Global exact simultaneous controllability of an arbitrary number of 1D bilinear Schrödinger equations

Morgan MORANCEY
CMLS, Ecole Polytechnique

29 August 2013

Partial differential equations, optimal design and numerics
Benasque
Joint work with Vahagn Nersesyan (UVSQ).
Model studied : N identical and independent $1D$ particles in a potential

\[
\begin{cases}
 i \partial_t \psi^j = (-\partial_{xx}^2 + V(x)) \psi^j - u(t)\mu(x)\psi^j, & x \in (0, 1), \\
 \psi^j(t, 0) = \psi^j(t, 1) = 0, & j \in \{1, \ldots, N\},
\end{cases}
\]

where

- **State** : $(\psi^1, \ldots, \psi^N) \in S^N$,
- **control** : $u : (0, T) \to \mathbb{R}$,
- $V : (0, 1) \to \mathbb{R}$ potential,
- $\mu : (0, 1) \to \mathbb{R}$ dipole moment.

Goal : Simultaneous control of (ψ^1, \ldots, ψ^N) with a single control u.

Morgan MORANCEY
Global exact simultaneous controllability of bilinear Schrödinger equations
1. Introduction
 - Notations
 - Main result
 - Previous results

2. Approximate controllability towards finite sums of eigenvectors

3. Local exact controllability around finite sums of eigenvectors.
 - Results
 - Rotation and compactness
 - Local controllability around eigenvectors: the return method

4. Global exact controllability
 - Global exact controllability under favourable hypotheses
 - Global exact controllability for an arbitrary potential
Introduction

- Notations
- Main result
- Previous results

Approximate controllability towards finite sums of eigenvectors

Local exact controllability around finite sums of eigenvectors.

Global exact controllability
- $S : L^2((0, 1), \mathbb{C})$ unit sphere.
- $\lambda_{k,V} \in \mathbb{R}$ and $\varphi_{k,V} \in S$ eigenvalues and eigenvectors of
 \[A_V \psi := (-\partial_{xx}^2 + V) \psi, \quad D(A_V) := H^2 \cap H^1_0((0, 1), \mathbb{C}) \]
- Functional framework
 \[H_s(V) := D(A_V^{s/2}), \quad \| \cdot \|_{H_s(V)}^2 := \sum_{k=1}^{\infty} |k^s \langle \cdot, \varphi_{k,V} \rangle|^2, \quad \forall s > 0. \]
Let $\Phi_k, v(t, x) := e^{-i\lambda_k, v t} \varphi_k, v(x)$. $(\Phi_1, v, \ldots, \Phi_N, v)$ solution with $u \equiv 0$.

Bold notations: $\psi := (\psi^1, \ldots, \psi^N)$, $H := H^N$.

Unique weak solution $C^0([0, T], H^3_{(V)})$ for $u \in L^2((0, T), \mathbb{R})$, $\psi_0 \in H^3_{(V)}$, $\psi(\cdot, \psi_0, u)$.

Unitary equivalent vectors ψ_0, ψ_f: there exists $U : L^2 \to L^2$ unitary map such that $\psi_f = U \psi_0$ i.e.

$$\psi_f^j = U \psi_0^j, \quad \forall j \in \{1, \ldots, N\}.$$
Main result and strategy

Main Theorem

Let $N \in \mathbb{N}^*$. For every $V \in H^4((0, 1), \mathbb{R})$, system (S_N) is globally exactly controllable in $H^4_{(V)}$, generically with respect to $\mu \in H^4((0, 1), \mathbb{R})$. More precisely, there exists a set Q_V residual in $H^4((0, 1), \mathbb{R})$ such that for every $\mu \in Q_V$

$$\forall \psi_0, \psi_f \text{ unitarily equivalent, } \exists T > 0, \exists u \in L^2((0, T), \mathbb{R});$$

$$\psi(T, \psi_0, u) = \psi_f.$$
Main result and strategy

Main Theorem

Let $N \in \mathbb{N}^*$. For every $V \in H^4((0, 1), \mathbb{R})$, system (S_N) is globally exactly controllable in H^4_V, generically with respect to $\mu \in H^4((0, 1), \mathbb{R})$. More precisely, there exists a set Q_V residual in $H^4((0, 1), \mathbb{R})$ such that for every $\mu \in Q_V$

\[\forall \psi_0, \psi_f \text{ unitarily equivalent}, \exists T > 0, \exists u \in L^2((0, T), \mathbb{R}); \]
\[\psi(T, \psi_0, u) = \psi_f. \]

