Fast Inversion of Logging-While-Drilling (LWD) Resistivity Measurements

David Pardo ¹ Carlos Torres-Verdín ²

¹University of the Basque Country (UPV/EHU) and Ikerbasque, Bilbao, Spain.
²The University of Texas at Austin, USA

17 Oct. 2013
BCAM Workshop on Computational Mathematics, Bilbao, Spain
Surface measurements on the sea.

Marine seismic measurements.
Surface measurements on the sea.

Marine controlled source electromagnetic (CSEM) measurements.
Surface measurements on land.

Seismic measurements.
Surface measurements on land.

Magnetotelluric (MT) measurements.
Logging measurements

Logging while drilling in a deviated well.

Multiphysics
Logging measurements

Multiphysics
Dip Angle

Logging while drilling in a deviated well.
Logging measurements

Multiphysics
Dip Angle
Borehole eccentricity

Logging while drilling in a deviated well.
Logging measurements

Multiphysics
Dip Angle
Borehole eccentricity
Invasion

Logging while drilling in a deviated well.
Logging measurements

- Multiphysics
- Dip Angle
- Borehole eccentricity
- Invasion
- Anisotropy

Logging while drilling in a deviated well.
Logging measurements

Multiphysics
Dip Angle
Borehole eccentricity
Invasion
Anisotropy
Fractures

Logging while drilling in a deviated well.
Logging measurements

Multiphysics
Dip Angle
Borehole eccentricity
Invasion
Anisotropy
Fractures
Different Logging Devices

Logging while drilling in a deviated well.
main areas of expertise

- **Resistivity Measurements:**
 - Marine CSEM measurements.
 - Magnetotelluric (MT) measurements.
 - Galvanic and induction devices.
 - Cased wells.
 - Cross-well and borehole-to-surface measurements.
 - Deviated wells.
 - Borehole eccentered tools.
 - Hydrofracture characterization.

- **Sonic Measurements:**
 - Wireline and logging-while-drilling.
 - Borehole-eccentered tools.

- **Inversion of Resistivity Measurements:**
 - One-dimensional model reduction.
 - Rapid inversion of logging-while-drilling measurements.
main areas of expertise

- **Resistivity Measurements:**
 - Marine CSEM measurements.
 - Magnetotelluric (MT) measurements.
 - Galvanic and induction devices.
 - Cased wells.
 - Cross-well and borehole-to-surface measurements.
 - Deviated wells.
 - Borehole eccentered tools.
 - Hydrofracture characterization.

- **Sonic Measurements:**
 - Wireline and logging-while-drilling.
 - Borehole-eccentered tools.

- **Inversion of Resistivity Measurements:**
 - One-dimensional model reduction.
 - Rapid inversion of logging-while-drilling measurements.
Motivation and objectives.

Assumptions.

Forward Problem.

Inverse Problem.

Numerical Results.

Conclusions.
Goal: Inversion of LWD resistivity measurements.
Goal: Inversion of LWD resistivity measurements.

We want the inversion algorithm to be:

- **Efficient.** Inversion in real time using 1D model reduction.
Goal: Inversion of LWD resistivity measurements.

We want the inversion algorithm to be:

- **Efficient.** Inversion in real time using 1D model reduction.

- **Flexible.** It should enable the dynamic selection of a subset of measurement and/or unknowns during inversion.
motivation and objectives

Goal: Inversion of LWD resistivity measurements.

We want the inversion algorithm to be:

- **Efficient.** Inversion in real time using 1D model reduction.
- **Flexible.** It should enable the dynamic selection of a subset of measurement and/or unknowns during inversion.
- **Robust.** It should always converge to physically meaningful solutions.
Goal: Inversion of LWD resistivity measurements.

We want the inversion algorithm to be:

- **Efficient.** Inversion in real time using 1D model reduction.

- **Flexible.** It should enable the dynamic selection of a subset of measurement and/or unknowns during inversion.

- **Robust.** It should always converge to physically meaningful solutions.

- **Reliable.** It should provide error bars.
motivation and objectives

Goal: Inversion of LWD resistivity measurements.

We want the inversion algorithm to be:

- **Efficient.** Inversion in real time using 1D model reduction.

