.65 21.79 19.06 16.55 14.31</td>
</tr>
<tr>
<td>252.1</td>
<td>0.00 0.00 33.42 30.66 27.24 23.81 20.61 17.72 15.19</td>
</tr>
<tr>
<td>224.2</td>
<td>0.00 0.00 37.58 34.05 29.90 25.84 22.12 18.85 16.03</td>
</tr>
<tr>
<td>196.3</td>
<td>0.00 0.00 41.90 37.50 32.53 27.80 23.55 19.88 16.77</td>
</tr>
<tr>
<td>168.4</td>
<td>0.00 0.00 46.17 40.84 35.01 29.59 24.82 20.78 17.40</td>
</tr>
<tr>
<td>140.5</td>
<td>0.00 0.00 50.14 43.85 37.18 31.10 25.86 21.48 17.88</td>
</tr>
<tr>
<td>112.6</td>
<td>0.00 0.00 53.49 46.32 38.90 32.24 26.61 21.96 18.18</td>
</tr>
<tr>
<td>84.7</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>56.8</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>28.9</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

| 1 | 3.375 | 5.75 | 8.125 | 10.5 | 12.875 | 15.25 | 17.625 | 20 |
DESIGN OF HELIOSTATS FIELD

- Heliostats positions

\[S = \left\{ (x_i, y_i) \in \mathbb{R}^2 : i \in [1, N] \right\} \]

- Feasible set \(\mathcal{S} \)

\[r_{\text{min}} \leq \sqrt{x_i^2 + y_i^2} \leq r_{\text{max}} \]
\[\| (x_i, y_i) - (x_j, y_j) \| \geq \delta \]
Design of Heliostats Field

- **Heliostats positions**
 \[S = \{(x_i, y_i) \in \mathbb{R}^2 : i \in [1, N]\} \]

- **Feasible set \(\mathcal{S} \)**
 \[r_{\text{min}} \leq \sqrt{x_i^2 + y_i^2} \leq r_{\text{max}} \]
 \[||(x_i, y_i) - (x_j, y_j)|| \geq \delta \]
Design of Heliostats Field

\[(\mathcal{P}_\Theta) \quad \Theta \text{ fixed} \quad \left\{ \begin{array}{l}
\min_{\mathcal{S}} \\
\text{subject to}
\end{array} \right.
\]

\[
F(\Theta, \mathcal{S}) = \frac{C(\Theta, \mathcal{S})}{E(\Theta, \mathcal{S})}
\]

- Non-fixed number of variables (expected to be high).
- Non-convex objective function.
- Non-convex constraints.
- Many local optima.

“packing problem with interactions between circles”
DESIGN OF HELIOSTATS FIELD
STATE-OF-THE-ART METHODS: PATTERN-BASED

- Select a geometric pattern (radial-stagger, spiral, grid, etc.)
- Pattern described by a low number of parameters.
- Optimize the parameters with standard procedures (Powell, Genetic, etc.)

Fig: Source Abengoa
DESIGN OF HELIOSTATS FIELD
PATTERN-FREE

- Solve future challenges (flexible algorithm)

Fig: Multiple Receivers.
Source Abengoa (Patent US 2012/0125000)

Fig: Multi Tower Solar Array.
Source Schramek, 2013.
DESIGN OF HELIOSTATS FIELD
PATTERN-FREE

- Solve future challenges (flexible algorithm)

Greedy algorithm

- greedy-based heuristic
- pattern free to be flexible
- multi-start to avoid local optima
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
- Step k: optimization pb in 2 variables.
 - Locate heliostat number k
 - $k - 1$ heliostats in the field S^{k-1}
 - Constraints involving S^{k-1}

$$\max_{(x,y) \in F_S} \tilde{E}(x, y, S^{k-1})$$
subject to
$$\Pi_0 \leq \Pi_{T_d}(\Theta, S)$$
$$\|(x, y) - (x^i, y^i)\| \geq \delta \text{ for } i = 1, \ldots k - 1$$
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
- Step k: optimization pb in 2 variables.
 - Locate heliostat number k.
 - $k-1$ heliostats in the field.
 - Constraints involving S^{k-1}.
- Multi-start strategy to avoid local optima.
 - N_{ini} initial solutions.
 - Final solution with highest energy value.
 - Avoid local optima due to shadowing & blocking.