Overall strategy:

- Global approximate controllability towards finite sums of eigenvectors
- Use of a suitable Lyapunov function
Main result and strategy

Main Theorem

Let $N \in \mathbb{N}^*$. For every $V \in H^4((0, 1), \mathbb{R})$, system (S_N) is globally exactly controllable in $H^4_{(V)}$, generically with respect to $\mu \in H^4((0, 1), \mathbb{R})$. More precisely, there exists a set Q_V residual in $H^4((0, 1), \mathbb{R})$ such that for every $\mu \in Q_V$

$$\forall \psi_0, \psi_f \text{ unitarily equivalent}, \exists T > 0, \exists u \in L^2((0, T), \mathbb{R});$$

$$\psi(T, \psi_0, u) = \psi_f.$$

Overall strategy:

- Global approximate controllability towards finite sums of eigenvectors
- Exact controllability around finite sums of eigenvectors
 - Coron’s return method: local exact controllability around finite sums of eigenvectors
Main result and strategy

Main Theorem

Let \(N \in \mathbb{N}^* \). For every \(V \in H^4((0, 1), \mathbb{R}) \), system \((S_N)\) is globally exactly controllable in \(H^4_{(V)} \), generically with respect to \(\mu \in H^4((0, 1), \mathbb{R}) \). More precisely, there exists a set \(Q_V \) residual in \(H^4((0, 1), \mathbb{R}) \) such that for every \(\mu \in Q_V \)

\[
\forall \psi_0, \psi_f \text{ unitarily equivalent, } \exists T > 0, \exists u \in L^2((0, T), \mathbb{R}); \quad \psi(T, \psi_0, u) = \psi_f.
\]

Overall strategy:

- Global approximate controllability towards finite sums of eigenvectors
- Exact controllability around finite sums of eigenvectors
 - Coron’s return method: local exact controllability around finite sums of eigenvectors
 - Connectedness and compactness: exact controllability around \(z_0 \) (initial conditions) and \(z_f \) (targets) with \(z_0^J, z_f^J \) finite sums of eigenvectors

Morgan MORANCEY
Main result and strategy

Main Theorem

Let \(N \in \mathbb{N}^* \). For every \(V \in H^4((0, 1), \mathbb{R}) \), system \((S_N) \) is globally exactly controllable in \(H^4(V) \), generically with respect to \(\mu \in H^4((0, 1), \mathbb{R}) \). More precisely, there exists a set \(Q_V \) residual in \(H^4((0, 1), \mathbb{R}) \) such that for every \(\mu \in Q_V \)

\[
\forall \psi_0, \psi_f \text{ unitarily equivalent, } \exists T > 0, \exists u \in L^2((0, T), \mathbb{R}); \\
\psi(T, \psi_0, u) = \psi_f.
\]

Overall strategy:

- Global approximate controllability towards finite sums of eigenvectors
- Exact controllability around finite sums of eigenvectors
- Time reversibility

\[
\psi(T, \overline{\psi_f}, u) = \overline{\psi_0} \implies \psi(T, \psi_0, u(T - \cdot)) = \psi_f.
\]
Perturbation and favourable hypotheses

Dealing with an arbitrary potential V. Consider the control $u(t) := \tilde{u}(t) - 1$.

\[
\begin{aligned}
 i\partial_t\tilde{\psi}^j &= (-\partial_{xx}^2 + V(x)) \tilde{\psi}^j - (\tilde{u}(t) - 1)\mu(x)\tilde{\psi}^j, \\
 &= (-\partial_{xx}^2 + V(x) + \mu(x)) \tilde{\psi}^j - \tilde{u}(t)\mu(x)\tilde{\psi}^j, \\
 \tilde{\psi}^j(t, 0) = \tilde{\psi}^j(t, 1) &= 0, \\
 j &\in \{1, \ldots, N\},
\end{aligned}
\]