- **Flexible.** It should enable the dynamic selection of a subset of measurement and/or unknowns during inversion.

- **Robust.** It should always converge to physically meaningful solutions.

- **Reliable.** It should provide error bars.

- **Useful.** It should work for any commercial LWD instrument with actual field measurements.
We assume a planarly TI layered media with piecewise constant resistivities.

We assume no borehole effects and no mandrel effects.

We know the bed boundaries a priori.

We know the dip and azimuthal angles of intersection a priori.
forward problem

Magnetic field H produced by a magnetic dipole is obtained using a semi-analytical solution for a 1D planarly layered TI media (Kong, 1972).
Magnetic field H produced by a magnetic dipole is obtained using a semi-analytical solution for a 1D planarly layered TI media (Kong, 1972).

- A) Hankel transform in the horizontal plane.
Magnetic field H produced by a magnetic dipole is obtained using a semi-analytical solution for a 1D planarly layered TI media (Kong, 1972).

- A) Hankel transform in the horizontal plane.

- B) Analytical solution of the resulting ordinary differential equation in the vertical direction.
Magnetic field H produced by a magnetic dipole is obtained using a semi-analytical solution for a 1D planarly layered TI media (Kong, 1972).

- A) Hankel transform in the horizontal plane.
- B) Analytical solution of the resulting ordinary differential equation in the vertical direction.
- C) Numerical inverse Hankel transform (integration).
Magnetic field H produced by a magnetic dipole is obtained using a semi-analytical solution for a 1D planarly layered TI media (Kong, 1972).

- A) Hankel transform in the horizontal plane.
- B) Analytical solution of the resulting ordinary differential equation in the vertical direction.
- C) Numerical inverse Hankel transform (integration).

Result: Magnetic field H.
CASE I: Triaxial Induction.

\[H = \begin{pmatrix} H_{xx} & H_{xy} & H_{xz} \\ H_{yx} & H_{yy} & H_{yz} \\ H_{zx} & H_{zy} & H_{zz} \end{pmatrix}. \]
CASE II: Conventional LWD resistivity tool.

\[H_q := \log \left| \frac{H_{zz}^{RX_1}}{H_{zz}^{RX_2}} \right| + i \left[ph(H_{zz}^{RX_1}) - ph(H_{zz}^{RX_2}) \right] \]

- Attenuation
- Phase Difference

Graphs showing the relationship between resistivity and the logarithmic scale for attenuation and phase difference.
CASE II: Conventional LWD resistivity tool.

\[\tilde{H}_q := \log \log \left| \frac{H_{zz}^{RX_1}}{H_{zz}^{RX_2}} \right| + i \log \left[\frac{\text{ph}(H_{zz}^{RX_1}) - \text{ph}(H_{zz}^{RX_2})}{\text{ATTENUATION}} \right] \]

PHASE DIFFERENCE
To accelerate computations, we employ a WINDOWING system:
To accelerate computations, we employ a WINDOWING system:
forward problem

To accelerate computations, we employ a WINDOWING system:

- Forward problem
inverse problem (formulation)

Cost Functional:

\[C_W(s) = \| H(s) - M \|_{W_M}^2, \]

where

- \(s \) is either the conductivity \(\sigma \), the resistivity \(\rho \), or \(\log \rho \),
- \(H(s) \) is the set of simulated measurement for \(s \),
- \(M \) is the set of actual (or synthetic) field measurements.

Goal: To find \(s^* := \arg \min_s C_W(s) \).
inverse problem (formulation)

Cost Functional:

\[
\mathcal{C}_W(s) = \| H(s) - M \|_{W_M}^2 + \lambda \| s - s_0 \|_{W_{s_0}}^2,
\]

where

- \(s \) is either the conductivity \(\sigma \), the resistivity \(\rho \), or \(\log \rho \),
- \(H(s) \) is the set of simulated measurement for \(s \),
- \(M \) is the set of actual (or synthetic) field measurements,
- \(\lambda \) is a regularization parameter, and
- \(s_0 \) is an \textit{a priori} distribution of \(s \).

