Compactness estimates for Hamilton-Jacobi equations

Piermarco Cannarsa

University of Rome “Tor Vergata”

Partial differential equations, optimal design and numerics
CENTRO DE CIENCIAS DE BENASQUE PEDRO PASCUAL

August 25 – September 5, 2013
Outline

1. Hamilton-Jacobi equations
2. Compactness estimates for hyperbolic conservation laws
3. Compactness estimates for Hamilton-Jacobi equations
Outline

1. Hamilton-Jacobi equations
2. Compactness estimates for hyperbolic conservation laws
3. Compactness estimates for Hamilton-Jacobi equations
Hamilton-Jacobi equations

\[
\begin{aligned}
&\left\{ \begin{array}{l}
 u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \\
 u(0, x) = u_0(x)
\end{array} \right. \\
&\ (t, x) \in [0, T] \times \mathbb{R}^n \\
&\ x \in \mathbb{R}^n
\end{aligned}
\]

where

- \(H : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) is a \(C^2 \) smooth function such that

\[
(a) \quad \lim_{|p| \to \infty} \inf_{(t,x) \in [0, T] \times \mathbb{R}^n} \frac{H(t, x, p)}{|p|} = +\infty
\]

\[
(b) \quad D_p^2 H(t, x, p) \geq \alpha \cdot \mathbb{I}_n, \quad \forall (t, x, p) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n
\]

with \(\alpha > 0 \)

- \(u_0 : \mathbb{R}^n \to \mathbb{R} \) is a Lipschitz function

play an important role in Dynamic Optimization
Hamilton-Jacobi equations

\[
\begin{aligned}
&u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \quad (t, x) \in [0, T] \times \mathbb{R}^n \\
&u(0, x) = u_0(x) \\
\end{aligned}
\]

where

- \(H : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \) is a \(C^2 \) smooth function such that

 \((a) \lim_{|p| \to \infty} \inf_{(t,x) \in [0, T] \times \mathbb{R}^n} \frac{H(t, x, p)}{|p|} = +\infty \)

 \((b) \quad D_p^2 H(t, x, p) \geq \alpha \cdot I_n, \quad \forall (t, x, p) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \)

 with \(\alpha > 0 \)

- \(u_0 : \mathbb{R}^n \rightarrow \mathbb{R} \) is a Lipschitz function

play an important role in Dynamic Optimization
Hamilton-Jacobi equations

\[
\begin{cases}
 u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 & (t, x) \in [0, T] \times \mathbb{R}^n \\
 u(0, x) = u_0(x) & x \in \mathbb{R}^n
\end{cases}
\]

where

- \(H : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \) is a \(C^2 \) smooth function such that

 \((a)\) \quad \lim_{|p| \rightarrow \infty} \inf_{(t, x) \in [0, T] \times \mathbb{R}^n} \frac{H(t, x, p)}{|p|} = +\infty

 \((b)\) \quad D^2_p H(t, x, p) \succeq \alpha \cdot \mathbb{I}_n, \quad \forall (t, x, p) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n

 with \(\alpha > 0 \)

- \(u_0 : \mathbb{R}^n \rightarrow \mathbb{R} \) is a Lipschitz function

play an important role in Dynamic Optimization
Given a C^2 smooth function $L : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that

(a) $\lim_{|q| \to \infty} \inf_{(t,x) \in [0,T] \times \mathbb{R}^n} \frac{L(t, x, q)}{|q|} = +\infty$

(b) $D_q^2 L(t, x, q) \geq \lambda \cdot \mathbb{I}_n, \quad \forall (t, x, q) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \quad (\lambda > 0)$

consider the problem of minimizing the functional

$$J(\xi) = \int_0^T L(t, \xi(t), \xi'(t)) \, dt$$

over all absolutely continuous arcs $\xi : [0, T] \to \mathbb{R}^n$ satisfying

$$\xi(0) = x_0 \quad \text{and} \quad \xi(T) = x_T$$

with $x_0, x_T \in \mathbb{R}^n$.
The simplest problem in the calculus of variations

Given a C^2 smooth function $L : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that

(a) $\lim_{|q| \to \infty} \inf_{(t, x) \in [0, T] \times \mathbb{R}^n} \frac{L(t, x, q)}{|q|} = +\infty$

(b) $D_q^2 L(t, x, q) \geq \lambda \cdot I_n, \quad \forall (t, x, q) \in [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \quad (\lambda > 0)$

consider the problem of minimizing the functional

$$J(\xi) = \int_0^T L(t, \xi(t), \xi'(t)) \, dt$$

over all absolutely continuous arcs $\xi : [0, T] \to \mathbb{R}^n$ satisfying

$\xi(0) = x_0$ and $\xi(T) = x_T$

with $x_0, x_T \in \mathbb{R}^n$
A particle moving from time 0 to time T between two points $x_0, x_T \in \mathbb{R}^3$ subject to a conservative force

$$F(x) = -\nabla V(x)$$

among all the (admissible) trajectories $\xi(t)$, follows the one that minimizes the action, i.e. the functional

$$J(\xi) = \int_0^T \left[\frac{1}{2} m |\xi'(t)|^2 - V(\xi(t)) \right] dt,$$

where m is the mass of the particle and $\frac{1}{2} m |x'(t)|^2$ is its kinetic energy.
The action functional

A particle moving from time 0 to time \(T \) between two points \(x_0, x_T \in \mathbb{R}^3 \) subject to a conservative force

\[
F(x) = -\nabla V(x)
\]

among all the (admissible) trajectories \(\xi(t) \), follows the one that minimizes the action, i.e. the functional

\[
J(\xi) = \int_0^T \left[\frac{1}{2} m |\xi'(t)|^2 - V(\xi(t)) \right] dt,
\]

where \(m \) is the mass of the particle and \(\frac{1}{2} m |x'(t)|^2 \) is its kinetic energy.
The action functional

A particle moving from time 0 to time T between two points $x_0, x_T \in \mathbb{R}^3$ subject to a conservative force

$$F(x) = -\nabla V(x)$$

among all the (admissible) trajectories $\xi(t)$, follows the one that minimizes the action, i.e. the functional

$$J(\xi) = \int_0^T \left[\frac{1}{2} m |\xi'(t)|^2 - V(\xi(t)) \right] dt,$$

where m is the mass of the particle and $\frac{1}{2} m |x'(t)|^2$ is its kinetic energy.
Given $a, b \in \mathbb{R}$ with $a < b$, consider in the space \mathbb{R}^3 the circles

\[
\begin{align*}
&\left\{ \begin{array}{l}
y^2 + z^2 = A^2 \\
x = a
\end{array} \right. \\
&\left\{ \begin{array}{l}
y^2 + z^2 = B^2 \\
x = b
\end{array} \right.
\]

For any smooth $\xi : [a, b] \to \mathbb{R}$, with $\xi(x) > 0$, $\xi(a) = A$ and $\xi(b) = B$, consider

- the regular curve $\vec{X}(x) = (x, 0, \xi(x))$ in the xz-plane
- the surface of revolution $\Sigma(\xi)$ generated by the rotation of \vec{X} around the x-axis

Finding the surface of revolution of minimal area amounts to minimizing

\[
A(\Sigma(\xi)) = 2\pi \int_a^b \xi(x) \sqrt{1 + (\xi'(x))^2} \, dx
\]
Given \(a, b \in \mathbb{R} \) with \(a < b \), consider in the space \(\mathbb{R}^3 \) the circles

\[
\begin{align*}
\quad & y^2 + z^2 = A^2 \\
\quad & x = a \\
\quad & y^2 + z^2 = B^2 \\
\quad & x = b
\end{align*}
\]

For any smooth \(\xi : [a, b] \rightarrow \mathbb{R} \), with \(\xi(x) > 0, \xi(a) = A \) and \(\xi(b) = B \), consider

- the regular curve \(\vec{X}(x) = (x, 0, \xi(x)) \) in the \(xz \)-plane
- the surface of revolution \(\Sigma(\xi) \) generated by the rotation of \(\vec{X} \) around the \(x \)-axis

Finding the surface of revolution of minimal area amounts to minimizing

\[
A(\Sigma(\xi)) = 2\pi \int_a^b \xi(x) \sqrt{1 + \xi'(x)^2} \, dx
\]
Given \(a, b \in \mathbb{R} \) with \(a < b \), consider in the space \(\mathbb{R}^3 \) the circles

\[
\begin{align*}
\begin{cases}
y^2 + z^2 = A^2 \\
x = a
\end{cases}
\begin{cases}
y^2 + z^2 = B^2 \\
x = b
\end{cases}
\end{align*}
\]