'New potential' : $V + \mu$

- Study of global approximate and local exact controllability of (S_N) under favourable hypothesis on the potential for arbitrary V.
Previous results: finite dimension and approximate controllability

- **Finite dimension**
 - Turinici, Rabitz (2004)
 Control of the orientation of an ensemble of molecules (finite dimension)
 - Silveira, Pereira da Silva, Rouchon (2009)
 Stabilization of density matrices (finite dimension)

- **Approximate controllability in infinite dimension**
 Simultaneous approximate controllability in L^2.
 Approximate control of density matrices (through control of Galerkin approximations)
 - Boussaïd, Caponigro, Chambrion (2013)
 Higher Sobolev norms for 'weakly coupled' systems.
Previous results: a single particle ($N = 1$)

$V = 0$. $\mu \in H^3(0,1)$ satisfies $\exists c > 0$ such that

$$\langle \mu \phi_1, \phi_k \rangle \geq \frac{c}{k^3}, \quad \forall k \in \mathbb{N}^*.$$

- **Beauchard Laurent** (2010), local exact controllability: $\forall T > 0$, $\exists \delta > 0$ such that

$$\forall \psi_f \in S \cap H^3_0 \text{ with } \|\psi_f - \Phi_1(T)\|_{H^3_0} < \delta,$$

there exists $u \in L^2((0, T), \mathbb{R})$ such that

\[
\begin{cases}
 i\partial_t \psi = -\partial_{xx}^2 \psi - u(t)\mu(x)\psi, \\
 \psi(t, 0) = \psi(t, 1) = 0, \quad \Rightarrow \quad \psi(T) = \psi_f.
\end{cases}
\]

C^1 regularity of the map $\psi_f \mapsto u$.

- **Nersesyan** (2010), global exact controllability in $S \cap H^3_{0+\varepsilon}$ for generic μ.

Previous results: a first step ($N = 2$ and $N = 3$)

\[V = 0, \mu \in H^3(0, 1) \text{ satisfies } \exists c > 0 \text{ such that} \]

\[|\langle \mu \varphi_j, \varphi_k \rangle| \geq \frac{c}{k^3}, \quad \forall j \in \{1, \ldots, N\}, \forall k \in \mathbb{N}^*. \]

\[(\psi_0^1, \ldots, \psi_0^N) = (\varphi_1, \ldots, \varphi_N). \]

- Unreachable targets with small controls in small time for $N \geq 2$.
- $N = 2$: local controllability in arbitrary time up to a global phase i.e. $\forall T > 0, \exists \theta \in \mathbb{R}, \exists \delta > 0$;

\[\forall (\psi^1_f, \psi^2_f) \in \left(S \cap H^3_{(0)} \right)^2 \text{ with } \langle \psi^1_f, \psi^2_f \rangle = 0 \text{ and} \]

\[\|\psi^1_f - e^{i\theta} \Phi_1(T)\|_{H^3_{(0)}} + \|\psi^2_f - e^{i\theta} \Phi_2(T)\|_{H^3_{(0)}} < \delta, \]

\[\exists u \in L^2((0, T), \mathbb{R}) \text{ such that } (\psi^1, \psi^2)(T) = (\psi^1_f, \psi^2_f). \]
Previous results: a first step ($N = 2$ and $N = 3$) II

- $N = 2$: local exact controllability up to a global delay i.e. $\exists T^* > 0; \forall T \geq 0$, $\exists \delta > 0$;

$$\forall (\psi^1_f, \psi^2_f) \in \left(S \cap H^3_{(0)} \right)^2 \text{ with } \langle \psi^1_f, \psi^2_f \rangle = 0 \text{ and } \|\psi^1_f - \Phi_1(T)\|_{H^3_{(0)}} + \|\psi^2_f - \Phi_2(T)\|_{H^3_{(0)}} < \delta,$$

$\exists u \in L^2((0, T^* + T), \mathbb{R})$ such that $(\psi^1, \psi^2)(T^* + T) = (\psi^1_f, \psi^2_f)$.