Annual Energy Values per unit area

![Annual Energy Values per unit area graph](image-url)
Greedy Algorithm

- Heliostats located one by one, without fixed pattern.
- Step k: optimization pb in 2 variables.
 - Locate heliostat number k.
 - $k - 1$ heliostats in the field.
 - Constraints involving S^{k-1}.
- Multi-start strategy to avoid local optima.
 - N_{ini} initial solutions.
 - Final solution with highest energy value.
 - Avoid local optima due to shadowing & blocking.

Annual Energy Values per unit area with S and B
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
- Step k: optimization pb in 2 variables.
 - Locate heliostat number k.
 - $k - 1$ heliostats in the field.
 - Constraints involving S^{k-1}.
- Multi-start strategy to avoid local optima.
 - N_{ini} initial solutions.
 - Final solution with highest energy value.
 - Avoid local optima due to shadowing & blocking effects.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
- Step k: optimization pb in 2 variables.
 - Locate heliostat number k.
 - $k - 1$ heliostats in the field.
 - Constraints involving S^{k-1}.
- Multi-start strategy to avoid local optima.
 - N_{ini} different random solutions.
 - Perform local search.
 - Final solution, the one with highest energy value.
- Determine the final number of heliostats.
 - $\Pi_0 \leq \Pi_{T_d}(x, y, S^{k-1}) \rightarrow$ feasible solution.
 - Continue locating heliostats.
 - Stop when the objective function C/E does not improve.
 - Final N.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
Greedy Algorithm

- Heliostats located one by one, without fixed pattern.
Greedy Algorithm

- Heliostats located one by one, without fixed pattern.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
GREEDY ALGORITHM

- Heliostats located one by one, without fixed pattern.
DESIGN OF HELIOSTATS FIELD
COMPARATIVE RESULTS

Radial-staggered
Heliostat Field Layout $N_{\text{hel}} = 624$

Spiral
Heliostat Field Layout $N_{\text{hel}} = 624$

Greedy
Heliostat Field Layout $N_{\text{hel}} = 624$

Design of Heliostats Field
Comparative Results

<table>
<thead>
<tr>
<th>Field</th>
<th>N</th>
<th>Π_{T_d}</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS10</td>
<td>624</td>
<td>0.43</td>
<td>0.12</td>
<td>0.0120</td>
</tr>
<tr>
<td>Spiral</td>
<td>624</td>
<td>0.42</td>
<td>0.12</td>
<td>0.0120</td>
</tr>
<tr>
<td>GPS10 Requirement Phase</td>
<td>624</td>
<td>0.43</td>
<td>0.12</td>
<td>0.0120</td>
</tr>
<tr>
<td>GPS10 Completion Phase</td>
<td>943</td>
<td>0.62</td>
<td>0.17</td>
<td>0.0111</td>
</tr>
</tbody>
</table>

Thermal power at T_d, Π_{T_d} (MWth 10^{-2}).

Annual thermal energy, E (GWHth 10^{-3}).

Cost function, C (M€),

Cost per unit of annual thermal energy, $F = C/E$.
DIFFERENT FEASIBLE REGIONS
RECTANGULAR, PERFORATED AND VALLEY REGIONS

Feasible Region 1

Feasible Region 2

Feasible Region 3
(d) PS10
(e) Requirement
(f) Completion
(g) RPS10
(h) Requirement
(i) Completion
DIFFERENT FEASIBLE REGIONS

Rectangular, perforated and valley regions

| | Reg | S | $|S|$ | Π_{T_d} | Π^+ | E | F | F_{sep} |
|-----|-------|-----|------|-------------|--------|------|-------|-----------|
| | Orig. | | 420 | 0.29 | - | 0.080| 0.01362| - |
| | Req. | | 419 | 0.29 | 0.31 | 0.079| **0.01362**| 1.5 |
| | Compl. (Π^+) | | - | - | 0.31 | - | - | 1.5 |
| | Compl.| | 425 | 0.30 | - | 0.081| **0.01333**| 1.5 |
| | Orig. | | 611 | 0.42 | - | 0.11 | 0.012 | - |
| | Req. | | 607 | 0.42 | 0.44 | 0.11 | **0.012** | 1.5 |
| | Compl. (Π^+) | | 639 | 0.44 | 0.44 | 0.12 | 0.012 | 1.5 |
| | Compl.| | 745 | 0.50 | - | 0.14 | **0.01152**| 1.5 |
| | Orig. | | 565 | 0.38 | - | 0.11 | 0.01224| - |
| | Req. | | 562 | 0.38 | 0.40 | 0.10 | **0.01248**| 1.6 |
| | Compl. (Π^+) | | 592 | 0.40 | 0.40 | 0.11 | 0.01224| 1.6 |
| | Compl.| | 856 | 0.56 | - | 0.15 | **0.01134**| 1.6 |

