DESIGN OF A HIGH SPEED TRAIN USING A MULTIPHYSICAL APPROACH

Aitor Berasarte
Technologies Management Area
Technology Division
CAF
WHAT DO WE ANALYSE?

AERODYNAMICS

STRUCTURAL ANALYSIS

DYNAMICS

NOISE & VIBRATIONS

TRIBOLOGY
STRUCTURAL ANALYSIS

- Different FEM analysis
 - Static linear / non-linear
 - Proof case assessment
 - Fatigue: Goodman / Miner / Dang Van
 - Sub-modeling
 - Bolted joints and Interference fits
 - Thermal – Stress (wheels)
 - Non-linear dynamic (crash)
 - Linear dynamic (modal)
 - Mechanisms and multibody dynamics
STRUCTURAL ANALYSIS

- Main simulation tools
 - HyperMesh pre-processor
 - Abaqus solver and post-processor
Modal FEA

Structural eigenmode
STRUCTURAL ANALYSIS

- Modal FEA
 - Frequency response
 - Based on modal combination techniques
 - Requires modal damping to be defined
 - Frequency dependent
 - Unknown until experimental modal test is performed
STRUCTURAL ANALYSIS

- Crashworthiness FEA
 - Structure collapse analysis provides
 - Reaction load / displacement curve
 - Energy / displacement curve
 - Survival space preservation assessment
 - Deformation analysis
STRUCTURAL ANALYSIS

- Crashworthiness FEA
 - Requires material model definition → Difficulties
 - Real Stress – Strain curve (material tolerance)
 - Stiffness loss at welded regions (aluminium alloys)
 - Spotwelds → fail criteria
 - Very hardware demanding
 - Needs experimental correlation for validation
STRUCTURAL ANALYSIS

- Thermal - Stress FEA
 - Sequentially coupled thermal – stress analysis
 - Requires knowledge of physical and mechanical properties related to temperature
 - Specific heat
 - Thermal conductivity
 - Thermal expansion
 - Stress - strain curve
 - Creep behaviour
 - Film coefficients depend on geometry and wheel speed
 - Data can be obtained by means of CFD
STRUCTURAL ANALYSIS

- Thermal - Stress FEA
 - Braked wheel analysis
 - Brake – Traction sequence simulation
NOISE & VIBRATIONS

- Main problem: NOISE PREDICTION
 - Current situation
 - High dependence on prototypes and tests on finished vehicles
 - Target
 - Prediction information feedback on early stage
- Two types of problems
 - Structure-borne noise
 - Air-borne noise
Structure-borne noise
- Low modal density
- Low frequencies
- Way to solve → FEM

Disadvantages of FEM
- Huge number of elements depending on the bandwidth
- Huge models (a complete train)
 - Sections can be defined
- Interaction with the rest of the elements not considered
 - Other equipment, seats, etc.
- Damping unknown
NOISE & VIBRATIONS

- Air-borne noise
 - High modal density
 - High frequencies and bandwidth
 - Way to solve → SEA

- Disadvantages of SEA
 - Definition of different materials and couplings
 - Uncertainty
 - Accuracy
What about the mid-frequencies?
- Medium modal density
- Neither FEM nor SEA suitable for this problem
- Way to solve → ?
 - No method has proven to be suitable for all frequencies
- Hybrid methods → They combine FEM and SEA
DYNAMICS

○ Studies performed
 ● Modal analysis
 ● Dynamic stability
 ● Curve equilibrium
 ● Time simulations
 ● Active suspension design
 ● Wheel profile design
 ● Comfort
 ● Gauge analysis

○ Tool
 ● In-house Multi-body simulation (MBS) software
DYNAMICS

- Multi-body model (MBS model)
 - Bodies (rigid or flexible)
 - Geometry
 - Mass and CoG
 - Inertia
 - Connection elements
 - Stiffness and damping elements
 - Kinematical restrictions
 - Active control elements
 - Vehicle-track interaction
 - Wheel-rail contact