- $N = 3$: local controllability up to a global phase and a global delay i.e. $\exists T^* > 0, \exists \theta \in \mathbb{R}; \forall T \geq 0, \exists \delta > 0$;

$$\forall (\psi^1_f, \psi^2_f, \psi^3_f) \in \left(S \cap H^3_{(0)} \right)^3 \text{ with } \langle \psi^j_f, \psi^k_f \rangle = \delta_{j=k} \text{ and } \|\psi^1_f - e^{i\theta} \Phi_1(T)\|_{H^3_{(0)}} + \|\psi^2_f - e^{i\theta} \Phi_2(T)\|_{H^3_{(0)}} + \|\psi^3_f - e^{i\theta} \Phi_3(T)\|_{H^3_{(0)}} < \delta,$$

$\exists u \in L^2((0, T^* + T), \mathbb{R})$ such that $(\psi^1, \psi^2, \psi^3)(T^* + T) = (\psi^1_f, \psi^2_f, \psi^3_f)$.
1 Introduction

2 Approximate controllability towards finite sums of eigenvectors

3 Local exact controllability around finite sums of eigenvectors.

4 Global exact controllability
Approximate controllability towards finite sums of eigenvectors

$N \in \mathbb{N}^*$. $V, \mu \in H^4((0, 1), \mathbb{R})$ such that

(C$_1$) $\langle \mu \varphi_j, V, \varphi_k, V \rangle \neq 0$ for all $j \in \{1, \ldots, N\}$, $k \in \mathbb{N}^*$.

(C$_2$) $\lambda_j, V - \lambda_k, V \neq \lambda_p, V - \lambda_q, V$ for all $j \in \{1, \ldots, N\}$, $k, p, q \in \mathbb{N}^*$ such that $\{j, k\} \neq \{p, q\}$ and $k \neq j$.

Theorem

Let $C_M := \text{Span}\{\varphi_1, V, \ldots, \varphi_M, V\}$. Under Conditions (C$_1$) and (C$_2$), for any $\psi_0 \in S \cap H^4_0(V)$ with $\langle \psi_0^j, \varphi_j, V \rangle \neq 0$, for all $j \in \{1, \ldots, N\}$, there are $M \in \mathbb{N}^*$, $\psi_f \in C_M$, sequences $T_n > 0$ and $u_n \in C_0^\infty((0, T_n), \mathbb{R})$ such that

$$\psi(T_n, \psi_0, u_n) \xrightarrow{n \to \infty} \psi_f \quad \text{in} \quad H^3.$$

Sketch of proof \textit{I}

- Lyapunov strategy.

\[
\mathcal{L}(z) := \alpha \sum_{j=1}^{N} \| (-\partial_{xx}^2 + V)^2 P_N z_j \|_{L^2}^2 + 1 - \prod_{j=1}^{N} |\langle z_j, \varphi_j, V \rangle|^2,
\]

with P_N orthogonal projection in L^2 onto $\text{Span}\{\varphi_k, V ; k \geq N + 1\}$.

- Decrease: $z \in S \cap H^4_{(V)}$ with $\langle z_j, \varphi_j, V \rangle \neq 0$, for all $j \in \{1, \ldots, N\}$.

Either

\[
z \in \bigcup_{M \in \mathbb{N}^*} C_M,
\]

or $\exists T > 0, \exists u \in C_{0}^\infty((0, T), \mathbb{R})$ such that

\[
\mathcal{L}(\psi(T, z, u)) < \mathcal{L}(z).
\]
Sketch of proof II

idea: existence of T and $w \in C_0^\infty((0, T), \mathbb{R})$ such that

$$\frac{d}{d\sigma} \mathcal{L}(\psi(T, \psi_0, \sigma w))\bigg|_{\sigma=0} \neq 0.$$

- We define

$$\mathcal{K} := \left\{ \psi \in H^4_V; \psi(T_n, \psi_0, u_n) \xrightarrow{n \to \infty} \psi \text{ in } H^3, \text{ for } T_n \geq 0, u_n \in C_0^\infty((0, T_n), \mathbb{R}) \right\}.$$