Goal: To find \(s^* := \arg \min_s \mathcal{C}_W(s) \).
inverse problem (sol. method)

We select the following deterministic iterative scheme:

\[s^{(n+1)} = s^{(n)} + \delta s^{(n)}. \]

Using a Taylor’s series expansion of first order of \(H \):

\[H(s^{(n+1)}) \approx H(s^{(n)}) + \left(\frac{\partial H(s^{(n)})}{\partial s} \right) \delta s^{(n)}. \]

Solving \(\frac{\partial C_W(s^{(n+1)})}{\partial \delta s^{(n)}} = 0 \), we obtain Gauss-Newton’s method:

\[\delta s^{(n)} := - \frac{Re(J, H(s^{(n)}) - M)_{L^2_{WM}} + \lambda (I, s^{(n)} - s_0)_{L^2_{W_0}}}{(J, J)_{L^2_{WM}} + \lambda (I, I)_{L^2_{W_0}}}. \]
To compute the Jacobian, we employ:

- The chain rule:

$$ J = \frac{\partial H(s)}{\partial s_j} = \frac{\partial H(s)}{\partial \rho_j} \frac{\partial \rho_j}{\partial s_j}. $$

- The definition of derivative:

$$ J_\rho = \frac{\partial H(s)}{\partial \rho_j} \approx \frac{H(\rho + h\delta \rho_j) - H(\rho)}{h} \quad (h \text{ small}). $$

Only one Jacobian matrix is computed for any variable s.
inverse problem (jacobian)

Misfit(%) Dip Angle = 82°. Thinnest Bed: 0.37 m.

ρ 11,35 %
Misfit (%) Dip Angle = 82°. Thinnest Bed: 0.37 m.

$\rho \quad 11,35 \%$
inverse problem (jacobian)

Misfit (%) Dip Angle = 82°. Thinnest Bed: 0.37 m.

\[\rho \quad 11,35 \% \]

\[\sigma \quad 11,32 \% \]
Inverse problem (jacobian)

Misfit (%) Dip Angle = 82°. Thinnest Bed: 0.37 m.

\[\rho \] 11.35%

\[\sigma \] 11.32%
Inverse problem (jacobian)

Dip Angle = \(82^\circ\). Thinnest Bed: 0.37 m.

\[\begin{align*}
\rho & \quad 11.35\% \\
\sigma & \quad 11.32\% \\
\log \rho & \quad 7.87\%
\end{align*} \]
Dip Angle = 82°. Thinnest Bed: 0.37 m.

** Misfit (%)

ρ 11.35 %

σ 11.32 %

$log\ \rho$ 7.87 %
inverse problem (jacobian)

Misfit (%) Dip Angle = 82°. Thinnest Bed: 0.37 m.

ρ 11.35%

σ 11.32%

$\log \rho$ 7.87%

Best 6.58%
Once we achieve convergence, we have:

\[\delta s^{(n)} \approx 0. \]

Considering new noisy measurements of the type:

\[\tilde{M} := M + N \]

and using these new measurements in our Gauss-Newton method, we obtain the following new correction \(\tilde{\delta s}^{(n)} \):

\[\tilde{\delta s}^{(n)} := \frac{\text{Re}(J, N)_{L^2_{WM}}}{(J, J)_{L^2_{WM}} + \lambda(I, I)_{L^2_{Ws0}}} \]

Error bars: \[[s^{(n)} - |\tilde{\delta s}^{(n)}|, s^{(n)} + |\tilde{\delta s}^{(n)}|]. \]
Dip Angle: 82°.

Thinnest bed: 0.37m
Dip Angle = 82°. Thinnest bed: 0.37m.
Dip Angle = 82°. Thinnest bed: 0.37m.
Sensitivity with respect to the Dip Angle. Thinnest bed: 0.37m.
Dip Angle: 82°.

Thinnest bed: 0.37m

Anisotropy.
numerical results (synthetic 1)

Vertical well $\rightarrow R_h$.

Resistivity (Ohm-m)

HD (m)

1000 1002 1004 1006

100 10 1

30°
numerical results (synthetic 1)

Vertical well $\rightarrow R_h$.

Horizontal well $\rightarrow R_v$.