For any smooth \(\xi: [a, b] \to \mathbb{R} \), with \(\xi(x) > 0 \), \(\xi(a) = A \) and \(\xi(b) = B \), consider

- the regular curve \(\vec{X}(x) = (x, 0, \xi(x)) \) in the \(xz \)-plane
- the surface of revolution \(\Sigma(\xi) \) generated by the rotation of \(\vec{X} \) around the \(x \)-axis

Finding the surface of revolution of minimal area amounts to minimizing

\[
A(\Sigma(\xi)) = 2\pi \int_a^b \xi(x) \sqrt{1 + \xi'(x)^2} \, dx
\]
Given $a, b \in \mathbb{R}$ with $a < b$, consider in the space \mathbb{R}^3 the circles

\[
\begin{align*}
 y^2 + z^2 &= A^2 \\
 x &= a
\end{align*} \quad \begin{align*}
 y^2 + z^2 &= B^2 \\
 x &= b
\end{align*}
\]

For any smooth $\xi : [a, b] \to \mathbb{R}$, with $\xi(x) > 0$, $\xi(a) = A$ and $\xi(b) = B$, consider

- the regular curve $\vec{X}(x) = (x, 0, \xi(x))$ in the xz-plane
- the surface of revolution $\Sigma(\xi)$ generated by the rotation of \vec{X} around the x-axis

Finding the surface of revolution of minimal area amounts to minimizing

\[
A(\Sigma(\xi)) = 2\pi \int_a^b \xi(x) \sqrt{1 + \xi'(x)^2} \, dx
\]
Dynamic programming

Replacing the initial point constraint with the initial cost u_0, consider

$$
\inf_{\xi(t)=x} \left\{ \int_0^t L(s, \xi(s), \xi'(s)) \, dt + u_0(\xi(0)) \right\} = V(t, x)
$$

\[
egin{align*}
V_t(t, x) + \sup_{q \in \mathbb{R}^n} \left\{ \langle q, \nabla V(t, x) \rangle - L(t, x, q) \right\} &= 0 & (t, x) \in [0, T] \times \mathbb{R}^n \text{ a.e.} \\
V(0, x) &= u_0(x) \\
H(t, x, \nabla V(t, x))
\end{align*}
\]
Dynamic programming

Replacing the initial point constraint with the initial cost u_0, consider

$$
\inf_{\xi(t) = x} \left\{ \int_0^t L(s, \xi(s), \xi'(s)) \, dt + u_0(\xi(0)) \right\} = V(t, x)
$$

$$
V_t(t, x) + \sup_{q \in \mathbb{R}^n} \left\{ \langle q, \nabla V(t, x) \rangle - L(t, x, q) \right\} = 0 \quad (t, x) \in [0, T] \times \mathbb{R}^n \text{ a.e.}
$$

$$
V(0, x) = u_0(x)
$$
Dynamic programming

Replacing the initial point constraint with the initial cost \(u_0 \), consider

\[
\inf_{\xi(t)=x} \left\{ \int_0^t L(s, \xi(s), \xi'(s)) \, dt + u_0(\xi(0)) \right\} = V(t, x)
\]

\[
\begin{cases}
V_t(t, x) + \sup_{q \in \mathbb{R}^n} \left\{ \langle q, \nabla V(t, x) \rangle - L(t, x, q) \right\} = 0 & (t, x) \in [0, T] \times \mathbb{R}^n \text{ a.e.} \\
H(t, x, \nabla V(t, x)) \\
V(0, x) = u_0(x)
\end{cases}
\]
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
 u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 & (t, x) \in [0, T] \times \mathbb{R}^n \\
 u(0, x) = u_0(x) & x \in \mathbb{R}^n
\end{cases}
\]

(HJ)

- has no global smooth solution due to crossing of characteristics
- may have infinitely many Lipschitz solutions satisfying (HJ) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u \) satisfying (HJ) a.e.
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
 u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 & (t, x) \in [0, T] \times \mathbb{R}^n \\
 u(0, x) = u_0(x) & x \in \mathbb{R}^n
\end{cases}
\] (HJ)

- has no global smooth solution due to crossing of characteristics
- may have infinitely many Lipschitz solutions satisfying (HJ) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u \) satisfying (HJ) a.e.
Weak solutions to Hamilton-Jacobi equations

\[\begin{aligned}
& u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \quad (t, x) \in [0, T] \times \mathbb{R}^n \\
& u(0, x) = u_0(x) \quad x \in \mathbb{R}^n
\end{aligned} \]

\[(HJ)\]

- **Has no global smooth solution** due to crossing of characteristics
- May have infinitely many Lipschitz solutions satisfying \((HJ)\) a.e.
 - Dacorogna and Marcellini (1999)
- Has a unique viscosity solution
- The viscosity solution is the unique semiconcave \(u\) satisfying \((HJ)\) a.e.
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
 u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 & (t, x) \in [0, T] \times \mathbb{R}^n \\
 u(0, x) = u_0(x) & x \in \mathbb{R}^n
\end{cases}
\]

(HJ)

- has no global smooth solution due to crossing of characteristics
- may have infinitely many Lipschitz solutions satisfying (HJ) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u \) satisfying (HJ) a.e.
Hamilton-Jacobi equations

Weak solutions to Hamilton-Jacobi equations

\[
\begin{aligned}
&u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \\
&u(0, x) = u_0(x)
\end{aligned}
\] \quad (HJ)

- has no global smooth solution due to crossing of characteristics
- may have infinitely many Lipschitz solutions satisfying \((HJ)\) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u\) satisfying \((HJ)\) a.e.
Weak solutions to Hamilton-Jacobi equations

\[
\begin{cases}
 u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 & (t, x) \in [0, T] \times \mathbb{R}^n \\
 u(0, x) = u_0(x) & x \in \mathbb{R}^n
\end{cases}
\]

(HJ)

- has no global smooth solution due to crossing of characteristics
- may have infinitely many Lipschitz solutions satisfying (HJ) a.e.
 - Dacorogna and Marcellini (1999)
- has a unique viscosity solution
- the viscosity solution is the unique semiconcave \(u \) satisfying (HJ) a.e.
A function \(u \in C([0, T] \times \mathbb{R}^n) \) is a viscosity solution of

\[
 u_t + H(t, x, \nabla u) = 0 \quad \text{in } [0, T] \times \mathbb{R}^n
\]

if for every \((t, x) \in (0, T) \times \mathbb{R}^n\) and every \(\phi \in C^1((0, T) \times \mathbb{R}^n) \)

- \(u - \phi \) has a local maximum at \((t, x)\) \(\Rightarrow \) \(\phi_t(t, x) + H(t, x, \nabla \phi(t, x)) \leq 0 \)
- \(u - \phi \) has a local minimum at \((t, x)\) \(\Rightarrow \) \(\phi_t(t, x) + H(t, x, \nabla \phi(t, x)) \geq 0 \)
A function \(u \in C([0, T] \times \mathbb{R}^n) \) is a viscosity solution if for every \((t, x) \in (0, T) \times \mathbb{R}^n\) and every \(\phi \in C^1((0, T) \times \mathbb{R}^n) \):

- \(u - \phi \) has a local maximum at \((t, x)\) \(\Rightarrow\) \(\phi_t(t, x) + H(t, x, \nabla \phi(t, x)) \leq 0 \)
- \(u - \phi \) has a local minimum at \((t, x)\) \(\Rightarrow\) \(\phi_t(t, x) + H(t, x, \nabla \phi(t, x)) \geq 0 \)
Viscosity solutions

A function $u \in C([0, T] \times \mathbb{R}^n)$ is a viscosity solution of

$$u_t + H(t, x, \nabla u) = 0 \quad \text{in }]0, T[\times \mathbb{R}^n$$

if for every $(t, x) \in (0, T) \times \mathbb{R}^n$ and every $\phi \in C^1((0, T) \times \mathbb{R}^n)$

- $u - \phi$ has a local maximum at (t, x) \Rightarrow $\phi_t(t, x) + H(t, x, \nabla \phi(t, x)) \leq 0$
- $u - \phi$ has a local minimum at (t, x) \Rightarrow $\phi_t(t, x) + H(t, x, \nabla \phi(t, x)) \geq 0$
Semiconcave functions

Definition

We say that \(u : \mathbb{R}^N \to \mathbb{R} \) is (linearly) semiconcave if there exists a constant \(K > 0 \) (a semiconcavity constant for \(u \)) such that

\[
\lambda u(x) + (1 - \lambda)u(y) - u(\lambda x + (1 - \lambda)y) \leq K\lambda(1 - \lambda)\frac{|y - x|^2}{2}
\]

for all \(x, y \in \mathbb{R}^N \) and all \(\lambda \in [0, 1] \)