- $e \in \mathcal{K}$ such that $\mathcal{L}(e) = \inf_{\psi \in \mathcal{K}} \mathcal{L}(\psi)$. Then

$$e \in \bigcup_{M \in \mathbb{N}^*} \mathcal{C}_M.$$
Introduction

2 Approximate controllability towards finite sums of eigenvectors

3 Local exact controllability around finite sums of eigenvectors.
 - Results
 - Rotation and compactness
 - Local controllability around eigenvectors: the return method

4 Global exact controllability
Local exact controllability around finite sums of eigenvectors

$N \in \mathbb{N}^*$. $V, \mu \in H^3((0, 1), \mathbb{R})$ such that

- \textbf{(C$_3$)} there exists $c > 0$ such that
 \[|\langle \mu \varphi_j, V \varphi_k, V \rangle| \geq \frac{c}{k^3}, \quad \forall j \in \{1, \ldots, N\}, \forall k \in \mathbb{N}^*, \]

- \textbf{(C$_4$)} $\lambda_k, V - \lambda_j, V \neq \lambda_p, V - \lambda_n, V$ for all $j, n \in \{1, \ldots, N\}$, $k \geq j + 1$, $p \geq n + 1$ with $\{j, k\} \neq \{p, n\}$,

- \textbf{(C$_5$)} $1, \lambda_1, V, \ldots, \lambda_N, V$ are rationally independent.

\vspace{1cm}

\textbf{Theorem}

Let $C_0, C_f \in U_N$ and $z_0 := C_0 \varphi_V$, $z_f := C_f \varphi_V$. Under Conditions \textbf{(C$_3$)}-\textbf{(C$_5$)}, there exists $T > 0$, $\delta > 0$ such that, if

\[O_{\delta, C} := \left\{ \phi \in H^3_V ; \langle \phi^j, \phi^k \rangle = \delta_{j=k} \text{ and } \sum_{j=1}^N \|\phi^j - (C \varphi_V)^j\|_{H^3_V} < \delta \right\}, \]

for every $\psi_0 \in O_{\delta, C_0}$, $\psi_f \in O_{\delta, C_f}$, there exists $u \in L^2((0, T), \mathbb{R})$ such that the associated solution satisfies $\psi(T) = \psi_f$.
Proposition

Assume Conditions \((C_3)-(C_4)\).

- \(T > 0\), there are \(\theta_1, \ldots, \theta_N \in \mathbb{R}\), \(\delta > 0\);
 \[
 \forall \psi_0 \in H^3(V); \quad \langle \psi_0^j, \psi_0^k \rangle = \delta_{j=k} \quad \text{and} \quad \sum_{j=1}^N \| \psi_0^j - \varphi_j, V \|_{H^3(V)} < \delta,
 \]

- \(\forall \psi_f \in H^3(V); \quad \langle \psi_f^j, \psi_f^k \rangle = \delta_{j=k} \quad \text{and} \quad \sum_{j=1}^N \| \psi_f^j - e^{i\theta_j} \varphi_j, V \|_{H^3(V)} < \delta,
 \]

there exists \(u \in L^2((0, T), \mathbb{R})\) such that \(\psi(T, \psi_0, u) = \psi_f\).

- \(C^1\) regularity of the map \((\psi_0, \psi_f) \mapsto u\).

Similar to \(\textbf{M} \) (2013) for \(N = 2, 3\). No condition on the phase terms \(\theta_j\).
Proof: rotation