Resistivity (Ohm-m)
Dip Angle: 82°.

Thinnest bed: 0.05m.
numerical results (synthetic 2)
Numerical Results (Synthetic 2)

<table>
<thead>
<tr>
<th>Tool 1</th>
<th>Triaxial No Noise</th>
<th>Triaxial 5% Noise</th>
<th>Triaxial 10% Noise</th>
<th>Triaxial No Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistivity (Ohm-m)</td>
<td>Resistivity (Ohm-m)</td>
<td>Resistivity (Ohm-m)</td>
<td>Resistivity (Ohm-m)</td>
<td>Resistivity (Ohm-m)</td>
</tr>
</tbody>
</table>

The graphs depict the resistivity values over the true vertical depth for different noise levels. The x-axis represents the true vertical depth in meters, ranging from 0.0 to 1.4 meters. The y-axis represents the resistivity values in Ohm-meters, ranging from 1 to 100 Ohm-meters.
Almost horizontal.

Field data.
numerical results (field 1)

Almost horizontal.

Field data.
Almost horizontal.

Field data.

Zoom.
Dip Angle: 79.3°.

Field data.
Inversion results (blue) are similar to those obtained by Dr. Olabode Ijasan (red).
conclusions

- We have developed a library for the fast inversion of LWD resistivity measurements.
conclusions

- We have developed a library for the fast inversion of LWD resistivity measurements.

- The library enables any well trajectory and any logging instrument. We assume a 1D planarly layered TI media.
We have developed a library for the fast inversion of LWD resistivity measurements.

The library enables any well trajectory and any logging instrument. We assume a 1D planarly layered TI media.

The library automatically selects the regularization parameter, stopping criteria, and inversion variable.
We have developed a library for the fast inversion of LWD resistivity measurements.

The library enables any well trajectory and any logging instrument. We assume a 1D planarly layered TI media.

The library automatically selects the regularization parameter, stopping criteria, and inversion variable.

It enables to first invert a subset of measurements and/or a subset of resistivities.
We have developed a library for the fast inversion of LWD resistivity measurements.

The library enables any well trajectory and any logging instrument. We assume a 1D planarly layered TI media.

The library automatically selects the regularization parameter, stopping criteria, and inversion variable.

It enables to first invert a subset of measurements and/or a subset of resistivities.

Numerical results illustrate the stability of the proposed inversion algorithm.
Computational cost of one forward simulation:

\[
COST = C \times N_{POSITIONS} \times N_{LAYERS} \times N_{FREQ.} \times N_{TX} \times N_{RX}
\]
Computational cost of one forward simulation:

\[\text{COST} = C \times N_{\text{POSITIONS}} \times N_{\text{LAYERS}} \times N_{\text{FREQ.}} \times N_{\text{TX}} \times N_{\text{RX}} \]

Computational cost of building the Jacobian:

\[\text{COST} = C \times N_{\text{POSITIONS}} \times N_{\text{LAYERS}}^2 \times N_{\text{FREQ.}} \times N_{\text{TX}} \times N_{\text{RX}} \]
Computational cost of one forward simulation:

\[\text{COST} = C \times N_{\text{POSITIONS}} \times N_{\text{LAYERS}} \times N_{\text{FREQ}} \times N_{\text{TX}} \times N_{\text{RX}} \]

Computational cost of building the Jacobian:

\[\text{COST} = C \times N_{\text{POSITIONS}} \times N_{\text{LAYERS}}^2 \times N_{\text{FREQ}} \times N_{\text{TX}} \times N_{\text{RX}} \]

Can we eliminate the factor \(N_{RX}\)? I think so!
Can we eliminate the factor \(N_{TX}\)? To some extend!
Can we eliminate the square on the factor \(N_{LAYERS}\)? Perhaps!
To employ a Model Reduction algorithm based on Cartesian (C) coordinates and obtain results for Borehole (B) coordinates, we employ:

\[H_{BB} = J_{BC} \cdot H_{CC} \cdot J_{CB}, \]

where:

- \(H_{CC} \) and \(H_{BB} \) are the model reduction algorithms for the Cartesian and Borehole systems of coordinates, respectively,