Thermal power at T_d, Π_{T_d} (MWth 10^{-2}).

Annual thermal energy, E (GWHth 10^{-3}).

Cost function, C (M€),

Cost per unit of annual thermal energy, $F = C/E$.
MORE PROBLEMS

Heliostat pods \(^1\)

Multi-size-heliostats \(^2\)

Multiple receivers \(^3\)

\(^1\) C. Domínguez-Bravo et al. “Field-design optimization with triangular heliostat pods”. In: Proceedings of SolarPaces 2015. 2015

Multiple Receivers

One receiver
(northern or southern field)

Source Abengoa (SP20)

Circular receiver
(surrounding field)

Source TorresolEnergy (Gemasolar)

Multiple receivers
(separate fields)

Source Abengoa
(Patent US 2012/0125000)
\[\begin{align*}
(\mathcal{P}) & \quad \begin{cases}
\min_{\Theta, S} & F(\Theta, S) \\
\text{subject to} & \Theta \in \Theta \\
& S \in \mathcal{L} \\
& \Pi_i^- \leq \Pi_{Td}(\Theta_i, S) \leq \Pi_i^+ \quad i = 1, 2, 3
\end{cases}
\end{align*} \]

- \(F = C/E. \)
- \(i = 1, 2, 3, \) receivers.
- \(\Theta = (\Theta_1, \Theta_2, \Theta_3) \) with \(\Theta_i = (r_i, h_i, \xi_i, \alpha_i)^t \in \mathbb{R}^4 \quad \forall i. \)
MULTIPLE RECEIVERS

TOWER-RECEIVER(S): VARIABLES AND CONSTRAINTS

(j) height \(h \), tilt \(\xi \) and radius \(r \) (front-lateral)

(k) orientation \(\alpha \) (top)

(l) constraints (top)
Mathematical Optimization Problem

\[\min_{S} F(\Theta, S) \]
subject to
\[S \in \mathcal{I} \]
\[\Pi_i^- \leq \Pi_{Td}(\Theta_i, S) \leq \Pi_i^+ \quad i = 1, 2, 3 \]

Assumptions:

1. **Separate fields**: each receiver have a separate field region.
 \[S = S_1 \cup S_2 \cup S_3 \text{ and } S_1 \cap S_2 \cap S_3 = \emptyset \]
 \[S_i = \{(x, y) \in S : \text{heliostat at } (x, y) \text{ aims at receiver } i\} \]

2. **Static aiming strategy**: heliostats always aim to the same receiver.
Multiple Receivers
State-of-the-art

Two integrated receivers (external and cavity)\(^5\)

Multiple apertures\(^6\)

\(^6\) M. Schmitz et al. “Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators”. In: *Solar Energy* 80 (2006), pp. 111–120
Algorithm steps

1. Calculate aiming regions: S_1, S_2, and S_3.

2. Locate the heliostats:
 2.1 Complete North region.
 2.2 Update boundaries.
 2.3 Complete West & East simultaneously.
MULTIPLE RECEIVERS

Calculate aiming regions:

1. Discretization of the feasible region.
2. At each point, calculate energy values for each receiver.
3. Select boundary points and obtain polynomial boundaries.
4. Different possibilities applying weights.
Multiple Receivers

Calculate aiming regions:

1. Discretization of the feasible region.
2. At each point, calculate energy values for each receiver.
3. Select boundary points and obtain polynomial boundaries.
4. Different possibilities applying weights.
MULTIPLE RECEIVERS

Calculate aiming regions:

1. Discretization of the feasible region.
2. At each point, calculate energy values for each receiver.
3. Select boundary points and obtain polynomial boundaries.
4. Different possibilities applying weights.
MULTIPLE RECEIVERS