1. Proof in the case $C_0 = C_f = I_N$. $\psi_0, \psi_f \approx \varphi_V$.
 - Use of the proposition.
 \[
 \psi_0 \approx \varphi_V \quad \overset{T^*,u}{\sim} \quad \left(e^{i\theta_1}\varphi_1, V, \ldots, e^{i\theta_N}\varphi_N, V\right).
 \]
 - Rotation and rational independence of eigenvalues: Condition (C_5).
 \[
 \left(e^{i\theta_1}\varphi_1, V, \ldots, e^{i\theta_N}\varphi_N, V\right) \quad \overset{T_r,u=0}{\sim} \quad \zeta := \left(e^{i(\theta_1-\lambda_1)V T_r}\varphi_1, V, \ldots, e^{i(\theta_N-\lambda_N)V T_r}\varphi_N, V\right)
 \]
 \[
 \approx \left(e^{-i\theta_1}\varphi_1, V, \ldots, e^{-i\theta_N}\varphi_N, V\right)
 \]
 - Use of the proposition.
 \[
 \bar{\psi}_f \approx \varphi_V \quad \overset{T^*,v}{\sim} \quad \bar{\zeta}.
 \]
 - Conclusion: time-reversibility
 \[
 \zeta \quad \overset{T^*,v(T^*\cdot)}{\sim} \quad \psi_f.
 \]
2. Proof in the case \(C_0 = C_f = C \in U_N \). Let \(z := C \varphi_V \). \(\psi_0, \psi_f \approx z \).

- Let \(\delta_z > 0 \) such that

\[
C^* \left(B_{H^3_{(V)}} (z, \delta_z) \right) \subset B_{H^3_{(V)}} (\varphi_V, \delta),
\]

and

\[
\tilde{\psi}_0 := C^* \psi_0, \quad \tilde{\psi}_f := C^* \psi_f.
\]

- Step 1. \(\tilde{T} := 2 T^* + T_r, \exists u \in L^2((0, \tilde{T}), \mathbb{R}) \) such that

\[
\tilde{\psi}_0 \xrightarrow{\tilde{T}, u} \tilde{\psi}_f.
\]

- Linearity of \((S_N)\) with respect to the state

\[
\psi(\tilde{T}, \psi_0, u) = \psi(\tilde{T}, C \tilde{\psi}_0, u) = C \psi(\tilde{T}, \tilde{\psi}_0, u) = C \tilde{\psi}_f = \psi_f.
\]
Proof: connectedness and compactness

3. Conclusion: \(C_0, C_f \in U_N \).

- Connectedness in the set of unitary matrices and compactness.
3. Conclusion: $C_0, C_f \in U_N$.
- Connectedness in the set of unitary matrices and compactness.

\[C : t \in [0, 1] \mapsto C(t) \in U_N \]
with $C(0) = C_0$ and $C(1) = C_f$
3. **Conclusion**: $C_0, C_f \in U_N$.
 - Connectedness in the set of unitary matrices and compactness.
3. **Conclusion**: $C_0, C_f \in U_N$.

- Connectedness in the set of unitary matrices and compactness.
3. **Conclusion**: $C_0, C_f \in U_N$.

- Connectedness in the set of unitary matrices and compactness.
Proposition

$N \in \mathbb{N}^*$. $V, \mu \in H^3((0, 1), \mathbb{R})$ such that

(C3) there exists $c > 0$ such that

$$|\langle \mu \varphi_j, V, \varphi_k, V \rangle| \geq \frac{c}{k^3}, \quad \forall j \in \{1, \ldots, N\}, \forall k \in \mathbb{N}^*,$$

(C4) $\lambda_{k, V} - \lambda_{j, V} \neq \lambda_{p, V} - \lambda_{n, V}$ for all $j, n \in \{1, \ldots, N\}, k \geq j + 1, p \geq n + 1$ with $\{j, k\} \neq \{p, n\}$.

$T > 0$, there are $\theta_1, \ldots, \theta_N \in \mathbb{R}$, $\delta > 0$;

$$\forall \psi_0 \in H^3_{(V)}; \langle \psi_0^j, \psi_0^k \rangle = \delta_{j=k} \text{ and } \sum_{j=1}^{N} \| \psi_0^j - \varphi_j, V \|_{H^3_{(V)}} < \delta,$$

$$\forall \psi_f \in H^3_{(V)}; \langle \psi_f^j, \psi_f^k \rangle = \delta_{j=k} \text{ and } \sum_{j=1}^{N} \| \psi_f^j - e^{i\theta_j} \varphi_j, V \|_{H^3_{(V)}} < \delta,$$

there exists $u \in L^2((0, T), \mathbb{R})$ such that $\psi(T, \psi_0, u) = \psi_f$.
Natural strategy : linear test