- \(J_{CB} = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

- \(J_{BC} = J_{CB}^{-1} \), \(\theta \) is the dip angle, and \(\phi \) is the azimuthal angle.
We have:

\[C^{(n)}_W(s) = \| H(s) - M \|_{WM}^2 + \lambda^{(n)} \| s - s_0 \|_{L^2_{W_0}}^2, \]

\text{MISFIT} + \text{REGULARIZATION}
We have:

\[C_W^{(n)}(s) = \| H(s) - M \|^2_{W,M} + \lambda^{(n)} \| s - s_0 \|^2_{L_{W,0}} \]

We want the regularization term to contribute with 10% to the total cost functional.
inverse problem (reg. param.)

We have:

\[
C_W^{(n)}(s) = \| H(s) - M \|_{l_{WM}^2}^2 + \lambda^{(n)} \| s - s_0 \|_{L_{W_s^0}^2}^2,
\]

MISFIT 90 %
REGULARIZATION 10 %

We want the regularization term to contribute with 10 % to the total cost functional. Then:

\[
\lambda^{(n)} := 0.1 * \frac{\| H(s^{(n)}) + J\delta s^{(n)}_{\lambda^{(n)}} - M \|_{l_{WM}^2}^2}{\| s^{(n)} + \delta s^{(n)}_{\lambda^{(n)}} - s_0 \|_{L_{W_s^0}^2}^2}
\]

We perform a fixed-point iteration to obtain the value of \(\lambda^{(n)} \).
We have:

\[
C_W(s_{\lambda(n)}^{(n+1)}) = \| H(s_{\lambda(n)}^{(n+1)}) - M \|_{L^2_{WM}}^2 + \lambda^{(n+1)} \| s_{\lambda(n)}^{(n+1)} - s_0 \|_{L^2_{W_{S_0}}}^2
\]

\[
\approx \| H(s^{(n)}) + J\delta s_{\lambda(n)}^{(n)} - M \|_{L^2_{WM}}^2 + \lambda^{(n)} \| s^{(n)} + \delta s_{\lambda(n)}^{(n)} - s_0 \|_{L^2_{W_{S_0}}}^2.
\]

We want the regularization term to contribute with 10% to the total cost functional. Then:

\[
\lambda^{(n)} := 0.1 \ast \frac{\| H(s^{(n)}) + J\delta s_{\lambda(n)}^{(n)} - M \|_{L^2_{WM}}^2}{\| s^{(n)} + \delta s_{\lambda(n)}^{(n)} - s_0 \|_{L^2_{W_{S_0}}}^2}
\]

We perform a fixed-point iteration to obtain the value of \(\lambda^{(n)} \).
We stop the inversion process when both the relative data misfit and regularization term do not vary significantly. Mathematically, we require the following two conditions to be satisfied:

\[
100 * \frac{\| H(s^{(n+1)}) - M \|^2_{L^2_{WM}} - \| H(s^{(n)}) - M \|^2_{L^2_{WM}}}{\| M \|^2_{L^2_{WM}}} \leq 0.5 \%
\]

And:

\[
100\lambda^{(n)} * \frac{\| s^{(n+1)} - s_0 \|^2_{L^2_{W_{s0}}} - \| s^{(n)} - s_0 \|^2_{L^2_{W_{s0}}}}{\| s_0 \|^2_{L^2_{W_{s0}}}} \leq 5 \%.
\]
inverse problem (formulation)

Cost Functional:

\[C(s) = \| H(s) - M \|_{L^2}^2 + \lambda \| s - s_0 \|_{L^2}^2. \]

We want to weight all measurements and resistivities so equal relative errors will contribute equally to the cost functional.
Cost Functional:

\[C(s) = \| H(s) - M \|_{L^2}^2 + \lambda \| s - s_0 \|_{L^2}^2. \]

We want to weight all measurements and resistivities so equal relative errors will contribute equally to the cost functional.

Weighted cost functional:

\[C_W(s) = \| H(s) - M \|_{L^2}^2_{W_M} + \lambda \| s - s_0 \|_{L^2}^2_{W_{s_0}}. \]

Goal: To find \(s^* := \arg \min_s C_W(s) \).