- \(u \) is semiconcave with semiconcavity \(K \) if any only if the function
 \[
 \tilde{u}(x) = u(x) - \frac{K}{2}|x|^2
 \]
 is concave

- \(v \) is semiconvex with semiconvexity constant \(K \) if \(-v \) is semiconcave with semiconcavity constant \(K \)
Semiconcave functions

Definition

We say that $u : \mathbb{R}^N \to \mathbb{R}$ is (linearly) semiconcave if there exists a constant $K > 0$ (a semiconcavity constant for u) such that

$$\lambda u(x) + (1 - \lambda)u(y) - u(\lambda x + (1 - \lambda)y) \leq K\lambda(1 - \lambda)\frac{|y - x|^2}{2}$$

for all $x, y \in \mathbb{R}^N$ and all $\lambda \in [0, 1]$

- u is semiconcave with semiconcavity K if any only if the function
 $$\tilde{u}(x) = u(x) - \frac{K}{2}|x|^2$$
 is concave

- v is semiconvex with semiconvexity constant K if $-v$ is semiconcave with semiconcavity constant K
Semiconcave functions

Definition

We say that \(u : \mathbb{R}^N \to \mathbb{R} \) is (linearly) semiconcave if there exists a constant \(K > 0 \) (a semiconcavity constant for \(u \)) such that

\[
\lambda u(x) + (1 - \lambda)u(y) - u(\lambda x + (1 - \lambda)y) \leq K\lambda(1 - \lambda)|y - x|^2
\]

for all \(x, y \in \mathbb{R}^N \) and all \(\lambda \in [0, 1] \)

- \(u \) is semiconcave with semiconcavity \(K \) if any only if the function
 \[
 \tilde{u}(x) = u(x) - \frac{K}{2}|x|^2
 \]
 is concave

- \(v \) is semiconvex with semiconvexity constant \(K \) if \(-v \) is semiconcave with semiconcavity constant \(K \)
For more on semiconcave functions see

- **Control theory**

- **Nonsmooth and variational analysis**
 Rockafellar (1982)

- **Monographs**
 C – Sinestrari (Birkhäuser, 2004)
 Villani (Springer, 2009)
When $n = 1$ the Hamilton-Jacobi equation

\[
\begin{cases}
 u_t(t, x) + H(t, x, u_x(t, x)) = 0 & (t, x) \in [0, T] \times \mathbb{R} \\
 u(0, x) = u_0(x) & x \in \mathbb{R}
\end{cases}
\]

can be reduced to the conservation law

\[
\begin{cases}
 v_t(t, x) + H(t, x, v(t, x)) = 0 & (t, x) \in [0, T] \times \mathbb{R} \\
 v(0, x) = u'_0(x) & x \in \mathbb{R}
\end{cases}
\]

taking $v(t, x) = u_x(t, z)$
Scalar conservation laws

\(u \) is an entropy solution of

\[
\frac{\partial u}{\partial t} + f(u) \frac{\partial u}{\partial x} = 0 \quad \text{in} \quad [0, +\infty) \times \mathbb{R}
\]

where \(f : \mathbb{R} \to \mathbb{R} \) is is (uniformly) strictly convex

\[
f''(u) \geq c > 0 \quad \forall u \in \mathbb{R}
\]

if

- \(u \) distributional solution

\[
\int \int \left[u \varphi_t + f(u) \varphi_x \right] \, dx \, dt = 0 \quad \forall \varphi \in C^1_c([0, +\infty) \times \mathbb{R}) \quad (D)
\]

- Lax stability condition

\[
u(t, x-) \geq u(t, x+) \quad \text{for a.e } t > 0, \quad \forall x \in \mathbb{R}
\]
Scalar conservation laws

u is an entropy solution of

$$u_t + f(u)_x = 0 \quad \text{in} \quad [0, +\infty) \times \mathbb{R}$$

where $f : \mathbb{R} \to \mathbb{R}$ is is (uniformly) strictly convex

$$f''(u) \geq c > 0 \quad \forall u \in \mathbb{R}$$

if

- u distributional solution

$$\int \int [u\varphi_t + f(u)\varphi_x] \, dx \, dt = 0 \quad \forall \varphi \in C^1_c([0, +\infty) \times \mathbb{R}) \quad (D)$$

- Lax stability condition

$$u(t, x-) \geq u(t, x+) \quad \text{for a.e} \ t > 0, \quad \forall x \in \mathbb{R}$$
Compactness for the semigroup \((S_t)_{t \geq 0}\)

For every initial data \(u_0 \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})\), the map \(S_t : L^1(\mathbb{R}) \rightarrow L^1(\mathbb{R})\) associates to every initial data \(u_0 \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})\) the unique entropy solution \(u(t) = S_t(u_0)\) of

\[
\begin{cases}
 u_t + f(u)_x = 0 & [0, +\infty) \times \mathbb{R} \\
 u(0, x) = u_0(x) & x \in \mathbb{R}
\end{cases}
\]

Theorem (Lax, 1954)

The map \(S_t : L^1(\mathbb{R}) \rightarrow L^1_{\text{loc}}(\mathbb{R})\) is compact for every \(t > 0\)

A question (by P. Lax):

Is it possible to give a quantitative estimate of the compactness of \(S_t\)?
Compactness of the semigroup \((S_t)_{t \geq 0}\)

\[S_t : L^1(\mathbb{R}) \to L^1(\mathbb{R}) \] associates to every initial data \(u_0 \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})\) the unique entropy solution \(u(t) = S_t(u_0)\) of

\[
\begin{align*}
 u_t + f(u)x &= 0 & [0, +\infty) \times \mathbb{R} \\
 u(0, x) &= u_0(x) & x \in \mathbb{R}
\end{align*}
\]

Theorem (Lax, 1954)

The map \(S_t : L^1(\mathbb{R}) \longrightarrow L^1_{\text{loc}}(\mathbb{R})\) is compact for every \(t > 0\)

A question (by P. Lax) :

is it possible to give a quantitative estimate of the compactness of \(S_t\) ?
Compactness for conservation laws

Kolmogorov ε-entropy

Let (X, d) be a metric space and K a totally bounded subset of X

For any $\varepsilon > 0$, let $N_{\varepsilon}(K)$ be the minimal number of sets in a cover of K by subsets of X having diameter no larger than 2ε

Definition

The ε-entropy of K is defined as

$$\mathcal{H}_\varepsilon(K \mid X) = \log_2 N_{\varepsilon}(K)$$
Kolmogorov ε-entropy

Let (X, d) be a metric space and K a totally bounded subset of X.

For any $\varepsilon > 0$, let $N_\varepsilon(K)$ be the minimal number of sets in a cover of K by subsets of X having diameter no larger than 2ε.

Definition

The ε-entropy of K is defined as

$$H_\varepsilon(K | X) = \log_2 N_\varepsilon(K)$$
Applications

one relies on Kolmogorov’s ε-entropy to:

- provide estimates on the accuracy and resolution of numerical methods
- analyze computational complexity of conservation laws (derive number of needed operations to compute solutions with an error $< \varepsilon$)
Upper estimate

Given $L, m, M > 0$, define

$$C_{[L,m,M]} = \left\{ u_0 \in L^1(\mathbb{R}) : \text{spt}(u_0) \subset [-L, L], \|u_0\|_{L^1} \leq m, \|u_0\|_{L^\infty} \leq M \right\}$$

Our goal: to give an upper bound for

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,m,M]}) \| L^1(\mathbb{R}) \right)$$

Theorem (De Lellis and Golse, 2005)

For any $\varepsilon > 0$ and $T > 0$, one has

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,m,M]}) \| L^1(\mathbb{R}) \right) \leq \frac{C_T}{\varepsilon}$$

for some constant $C_T > 0$
Upper estimate

Given $L, m, M > 0$, define

$$\mathcal{C}_{[L,m,M]} = \left\{ u_0 \in L^1(\mathbb{R}) : \text{spt}(u_0) \subset [-L, L], \|u_0\|_{L^1} \leq m, \|u_0\|_{L^\infty} \leq M \right\}$$

Our goal: to give an upper bound for

$$\mathcal{H}_\varepsilon\left(S_T(\mathcal{C}_{[L,m,M]}) \mid L^1(\mathbb{R}) \right)$$

Theorem (De Lellis and Golse, 2005)