- Linearized system around \((\Phi_1, \nu, \ldots, \Phi_N, \nu, u \equiv 0)\)

\[
\begin{aligned}
\left\{ \begin{array}{l}
 i\partial_t \psi_j = -\partial_{xx}^2 \psi_j - \nu(t) \mu(x) \Phi_j, \nu, \quad j \in \{1, \ldots, N\} \\
 \psi_j(t, 0) = \psi_j(t, 1) = 0, \\
 \psi_j(0, x) = 0.
\end{array} \right.
\end{aligned}
\]

\[
\psi^j(T) = i \sum_{k=1}^{\infty} \langle \mu \varphi_j, \nu, \varphi_k, \nu \rangle \int_0^T \nu(t) e^{i(\lambda_k, \nu - \lambda_j, \nu) t} dt \Phi_k, \nu(T).
\]
Natural strategy : linear test

- Linearized system around \((\Phi_1, \nu, \ldots, \Phi_N, \nu, u \equiv 0)\)

\[
\begin{aligned}
 i \partial_t \psi^j &= -\partial_{xx}^2 \psi^j - \nu(t) \mu(x) \Phi_j, \nu, \quad j \in \{1, \ldots, N\} \\
 \psi^j(t, 0) &= \psi^j(t, 1) = 0, \\
 \psi^j(0, x) &= 0.
\end{aligned}
\]

\[
\psi^j(T) = i \sum_{k=1}^{\infty} \langle \mu \varphi_j, \nu, \varphi_k, \nu \rangle \int_0^T \nu(t) e^{i(\lambda_k, \nu - \lambda_j, \nu)t} dt \Phi_k, \nu(T).
\]

- Gap condition + null upper density (Conditions \((C_3)-(C_4)) \leadsto Solution of moment problem for non redundant frequencies

\[
\left\{ \lambda_k, \nu - \lambda_j, \nu ; j \in \{1, \ldots, N\}, k \geq j + 1 \text{ and } k = j = N \right\}.
\]
Natural strategy : linear test

- Linearized system around \((\Phi_1, \nu, \ldots, \Phi_N, \nu, u \equiv 0)\)

\[
\begin{cases}
 i\partial_t \psi^j = -\partial_{xx}^2 \psi^j - \nu(t)\mu(x)\Phi_j, \nu, & j \in \{1, \ldots, N\} \\
 \psi^j(t, 0) = \psi^j(t, 1) = 0, \\
 \psi^j(0, x) = 0.
\end{cases}
\]

\[
\psi^j(T) = i \sum_{k=1}^{\infty} \langle \mu \varphi_j, \nu, \varphi_k, \nu \rangle \int_0^T \nu(t) e^{i(\lambda_k, \nu - \lambda_j, \nu)t} dt \Phi_k, \nu(T).
\]

- Gap condition + null upper density (Conditions \((C_3)-(C_4)) \leadsto Solution of moment problem for non redundant frequencies

\[
\left\{ \lambda_k, \nu - \lambda_j, \nu ; j \in \{1, \ldots, N\}, k \geq j + 1 \text{ and } k = j = N \right\}.
\]

- Lost directions.

\[
\frac{\langle \psi^j(T), \Phi_j, \nu(T) \rangle}{\langle \mu \varphi_j, \nu, \varphi_j, \nu \rangle} = \frac{\langle \psi^k(T), \Phi_k, \nu(T) \rangle}{\langle \mu \varphi_k, \nu, \varphi_k, \nu \rangle}, \quad \forall j, k \in \{1, \ldots, N\}.
\]
The return method

The return method

Local controllability around z_0 and z_f
linearized system not controllable
The return method

Construction of a reference trajectory with controllable linearized system
The reference trajectory

Let $T > 0$ and $0 < \varepsilon_1 < \cdots < \varepsilon_{N-1} < T$.