Calculate aiming regions:

1. Discretization of the feasible region.
2. At each point, calculate energy values for each receiver.
3. Select boundary points and obtain polynomial boundaries.
4. Different possibilities applying weights.
Calculate aiming regions:

1. Discretization of the feasible region.
2. At each point, calculate energy values for each receiver.
3. Select boundary points and obtain polynomial boundaries.
4. Different possibilities applying weights.
Calculate aiming regions:

1. Discretization of the feasible region.
2. At each point, calculate energy values for each receiver.
3. Select boundary points and obtain polynomial boundaries.
4. Different possibilities applying weights.
MULTIPLE RECEIVERS

Heliostats location: North, West & East.

1. Pattern-free location with greedy algorithm.
2. Until Π^0_i is reached.
3. Complete the field while objective function improves.

![Heliostat Field Layout $N_{\text{hel}} = 624$](image)
MULTIPLE RECEIVERS

Heliostats location: North, West & East.

1. Pattern-free location with greedy algorithm.
2. Until Π^0_i is reached.
3. Complete the field while objective function improves.

Heliostat Field Layout $N_{\text{hel}} = 624$
MULTIPLE RECEIVERS

Heliostats location: North, West & East.

1. Pattern-free location with greedy algorithm.
2. Until Π_i^0 is reached.
3. Complete the field while objective function improves.

Heliostat Field Layout $N_{\text{hel}} = 1872$
Multiple Receivers

Alternating algorithm

| Step | Pb | $|S|$ | Π_{T_d} | E | C | F |
|------|----|-----|------------|----|-----|-----|
| $k = 0$ | 1 : (Θ^0, S^0) | 2009 | 118.7550 | 326.83 | 5.9984 | 0.01835 |
| $k = 1$ | 2 : (Θ^1, S^0) | 2009 | 112.0731 | 310.62 | 5.3916 | 0.01736 |
| $k = 1$ | 3 : (Θ^1, S^1) | 2033 | 115.0178 | 314.55 | 5.4445 | **0.01731** |
| $k = 2$ | 4 : (Θ^2, S^1) | 2033 | 110.4583 | 306.45 | 5.3443 | 0.01744 |
| $k = 2$ | 5 : (Θ^2, S^2) | 2084 | 114.8432 | 312.30 | 5.4567 | 0.01747 |

Thermal power at T_d, Π_{T_d} (MWth).

Annual thermal energy, E (GWHth).

Cost function, C (M€).

Cost per unit of annual thermal energy, $F = C / E$.
MULTIPLE RECEIVERS

ALTERNATING ALGORITHM: RECEIVERS

<table>
<thead>
<tr>
<th>Step</th>
<th>h (m)</th>
<th>ξ (grad)</th>
<th>α (grad)</th>
<th>r (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ^0</td>
<td>Θ_1</td>
<td>100.50</td>
<td>12.50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Θ_2</td>
<td>100.50</td>
<td>12.50</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Θ_3</td>
<td>100.50</td>
<td>12.50</td>
<td>-90</td>
</tr>
<tr>
<td>Θ^1</td>
<td>Θ_1</td>
<td>100.53</td>
<td>8.72</td>
<td>-0.81</td>
</tr>
<tr>
<td></td>
<td>Θ_2</td>
<td>100.50</td>
<td>17.24</td>
<td>80.94</td>
</tr>
<tr>
<td></td>
<td>Θ_3</td>
<td>100.50</td>
<td>17.96</td>
<td>-81.32</td>
</tr>
<tr>
<td>Θ^2</td>
<td>Θ_1</td>
<td>100.50</td>
<td>10.71</td>
<td>-0.26</td>
</tr>
<tr>
<td></td>
<td>Θ_2</td>
<td>100.50</td>
<td>17.50</td>
<td>75.41</td>
</tr>
<tr>
<td></td>
<td>Θ_3</td>
<td>100.50</td>
<td>17.43</td>
<td>-76.09</td>
</tr>
</tbody>
</table>

Tower height, h (m).

Receiver aperture tilt ξ (grad), orientation α (grad) and radius r (m).
MULTIPLE RECEIVERS

ALTERNATING ALGORITHM: FIELDS
Eskerrik Asko

cdominguez@bcamath.org
REFERENCES