For any $\varepsilon > 0$ and $T > 0$, one has

$$\mathcal{H}_\varepsilon\left(S_T(\mathcal{C}_{[L,m,M]}) \mid L^1(\mathbb{R}) \right) \leq \frac{C_T}{\varepsilon}$$

for some constant $C_T > 0$
Upper estimate

Given $L, m, M > 0$, define

$$C_{[L,m,M]} = \left\{ u_0 \in L^1(\mathbb{R}) : \text{spt}(u_0) \subset [-L, L], \|u_0\|_{L^1} \leq m, \|u_0\|_{L^\infty} \leq M \right\}$$

Our goal: to give an upper bound for

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,m,M]}) \middle| L^1(\mathbb{R}) \right)$$

Theorem (De Lellis and Golse, 2005)
For any $\varepsilon > 0$ and $T > 0$, one has

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,m,M]}) \middle| L^1(\mathbb{R}) \right) \leq \frac{C_T}{\varepsilon}$$

for some constant $C_T > 0$
Upper estimate

Given $L, m, M > 0$, define

$$C_{[L,m,M]} = \left\{ u_0 \in L^1(\mathbb{R}) : \text{spt}(u_0) \subset [-L, L], \|u_0\|_{L^1} \leq m, \|u_0\|_{L^\infty} \leq M \right\}$$

Our goal: to give an upper bound for

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,m,M]} \mid L^1(\mathbb{R})) \right)$$

Theorem (De Lellis and Golse, 2005)

For any $\varepsilon > 0$ and $T > 0$, one has

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,m,M]} \mid L^1(\mathbb{R})) \right) \leq \frac{C_T}{\varepsilon}$$

for some constant $C_T > 0$
Lower estimate

Given any $L, m, M > 0$, recall

$$
\mathcal{C}_{[L,m,M]} = \left\{ u_0 \in L^1(\mathbb{R}) : \text{spt}(u_0) \subset [-L, L], \|u_0\|_{L^1} \leq m, \|u_0\|_{L^\infty} \leq M \right\}
$$

Theorem (Ancona, Glass and Khai T. Nguyen, 2012)

For any $T > 0$ and for $\varepsilon > 0$ sufficiently small, one has

$$
\mathcal{H}_\varepsilon \left(S_T(\mathcal{C}_{[L,m,M]} \mid L^1(\mathbb{R})) \right) \geq \frac{c_T}{\varepsilon}
$$

for some constant $c_T > 0$

By the upper and lower bounds, we conclude

$$
\mathcal{H}_\varepsilon \left(S_T(\mathcal{C}_{[L,m,M]} \mid L^1(\mathbb{R})) \right) \approx \varepsilon^{-1}
$$
Lower estimate

Given any $L, m, M > 0$, recall

$$\mathcal{C}_{[L,m,M]} = \left\{ u_0 \in L^1(\mathbb{R}) : \text{spt}(u_0) \subset [-L, L], \|u_0\|_{L^1} \leq m, \|u_0\|_{L^\infty} \leq M \right\}$$

Theorem (Ancona, Glass and Khai T. Nguyen, 2012)

For any $T > 0$ and for $\varepsilon > 0$ sufficiently small, one has

$$\mathcal{H}_\varepsilon \left(S_T(\mathcal{C}_{[L,m,M]}) \mid L^1(\mathbb{R}) \right) \geq \frac{c_T}{\varepsilon}$$

for some constant $c_T > 0$

By the upper and lower bounds, we conclude

$$\mathcal{H}_\varepsilon \left(S_T(\mathcal{C}_{[L,m,M]}) \mid L^1(\mathbb{R}) \right) \approx \varepsilon^{-1}$$
Given any $L, m, M > 0$, recall

$$
C_{[L,m,M]} = \left\{ u_0 \in L^1(\mathbb{R}) : \text{spt}(u_0) \subset [-L, L], \|u_0\|_{L^1} \leq m, \|u_0\|_{L^\infty} \leq M \right\}
$$

Theorem (Ancona, Glass and Khai T. Nguyen, 2012)

For any $T > 0$ and for $\varepsilon > 0$ sufficiently small, one has

$$
\mathcal{H}_{\varepsilon} \left(S_T(C_{[L,m,M]}) \mid L^1(\mathbb{R}) \right) \geq \frac{c_T}{\varepsilon}
$$

for some constant $c_T > 0$

By the upper and lower bounds, we conclude

$$
\mathcal{H}_{\varepsilon} \left(S_T(C_{[L,m,M]}) \mid L^1(\mathbb{R}) \right) \approx \varepsilon^{-1}
$$
Consider the Hamilton-Jacobi equation \((n \geq 1)\)

\[
 u_t(t, x) + H(\nabla u(t, x)) = 0 \quad (t, x) \in [0, +\infty) \times \mathbb{R}^n
\]

with \(H \in C^2(\mathbb{R}^n)\) satisfying

(H1) superlinearity: \(\lim_{|p| \to \infty} \frac{H(p)}{|p|} = +\infty\)

(H2) uniform convexity: \(D^2 H(p) \geq \alpha \cdot \mathbb{I}_n, \quad \forall p \in \mathbb{R}^n\)

where \(\alpha > 0\) and \(\mathbb{I}_n\) is the identity \(n \times n\) matrix

Legendre transform of \(H\)

\[
 H^*(q) = \max_{p \in \mathbb{R}^n} \{ \langle p, q \rangle - H(p) \} \quad (q \in \mathbb{R}^n)
\]

is in turn superlinear and satisfies

\[
 H^* \in C^2(\mathbb{R}^n) \quad \text{and} \quad D^2 H^* \leq \frac{1}{\alpha} \mathbb{I}_n
\]
Consider the Hamilton-Jacobi equation \((n \geq 1)\)

\[
 u_t(t, x) + H(\nabla u(t, x)) = 0 \quad (t, x) \in [0, +\infty) \times \mathbb{R}^n
\]

with \(H \in C^2(\mathbb{R}^n)\) satisfying

(H1) superlinearity: \(\lim_{|p| \to \infty} \frac{H(p)}{|p|} = +\infty\)

(H2) uniform convexity: \(D^2 H(p) \geq \alpha \cdot \mathbb{I}_n, \quad \forall p \in \mathbb{R}^n\)

where \(\alpha > 0\) and \(\mathbb{I}_n\) is the identity \(n \times n\) matrix.

Legendre transform of \(H\)

\[
 H^*(q) = \max_{p \in \mathbb{R}^n} \{ \langle p, q \rangle - H(p) \} \quad (q \in \mathbb{R}^n)
\]

is in turn superlinear and satisfies

\[
 H^* \in C^2(\mathbb{R}^n) \quad \text{and} \quad D^2 H^* \leq \frac{1}{\alpha} \mathbb{I}_n
\]
Consider the Hamilton-Jacobi equation \((n \geq 1)\)

\[
 u_t(t, x) + H(\nabla u(t, x)) = 0 \quad (t, x) \in [0, +\infty) \times \mathbb{R}^n
\]

with \(H \in C^2(\mathbb{R}^n)\) satisfying

\((H1)\) superlinearity: \(\lim_{|p| \to \infty} \frac{H(p)}{|p|} = +\infty\)

\((H2)\) uniform convexity: \(D^2 H(p) \geq \alpha \cdot \mathbb{I}_n, \quad \forall p \in \mathbb{R}^n\)

where \(\alpha > 0\) and \(\mathbb{I}_n\) is the identity \(n \times n\) matrix

Legendre transform of \(H\)

\[H^*(q) = \max_{p \in \mathbb{R}^n} \{ \langle p, q \rangle - H(p) \} \quad (q \in \mathbb{R}^n)\]

is in turn superlinear and satisfies

\[H^* \in C^2(\mathbb{R}^n) \quad \text{and} \quad D^2 H^* \leq \frac{1}{\alpha} \mathbb{I}_n\]
Compactness for Hamilton-Jacobi

Hopf-Lax semigroup

For any \(u_0 \in \text{Lip}(\mathbb{R}^n) \) the Cauchy problem

\[
\begin{cases}
 u_t(t, x) + H(\nabla u(t, x)) = 0 & (t, x) \in [0, +\infty) \times \mathbb{R}^n \\
 u(0, x) = u_0(x) & x \in \mathbb{R}^N
\end{cases}
\]

admits a unique viscosity solution given by

\[
u(t, x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^*(\frac{x - y}{t}) + u_0(y) \right\}, \quad \forall (t, x) \in]0, +\infty[\times \mathbb{R}^n
\]