REAL SYSTEM EQUIVALENCE

MULTIBODY SIMULATION MODEL
Bodies
- High-speed trains → Flexible carbody
- Objective
 - Represent the influence of carbody structural modes on vehicle dynamics behaviour
- How
 - FEM modal analysis → Input for MBS model
- The more structural modes on the MBS model
 - The more precision
 - The higher computational cost
- Solution
 - Influence of modes >20Hz → Residual flexibility
DYNAMICS

- Influence on stability

![Dynamics graph]

- Influence on running comfort

![Comfort index graph]

Direct influence of carbody flexibility on vehicle dynamics
DYNAMICS

- Suspension elements
 - Function
 - Connect different bodies
 - Ensure good comfort and ride quality
 - Provide good stability
 - Types
 - Linear
 - Non-linear

- Selection of suspension parameters
 - Compromise between the different ride conditions
Vehicle-track interaction
- Track features → Excitation to the vehicle
 - Straight or curved track
 - Real track irregularities
 - Time domain
 - Frequency domain
 - Simulation of specific irregularities
- Accurate modelling of wheel-rail contact needed
 - Cornerstone of vehicle running dynamics
 - Source of excitations
 - Tribology problems (wear prediction)
 - Impact on life cycle costs

DYNAMICS
Wheel profile design
Wheel reprofiling
Vehicle-track interaction

Current work lines

- Wear prediction
- Multipoint contact
- Tridimensional contact (flange contact at different plane)
- Coupling with traction and brake
- Left and right rail with different friction coefficient
- Variable friction coefficient as a function of contact position (flange lubrication)
AERODYNAMICS

- Resistance to motion
 - Aerodynamic term has a great influence in high speed
 - A proper CFD simulation is very challenging
 - Great level of geometry detail is required
 - Many parameters have an influence
 - Nose design
 - Pantograph configuration
 - Inter-coach geometry
 - Bogie features
 - Etc.
• Crosswind issues
 • A safety requirement
 • A well-established European methodology
 • Geometry characterization
 • Defined wind scenarios
 • Coupling with real-time MBS simulations
 • Challenges
 • Proper simulation of reality
 • Parametric optimization
 • Nose shape
 • Roof features
 • Etc.
AERODYNAMICS

- Open air phenomena
 - Safety issue for passengers on platforms and workers close to the track
 - Pressure effects are not a problem for simulation
 - Viscous effects and wake are difficult to simulate
 - Structural requirement for passing trains and infrastructure equipment
 - Input for FEM calculations
 - Static value
 - Load collectives
AERODYNAMICS

- Tunnel phenomena
 - Pressure variations
 - Many combinations possible
 - Type of tunnel, type of trains, etc.
 - Tackled with CFD and 1-d simulations
 - Input for FEM calculations
 - Micro-pressure wave generated at the exit portal
 - Many factors play a role
 - Transient CFD seems suitable
AERODYNAMICS

- Ballast flying
 - Initiation
 - Dynamics
 - Ice drop
 - Aerodynamics (very important at high speeds)
 - Continuation
 - Mainly aerodynamic
 - Challenges
 - Proper simulation of the flow in the underbelly region
 - Flow-stones interaction
 - Motion of stones and collision with other stones/elements
AERODYNAMICS

- Aeroacoustics
 - Aerodynamic contributes to
 - Structure-borne noise
 - Flow-structure interaction
 - Air-borne noise
 - Flow behaves as a noise source
 - Very challenging to simulate

- Refrigeration
 - Cooling of equipment
 - Climatic comfort of passengers
AERODYNAMICS

- Aerodynamic design
 - Many effects
 - Many variables
 - Interaction

- Interaction with
 - Structural design
 - Dynamics
 - Noise & vibrations
 - Tribology (2nd order)

- Optimization of design
 - Energy efficiency

Need for advanced design approach
GENERAL OVERVIEW

- AERODYNAMICS
- STRUCTURAL ANALYSIS
- DYNAMICS
- NOISE & VIBRATIONS
- TRIBOLOGY
THANKS FOR YOUR KIND ATTENTION!!!