Our goal: to obtain upper and lower compactness estimates for

\[S_t : \text{Lip}(\mathbb{R}^n) \to \text{Lip}(\mathbb{R}^n) \]

\[
S_t(u_0)(x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^*(\frac{x - y}{t}) + u_0(y) \right\}, \quad x \in \mathbb{R}^n
\]
For any $u_0 \in \text{Lip}(\mathbb{R}^n)$ the Cauchy problem

$$\begin{cases} u_t(t, x) + H(\nabla u(t, x)) = 0 \quad (t, x) \in [0, +\infty) \times \mathbb{R}^n \\ u(0, x) = u_0(x) \quad x \in \mathbb{R}^N \end{cases}$$

admits a unique viscosity solution given by

$$u(t, x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^* \left(\frac{x-y}{t} \right) + u_0(y) \right\}, \quad \forall (t, x) \in [0, +\infty) \times \mathbb{R}^n$$

Our goal: to obtain upper and lower compactness estimates for

$$\begin{cases} S_t : \text{Lip}(\mathbb{R}^n) \to \text{Lip}(\mathbb{R}^n) \\ S_t(u_0)(x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^* \left(\frac{x-y}{t} \right) + u_0(y) \right\} \quad x \in \mathbb{R}^n \end{cases}$$
Semiconcavity of the Hopf-Lax semigroup

Given $K, L, M > 0$, define

$$C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^n)} \leq M \}$$

$$SC_{[K,L,M]} = \{ u \in C_{[L,M]} : u \text{ semiconcave with constant } K \}$$

Proposition

For any $L, M, T > 0$ and every $u \in C_{[L,M]}$

1. $S_T(u)$ is semiconcave with constant $\frac{1}{\alpha T}$
2. $\| \nabla S_T(u) \|_{L^\infty(\mathbb{R}^n)} \leq M$
3. $\text{spt}(S_T(u) + T \cdot H(0)) \subset [-L_T, L_T]^n$ where $L_T = L + T \cdot \sup_{|p| \leq M} |DH(p)|$

Hopf-Lax semigroup

$$\begin{cases}
S_t : \text{Lip}(\mathbb{R}^n) \to \text{Lip}(\mathbb{R}^n) \\
S_t(u)(x) = \min_{y \in \mathbb{R}^n} \{ t \cdot H^* \left(\frac{x-y}{t} \right) + u(y) \} \quad x \in \mathbb{R}^n
\end{cases} \quad t \geq 0$$
Semiconcavity of the Hopf-Lax semigroup

Given $K, L, M > 0$, define

$$C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^n)} \leq M \}$$

$$SC_{[K,L,M]} = \{ u \in C_{[L,M]} : u \text{ semiconcave with constant } K \}$$

Proposition

For any $L, M, T > 0$ and every $u \in C_{[L,M]}$

1. $S_T(u)$ is semiconcave with constant $\frac{1}{\alpha T}$
2. $\| \nabla S_T(u) \|_{L^\infty(\mathbb{R}^n)} \leq M$
3. $\text{spt}(S_T(u) + T \cdot H(0)) \subset [-L_T, L_T]^n$ where $L_T = L + T \cdot \sup_{|p| \leq M} |DH(p)|$

Hopf-Lax semigroup

$$\begin{cases} S_t : \text{Lip}(\mathbb{R}^n) \to \text{Lip}(\mathbb{R}^n) \\ S_t(u)(x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^* \left(\frac{x-y}{t} \right) + u(y) \right\} & x \in \mathbb{R}^n \end{cases}$$
Compactness for Hamilton-Jacobi flow associated with H-L semigroup

\[S_T(C_{[L,M]}) + T \cdot H(0) \subset SC_{\frac{1}{\alpha T},L_T,M} \]

\[SC_{[K,L,M]} = \{ u \in C_{[L,M]} : u \text{ semiconcave with constant } K \} \]

\[C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L,L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^n)} \leq M \} \]
Upper estimate

\[C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^N)} \leq M \} \]

Theorem (Ancona, C and Khai T. Nguyen)

For any \(L, M, T > 0 \) there exist constant \(\varepsilon_0 = \varepsilon_0(L, M, T) > 0 \) and \(C = C(L, M, T) > 0 \) such that, for all \(\varepsilon \in (0, \varepsilon_0) \),

\[\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \right| W^{1,1}(\mathbb{R}^n)) \leq \frac{C}{\varepsilon^n} \]

Hopf-Lax semigroup

\[
\left\{ \begin{array}{ll}
S_t : \text{Lip}(\mathbb{R}^n) \to \text{Lip}(\mathbb{R}^n) \\
S_t(u)(x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^* \left(\frac{x-y}{t} \right) + u(y) \right\} & x \in \mathbb{R}^n \\
\end{array} \right. \]
Compactness for Hamilton-Jacobi

Upper estimate

\[C_{[L,M]} = \{ u \in \operatorname{Lip}(\mathbb{R}^n) : \operatorname{spt}(u) \subset [-L,L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^n)} \leq M \} \]

Theorem (Ancona, C and Khai T. Nguyen)

For any \(L, M, T > 0 \) there exist constant \(\varepsilon_0 = \varepsilon_0(L, M, T) > 0 \) and \(C = C(L, M, T) > 0 \) such that, for all \(\varepsilon \in (0, \varepsilon_0) \),

\[\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \right| W^{1,1}(\mathbb{R}^n) \) \leq \frac{C}{\varepsilon^n} \]

Hopf-Lax semigroup

\[
\begin{aligned}
 \{ S_t : \operatorname{Lip}(\mathbb{R}^n) &\to \operatorname{Lip}(\mathbb{R}^n) \\
 S_t(u)(x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^*(\frac{x-y}{t}) + u(y) \right\} & \quad x \in \mathbb{R}^n
\end{aligned}
\]
Main steps of the proof

\[C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{sp}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^N)} \leq M \} \]

\[SC_{[K,L,M]} = \{ u \in C_{[L,M]} : u \text{ semiconcave with constant } K \} \]

- Semiconcavity of the Hopf-Lax semigroup

\[S_T(C_{[L,M]}) + T \cdot H(0) \subset SC_{[\frac{1}{\alpha T}, L_T, M]} \]

where \(L_T = L + T \cdot \sup_{|p| \leq M} |DH(p)| \)

- Upper bound for the \(\varepsilon \)-entropy of semiconcave functions

\[\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right) \leq \frac{C(K, L, M)}{\varepsilon^n} \]

for \(\varepsilon > 0 \) sufficiently small
Main steps of the proof

\[C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^N)} \leq M \} \]

\[SC_{[K,L,M]} = \{ u \in C_{[L,M]} : u \text{ semiconcave with constant } K \} \]

- Semiconcavity of the Hopf-Lax semigroup

\[S_T(C_{[L,M]}) + T \cdot H(0) \subset SC_{[\frac{1}{\alpha T}, L_T, M]} \]

where \(L_T = L + T \cdot \sup_{|p| \leq M} |DH(p)| \)

- Upper bound for the \(\varepsilon \)-entropy of semiconcave functions

\[H_\varepsilon\left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right) \leq \frac{C(K, L, M)}{\varepsilon^n} \]

for \(\varepsilon > 0 \) sufficiently small
Main steps of the proof

\[C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^N)} \leq M \} \]

\[SC_{[K,L,M]} = \{ u \in C_{[L,M]} : u \text{ semiconcave with constant } K \} \]

- Semiconcavity of the Hopf-Lax semigroup

\[S_T(C_{[L,M]}) + T \cdot H(0) \subset SC_{\left[\frac{1}{\alpha T}, L_T, M \right]} \]

where \(L_T = L + T \cdot \sup_{|p| \leq M} |DH(p)| \)

- Upper bound for the \(\varepsilon \)-entropy of semiconcave functions

\[\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right) \leq \frac{C(K, L, M)}{\varepsilon^n} \]

for \(\varepsilon > 0 \) sufficiently small
Compactness for Hamilton-Jacobi

Lower estimate

remind

\[C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^N)} \leq M \} \]

\[
\begin{aligned}
&\quad \{ S_t : \text{Lip}(\mathbb{R}^n) \to \text{Lip}(\mathbb{R}^n) \} \\
&\quad S_t(u)(x) = \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^* \left(\frac{x-y}{t} \right) + u(y) \right\} \quad x \in \mathbb{R}^n
\end{aligned}
\]

Theorem (Ancona, C and Khai T. Nguyen)

Let \(M > 0 \) be fixed
Then, for all \(T > 0 \) there exist constants \(\Gamma_T > 0 \) and \(\Lambda_T \geq 0 \) such that

\[
\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n}
\]

for all \(L > \Lambda_T \) and all \(\varepsilon > 0 \)
Compactness for Hamilton-Jacobi

Lower estimate

reminder

\[C_{[L,M]} = \{ u \in \text{Lip}(\mathbb{R}^n) : \text{spt}(u) \subset [-L, L]^n, \| \nabla u \|_{L^\infty(\mathbb{R}^N)} \leq M \} \]

\[
\begin{align*}
S_t : \text{Lip}(\mathbb{R}^n) &\rightarrow \text{Lip}(\mathbb{R}^n) \\
S_t(u)(x) &= \min_{y \in \mathbb{R}^n} \left\{ t \cdot H^* \left(\frac{x-y}{t} \right) + u(y) \right\} \quad x \in \mathbb{R}^n
\end{align*}
\]

Theorem (Ancona, C and Khai T. Nguyen)

Let \(M > 0 \) be fixed

Then, for all \(T > 0 \) there exist constants \(\Gamma_T > 0 \) and \(\Lambda_T \geq 0 \) such that

\[
\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n}
\]

for all \(L > \Lambda_T \) and all \(\varepsilon > 0 \)
Main ideas of the proof of the lower estimate

1. **Controllability type result**: introduce a parameterized class U of smooth functions and show that any element of such a class can be attained, at any given time $T > 0$, by the Hopf-Lax flow $S_T(u)$ for a suitable $u \in C_{[L,M]}$

2. **Combinatorial computation**: provide an optimal (w.r.t. parameters) estimate of the maximum number of functions in U that can be contained in a ball of radius 2ε (with respect to the norm of $W^{1,1}(\mathbb{R}^n)$)
Main ideas of the proof of the lower estimate

1. **Controllability type result**: introduce a parameterized class U of smooth function and show that any element of such a class can be attained, at any given time $T > 0$, by the Hopf-Lax flow $S_T(u)$ for a suitable $u \in C_{[L,M]}$.

2. **Combinatorial computation**: provide an optimal (w.r.t. parameters) estimate of the maximum number of functions in U that can be contained in a ball of radius 2ε (with respect to the norm of $W^{1,1}(\mathbb{R}^n)$).
Main ideas of the proof of the lower estimate

1. **Controllability type result**: introduce a parameterized class \mathcal{U} of smooth function and show that any element of such a class can be attained, at any given time $T > 0$, by the Hopf-Lax flow $S_T(u)$ for a suitable $u \in C_{[L,M]}$

2. **Combinatorial computation**: provide an optimal (w.r.t. parameters) estimate of the maximum number of functions in \mathcal{U} that can be contained in a ball of radius 2ε (with respect to the norm of $W^{1,1}(\mathbb{R}^n)$)
Theorem

Given $K, L, M > 0$, let $T > 0$ be such that

$$K T \leq \frac{1}{2\alpha_M} \quad \text{where} \quad \alpha_M = \sup_{|p| \leq M} \|D^2H(p)\|$$

Then

$$SC_{[K,L,M]} - T \cdot H(0) \subset ST(C_{[LT,M]})$$

with $LT = L + T \cdot \sup_{|p| \leq M} |DH(p)|$

Our goal: for any $u_T \in SC_{[K,L,M]} - T \cdot H(0)$ to find $u_0 \in C_{[LT,M]}$ such that $ST(u_0) = u_T$
Reachability of semiconcave functions

Theorem

Given $K, L, M > 0$, let $T > 0$ be such that

$$K T \leq \frac{1}{2 \alpha_M}$$

where $\alpha_M = \sup_{|\rho| \leq M} \| D^2 H(p) \|$

Then

$$SC_{[K,L,M]} - T \cdot H(0) \subset S_T(C_{[L_T,M]})$$

with $L_T = L + T \cdot \sup_{|\rho| \leq M} |DH(p)|$

Our goal: for any $u_T \in SC_{[K,L,M]} - T \cdot H(0)$ to find $u_0 \in C_{[L_T,M]}$ such that $S_T(u_0) = u_T$
Reachability of semiconcave functions

Theorem

Given $K, L, M > 0$, let $T > 0$ be such that

$$KT \leq \frac{1}{2\alpha_M}$$

where

$$\alpha_M = \sup_{|p| \leq M} \|D^2H(p)\|$$

Then

$$SC_{[K,L,M]} - T \cdot H(0) \subset ST(C_{[L_T,M]})$$

with $L_T = L + T \cdot \sup_{|p| \leq M} |DH(p)|$

Our goal: for any $u_T \in SC_{[K,L,M]} - T \cdot H(0)$ to find $u_0 \in C_{[L_T,M]}$ such that $S_T(u_0) = u_T$
Backward construction

Solve the equation backwards: set \(v(t, x) = S_t(v_0)(x) \) with

\[
v_0(x) = -u_T(-x)
\]

and define

\[
u(t, x) = -v(T - t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n
\]

Then

- \(u(T, \cdot) = u_T \)
- \(u_0 = u(0, \cdot) \in C_{[L, M]} \) by the properties of \(S_T \)
- \(u_t(t, x) + H(\nabla u(t, x)) = 0 \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n \)

Therefore,

\[
u \text{ viscosity solution} \implies u_T = S_T(u_0)
\]

The viscosity property follows from the semiconvexity of \(v(t, \cdot) \).
Backward construction

Solve the equation backwards: set

\[\nu(t, x) = S_t(\nu_0)(x) \]

with

\[\nu_0(x) = -u_T(-x) \]

and define

\[u(t, x) = -\nu(T - t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n \]

Then

1. \(u(T, \cdot) = u_T \)
2. \(u_0 = u(0, \cdot) \in C_{[L_T, M]} \) by the properties of \(S_T \)
3. \(u_t(t, x) + H(\nabla u(t, x)) = 0 \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n \)

Therefore,

\[u \text{ viscosity solution} \implies u_T = S_T(u_0) \]

The viscosity property follows from the semiconvexity of \(\nu(t, \cdot) \)
Backward construction

Solve the equation backwards: set \(v(t, x) = S_t(v_0)(x) \) with

\[
v_0(x) = -u_T(-x)
\]

and define

\[
u(t, x) = -v(T - t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n
\]

Then

\[
\begin{align*}
& u(T, \cdot) = u_T \\
& u_0 = u(0, \cdot) \in C_{[L_T, M]} \quad \text{by the properties of } S_T \\
& u_t(t, x) + H(\nabla u(t, x)) = 0 \quad \text{for a.e. } (t, x) \in [0, T] \times \mathbb{R}^n
\end{align*}
\]

Therefore,

\[
\text{\(u \) viscosity solution} \quad \implies \quad \text{\(u_T = S_T(u_0) \)}
\]

The viscosity property follows from the semiconvexity of \(v(t, \cdot) \)
Backward construction

Solve the equation backwards: set

\[v(t, x) = S_t(v_0)(x) \]

with

\[v_0(x) = -u_T(-x) \]

and define

\[u(t, x) = -v(T-t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n \]

Then

- \(u(T, \cdot) = u_T \)
- \(u_0 = u(0, \cdot) \in C_{[L_T, M]} \) by the properties of \(S_T \)
- \(u_t(t, x) + H(\nabla u(t, x)) = 0 \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n \)

Therefore,

\[u \text{ viscosity solution} \implies u_T = S_T(u_0) \]

The viscosity property follows from the semiconvexity of \(v(t, \cdot) \)
Backward construction

Solve the equation backwards: set \(\nu(t, x) = S_t(\nu_0)(x) \) with

\[
\nu_0(x) = -u_T(-x)
\]

and define

\[
u(t, x) = -\nu(T - t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n
\]

Then

- \(u(T, \cdot) = u_T \)
- \(u_0 = u(0, \cdot) \in C_{[L_T, M]} \) by the properties of \(S_T \)
- \(u_t(t, x) + H(\nabla u(t, x)) = 0 \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n \)

Therefore,

\[u \text{ viscosity solution} \implies u_T = S_T(u_0) \]

The viscosity property follows from the semiconvexity of \(\nu(t, \cdot) \)
Backward construction

Solve the equation backwards: set \(v(t, x) = S_t(v_0)(x) \) with

\[
v_0(x) = -u_T(-x)
\]

and define

\[
u(t, x) = -v(T - t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n
\]

Then

- \(u(T, \cdot) = u_T \)
- \(u_0 \equiv u(0, \cdot) \in C_{[L,T,M]} \) by the properties of \(S_T \)
- \(u_t(t, x) + H(\nabla u(t, x)) = 0 \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n\)

Therefore,

\[
u \text{ viscosity solution} \implies u_T = S_T(u_0)
\]

The viscosity property follows from the semiconvexity of \(v(t, \cdot) \).
Backward construction

Solve the equation backwards: set \(v(t, x) = S_t(v_0)(x) \) with

\[v_0(x) = -u_T(-x) \]

and define

\[u(t, x) = -v(T - t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n \]

Then

- \(u(T, \cdot) = u_T \)
- \(u_0 = u(0, \cdot) \in C_{[L_T, M]} \) by the properties of \(S_T \)
- \(u_t(t, x) + H(\nabla u(t, x)) = 0 \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n \)

Therefore,

\[u \text{ viscosity solution} \implies u_T = S_T(u_0) \]

The viscosity property follows from the semiconvexity of \(v(t, \cdot) \).
Backward construction

Solve the equation backwards: set \(v(t, x) = S_t(v_0)(x) \) with

\[
v_0(x) = -u_T(-x)
\]

and define

\[
u(t, x) = -v(T - t, -x) \quad (t, x) \in [0, T] \times \mathbb{R}^n
\]

Then

- \(u(T, \cdot) = u_T \)
- \(u_0 \equiv u(0, \cdot) \in C_{[L_T, M]} \) by the properties of \(S_T \)
- \(u_t(t, x) + H(\nabla u(t, x)) = 0 \) for a.e. \((t, x) \in [0, T] \times \mathbb{R}^n \)

Therefore,

\[
u \text{ viscosity solution} \implies u_T = S_T(u_0)
\]

The viscosity property follows from the semiconvexity of \(v(t, \cdot) \)
Lower bound for $\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right)$

Proposition

Given $K, L, M > 0$, for any $\varepsilon > 0$

$$\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma(K, L, M)}{\varepsilon^n}$$

Given $N \geq 1$ integer, divide $[-L, L]^2$ into N^2 squares of side $\frac{2L}{N}$

$$[-L, L]^2 = \bigcup_{i,j=1,...,N} \Box_{ij}$$

Construct bump functions $b_{ij} : \Box_{ij} \rightarrow \mathbb{R}$ such that

- $\|\nabla b_{ij}\|_\infty \leq \frac{KL}{12N}$, $\|b_{ij}\|_{W^{1,1}} \leq \frac{C}{N^3}$
- ∇b_{ij} Lipschitz with constant K
The class \mathcal{U}_N of smooth functions

Let

$$\Delta_N = \left\{ \delta = (\delta_{ij})_{i,j=1}^N : \delta_{ij} \in \{-1, 1\} \right\}$$

Consider the class of smooth functions

$$\mathcal{U}_N = \left\{ u_\delta = \sum_{i,j=1}^N \delta_{ij} \cdot b_{ij} : \delta \in \Delta_N \right\}$$

Then $\#(\mathcal{U}_N) = 2^{N^2}$. Also, one can show that

- $\mathcal{U}_N \subset SC_{[K,L,M]}$
- $\|u_\delta' - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \epsilon$ if $\#\{(i,j) : \delta_{ij}' \neq \delta_{ij}\} \leq C_{K,L} N^{n+1} \epsilon$

Choosing $N \approx \frac{1}{\epsilon}$, by a combinatorial argument one can show that

$$\#\{\delta' \in \Delta_N : \|u_\delta' - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \epsilon\} \leq 2^{N^2} e^{-N^2/8} = e^{-N^2/8} \#(\mathcal{U}_N)$$

which yields

$$\mathcal{H}_\epsilon \left(\mathcal{U}_N \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\epsilon^2}$$

with $\Gamma = \Gamma(K,L,M) > 0$. Therefore,

$$\mathcal{H}_\epsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\epsilon^2}$$
The class \mathcal{U}_N of smooth functions

Let

$$\Delta_N = \left\{ \delta = (\delta_{ij})_{i,j=1}^N : \delta_{ij} \in \{-1, 1\} \right\}$$

Consider the class of smooth functions

$$\mathcal{U}_N = \left\{ u_\delta = \sum_{i,j=1}^N \delta_{ij} \cdot b_{ij} : \delta \in \Delta_N \right\}$$

Then $\#(\mathcal{U}_N) = 2^{N^2}$. Also, one can show that

- $\mathcal{U}_N \subset SC_{[K,L,M]}$
- $\|u_{\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon$ if $\#\{(i,j) : \delta'_{ij} \neq \delta_{ij}\} \leq C_{K,L} N^{n+1} \varepsilon$

Choosing $N \approx \frac{1}{\varepsilon}$, by a combinatorial argument one can show that

$$\#\left\{ \delta' \in \Delta_N : \|u_{\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon \right\} \leq 2^{N^2} e^{-N^2/8} = e^{-N^2/8} \#(\mathcal{U}_N)$$

which yields

$$\mathcal{H}_\varepsilon \left(\mathcal{U}_N \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\varepsilon^2}$$

with $\Gamma = \Gamma(K,L,M) > 0$. Therefore,

$$\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\varepsilon^2}$$
The class \mathcal{U}_N of smooth functions

Let

$$\Delta_N = \left\{ \delta = (\delta_{ij})_{i,j=1}^N : \delta_{ij} \in \{-1, 1\} \right\}$$

Consider the class of smooth functions

$$\mathcal{U}_N = \left\{ u_\delta = \sum_{i,j=1}^N \delta_{ij} \cdot b_{ij} : \delta \in \Delta_N \right\}$$

Then $\#(\mathcal{U}_N) = 2^{N^2}$. Also, one can show that

- $\mathcal{U}_N \subset SC_{[K,L,M]}$
- $\|u_{\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon$ if $\#\{(i,j) : \delta'_{ij} \neq \delta_{ij}\} \leq C_{K,L}N^{n+1}\varepsilon$

Choosing $N \approx \frac{1}{\varepsilon}$, by a combinatorial argument one can show that

$$\#\left\{ \delta' \in \Delta_N : \|u_{\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon \right\} \leq 2^{N^2} e^{-N^2/8} = e^{-N^2/8} \#(\mathcal{U}_N)$$

which yields

$$\mathcal{H}_\varepsilon(\mathcal{U}_N \mid W^{1,1}(\mathbb{R}^2)) \geq \frac{\Gamma}{\varepsilon^2}$$

with $\Gamma = \Gamma(K,L,M) > 0$. Therefore,

$$\mathcal{H}_\varepsilon(\mathcal{SC}_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^2)) \geq \frac{\Gamma}{\varepsilon^2}$$
The class \mathcal{U}_N of smooth functions

Let

$$\Delta_N = \left\{ \delta = (\delta_{ij})_{i,j=1}^N : \delta_{ij} \in \{-1, 1\} \right\}$$

Consider the class of smooth functions

$$\mathcal{U}_N = \left\{ u_{\delta} = \sum_{i,j=1}^N \delta_{ij} \cdot b_{ij} : \delta \in \Delta_N \right\}$$

Then $\#(\mathcal{U}_N) = 2^{N^2}$. Also, one can show that

- $\mathcal{U}_N \subset SC_{[K,L,M]}$
- $\|u_{\delta'} - u_{\delta}\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon$ if $\# \{(i,j) : \delta_{ij}' \neq \delta_{ij}\} \leq C_{K,L}N^n\varepsilon$

Choosing $N \approx \frac{1}{\varepsilon}$, by a combinatorial argument one can show that

$$\# \left\{ \delta' \in \Delta_N : \|u_{\delta'} - u_{\delta}\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon \right\} \leq 2^{N^2} e^{-N^2/8} = e^{-N^2/8} \#(\mathcal{U}_N)$$

which yields

$$\mathcal{H}_\varepsilon \left(\mathcal{U}_N \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\varepsilon^2}$$

with $\Gamma = \Gamma(K,L,M) > 0$. Therefore,

$$\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\varepsilon^2}$$
The class \mathcal{U}_N of smooth functions

Let

$$\Delta_N = \left\{ \delta = (\delta_{ij})_{i,j=1}^N : \delta_{ij} \in \{-1, 1\} \right\}$$

Consider the class of smooth functions

$$\mathcal{U}_N = \left\{ u_\delta = \sum_{i,j=1}^N \delta_{ij} \cdot b_{ij} : \delta \in \Delta_N \right\}$$

Then $\#(\mathcal{U}_N) = 2^{N^2}$. Also, one can show that

- $\mathcal{U}_N \subset SC_{[K,L,M]}$
- $\|u_{\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon$ if $\#\{(i,j) : \delta_{ij}' \neq \delta_{ij}\} \leq C_{K,L}N^{n+1}\varepsilon$

Choosing $N \approx \frac{1}{\varepsilon}$, by a combinatorial argument one can show that

$$\#\left\{ \delta' \in \Delta_N : \|u_{\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon \right\} \leq 2^{N^2} e^{-N^2/8} = e^{-N^2/8} \#(\mathcal{U}_N)$$

which yields

$$\mathcal{H}_\varepsilon\left(\mathcal{U}_N \mid W^{1,1}(\mathbb{R}^2)\right) \geq \frac{\Gamma}{\varepsilon^2}$$

with $\Gamma = \Gamma(K, L, M) > 0$. Therefore,

$$\mathcal{H}_\varepsilon\left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^2)\right) \geq \frac{\Gamma}{\varepsilon^2}$$
The class \mathcal{U}_N of smooth functions

Let

$$\Delta_N = \left\{ \delta = (\delta_{ij})_{i,j=1}^N : \delta_{ij} \in \{-1, 1\} \right\}$$

Consider the class of smooth functions

$$\mathcal{U}_N = \left\{ u_\delta = \sum_{i,j=1}^N \delta_{ij} \cdot b_{ij} : \delta \in \Delta_N \right\}$$

Then $\#(\mathcal{U}_N) = 2^{N^2}$. Also, one can show that

- $\mathcal{U}_N \subset SC_{[K,L,M]}$
- $\|u_{_\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon$ if $\#\{(i,j) : \delta_{ij}' \neq \delta_{ij}\} \leq C_{K,L} N^{n+1} \varepsilon$

Choosing $N \approx \frac{1}{\varepsilon}$, by a combinatorial argument one can show that

$$\#\{\delta' \in \Delta_N : \|u_{_\delta'} - u_\delta\|_{W^{1,1}(\mathbb{R}^2)} \leq \varepsilon\} \leq 2^{N^2} e^{-N^2/8} = e^{-N^2/8} \#(\mathcal{U}_N)$$

which yields

$$\mathcal{H}_\varepsilon \left(\mathcal{U}_N \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\varepsilon^2}$$

with $\Gamma = \Gamma(K, L, M) > 0$. Therefore,

$$\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^2) \right) \geq \frac{\Gamma}{\varepsilon^2}$$
End of the proof of the lower estimate

want to show

Let $M > 0$ be fixed. Then, $\forall T > 0$ there exist constants $\Gamma_T > 0$ and $\Lambda_T \geq 0$ such that

$$H_\epsilon\left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n)\right) \geq \frac{\Gamma_T}{\varepsilon^n} \quad \forall L > \Lambda_T, \forall \varepsilon > 0$$

Choose $0 < h \leq M$ such that $\sup_{\|p\| \leq h} \|DH^2(p)\| \leq 2 \cdot \|DH^2(0)\|$ and define

$$\Lambda_T = 2T \cdot \sup_{\|p\| \leq h} |DH(p)| \quad \text{and} \quad K_T = \frac{1}{4T|D^2H(0)|}$$

By the reachability of semiconcave functions we have that, $\forall L \geq \Lambda_T$,

$$SC_{[K_T, \frac{L}{2}, h]} \subset S_T(C_{[L,h]}) + T \cdot H(0) \subset S_T(C_{[L,M]}) + T \cdot H(0)$$

Recalling the lower bound for the ε-entropy of semiconcave functions

$$H_\epsilon\left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n)\right) \geq \frac{\Gamma_T}{\varepsilon^n}$$

the proof is completed.
End of the proof of the lower estimate

want to show

Let $M > 0$ be fixed. Then, $\forall T > 0$ there exist constants $\Gamma_T > 0$ and $\Lambda_T \geq 0$ such that

$$
\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n}, \quad \forall L > \Lambda_T, \forall \varepsilon > 0
$$

Choose $0 < h \leq M$ such that $\sup_{\|p\| \leq h} \|DH^2(p)\| \leq 2 \cdot \|DH^2(0)\|$ and define

$$
\Lambda_T = 2T \cdot \sup_{\|p\| \leq h} |DH(p)| \quad \text{and} \quad K_T = \frac{1}{4T|D^2H(0)|}
$$

By the reachability of semiconcave functions we have that, $\forall L \geq \Lambda_T$,

$$
SC_{[K_T, \frac{L}{2}, h]} \subset S_T(C_{[L,h]}) + T \cdot H(0) \subset S_T(C_{[L,M]}) + T \cdot H(0)
$$

Recalling the lower bound for the ε-entropy of semiconcave functions

$$
\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n}
$$

the proof is completed
End of the proof of the lower estimate

Let $M > 0$ be fixed. Then, $\forall T > 0$ there exist constants $\Gamma_T > 0$ and $\Lambda_T \geq 0$ such that

$$
\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n} \quad \forall L > \Lambda_T, \; \forall \varepsilon > 0
$$

Choose $0 < h \leq M$ such that $\sup_{\|p\| \leq h} \|DH^2(p)\| \leq 2 \cdot \|DH^2(0)\|$ and define

$$
\Lambda_T = 2T \cdot \sup_{\|p\| \leq h} |DH(p)| \quad \text{and} \quad K_T = \frac{1}{4T|D^2H(0)|}
$$

By the reachability of semiconcave functions we have that, $\forall L \geq \Lambda_T$,

$$
SC\left[K_T, \frac{L}{2}, h\right] \subset S_T(C_{[L,h]}) + T \cdot H(0) \subset S_T(C_{[L,M]}) + T \cdot H(0)
$$

Recalling the lower bound for the ε-entropy of semiconcave functions

$$
\mathcal{H}_\varepsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n}
$$

the proof is completed.
End of the proof of the lower estimate

Want to show

Let \(M > 0 \) be fixed. Then, \(\forall T > 0 \) there exist constants \(\Gamma_T > 0 \) and \(\Lambda_T \geq 0 \) such that

\[
\mathcal{H}_\epsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n} \quad \forall L > \Lambda_T, \forall \varepsilon > 0
\]

Choose \(0 < h \leq M \) such that \(\sup_{\|p\| \leq h} \|DH^2(p)\| \leq 2 \cdot \|DH^2(0)\| \) and define

\[
\Lambda_T = 2T \cdot \sup_{\|p\| \leq h} |DH(p)| \quad \text{and} \quad K_T = \frac{1}{4T|D^2H(0)|}
\]

By the reachability of semiconcave functions we have that, \(\forall L \geq \Lambda_T \),

\[
SC_{[K_T, \frac{L}{2}, h]} \subset S_T(C_{[L,h]}) + T \cdot H(0) \subset S_T(C_{[L,M]}) + T \cdot H(0)
\]

Recalling the lower bound for the \(\varepsilon \)-entropy of semiconcave functions

\[
\mathcal{H}_\epsilon \left(SC_{[K,L,M]} \mid W^{1,1}(\mathbb{R}^n) \right) \geq \frac{\Gamma_T}{\varepsilon^n}
\]

the proof is completed.
Concluding remarks

- combining the upper and lower estimates (near $\varepsilon = 0$)

$$ \mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \approx \varepsilon^{-n} $$

- compactness estimates can be extended to

$$ u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \quad (t, x) \in [0, T] \times \mathbb{R}^n $$

(no Hopf-Lax formula available)

- reachability example of a controllability result for Hamilton-Jacobi equations
Concluding remarks

- combining the upper and lower estimates (near \(\varepsilon = 0 \))
 \[
 \mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \approx \varepsilon^{-n}
 \]

- compactness estimates can be extended to
 \[
 u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \quad (t, x) \in [0, T] \times \mathbb{R}^n
 \]
 (no Hopf-Lax formula available)

- reachability example of a controllability result for Hamilton-Jacobi equations
Concluding remarks

- combining the upper and lower estimates (near $\varepsilon = 0$)

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \approx \varepsilon^{-n}$$

- compactness estimates can be extended to

$$u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \quad (t, x) \in [0, T] \times \mathbb{R}^n$$

(no Hopf-Lax formula available)

- reachability example of a controllability result for Hamilton-Jacobi equations
Concluding remarks

- combining the upper and lower estimates (near $\varepsilon = 0$)

$$\mathcal{H}_\varepsilon \left(S_T(C_{[L,M]}(S, T) + T \cdot H(0) \mid W^{1,1}(\mathbb{R}^n) \right) \approx \varepsilon^{-n}$$

- compactness estimates can be extended to

$$u_t(t, x) + H(t, x, \nabla u(t, x)) = 0 \quad (t, x) \in [0, T] \times \mathbb{R}^n$$

(no Hopf-Lax formula available)

- reachability example of a controllability result for Hamilton-Jacobi equations
Thank you for your attention and thanks to for the hospitality