Under Conditions (C_3) and (C_4), there exist $\bar{\eta} > 0$, $C > 0$ such that $\forall \eta \in (0, \bar{\eta})$, $\exists \theta_1^\eta, \ldots, \theta_N^\eta \in \mathbb{R}$, $\exists u_{ref}^\eta \in L^2((0, T), \mathbb{R})$ with

$$\|u_{ref}^\eta\|_{L^2} \leq C\eta,$$

such that $\forall j \in \{1, \ldots, N\}$, $\forall k \in \{1, \ldots, N - 1\}$,

$$\langle \mu \psi_{ref}^{j,\eta}(\varepsilon_k), \psi_{ref}^{j,\eta}(\varepsilon_k) \rangle = \langle \mu \varphi_j, \nu_k, \varphi_j, \nu_k \rangle + \eta \delta_{j=k},$$

and

$$\psi_{ref}^\eta(T) = \left(e^{i\theta_1^\eta} \varphi_1, \nu, \ldots, e^{i\theta_N^\eta} \varphi_N, \nu \right).$$

Main ideas: Small perturbations + partial control results (moment problem and invariants)

$$\psi_{ref}^\eta(T) = \left(e^{i\theta_1^\eta} \varphi_1, \nu, \ldots, e^{i\theta_N^\eta} \varphi_N, \nu \right) \iff \langle \psi_{ref}^{j,\eta}(T), \Phi_k, \nu(T) \rangle = 0, \forall k \geq j + 1.$$
Proof of the construction of the reference trajectory

- $[0, \varepsilon_{N-1}]$: Small perturbation (partial control result) such that
 \[
 \langle \mu \psi^j,\eta \psi^j(\varepsilon_k) \rangle = \langle \mu \varphi_j,\nu, \varphi_j,\nu \rangle + \eta \delta_{j=k}, \quad \forall j \in \{1, \ldots, N\}, \forall k \in \{1, \ldots, N-1\}.
 \]

- $[\varepsilon_{N-1}, T]$: Reaching the target.
 \[
 \psi^\eta_{\text{ref}}(T) = \left(e^{i\theta_1^\eta} \varphi_1,\nu, \ldots, e^{i\theta_N^\eta} \varphi_N,\nu \right) \iff P_j(\psi^j,\eta_{\text{ref}}(T)) = 0, \quad \forall j \in \{1, \ldots, N\},
 \]

where
 \[
 P_j(\psi) = \sum_{k \geq j+1} \langle \psi, \varphi_k,\nu \rangle \varphi_k,\nu.
 \]

Inverse mapping theorem at $(0, \Phi_1,\nu(\varepsilon_{N-1}), \ldots, \Phi_N,\nu(\varepsilon))$ to
 \[
 \Theta(u, \psi_0) := \left(\psi_0, P_1(\psi^1(\tau)), \ldots, P_N(\psi^N(\tau)) \right).
 \]

Continuous right inverse of $d\Theta(0, \Phi_1,\nu(\varepsilon_{N-1}), \ldots, \Phi_N,\nu(\varepsilon))$: solve a trigonometric moment problem with frequencies
 \[
 \{ \lambda_k,\nu - \lambda_j,\nu \mid j \in \{1, \ldots, N\}, k \geq j + 1 \}.
 \]
Controllability of the linearized system around the reference trajectory

\[
\begin{cases}
 i \partial_t \psi^{j,\eta} = (-\partial_{xx}^2 + V(x)) \psi^{j,\eta} - u_{\text{ref}}^{\eta}(t) \mu(x) \psi^{j,\eta} - \nu(t) \mu(x) \psi_{\text{ref}}^{j,\eta}, \\
 \psi^{j,\eta}(t, 0) = \psi^{j,\eta}(t, 1) = 0, \\
 \psi^{j,\eta}(0, x) = \psi_0^{j,\eta}(x).
\end{cases}
\]

Linearization of the invariants:

\[
\text{Re}(\langle \psi^{j,\eta}, \psi^{j,\eta}_{\text{ref}}(t) \rangle) = 0, \quad \forall 1 \leq j \leq N,
\]

\[
\langle \psi^{j,\eta}, \psi^{k,\eta}_{\text{ref}}(t) \rangle + \langle \psi^{k,\eta}, \psi^{j,\eta}_{\text{ref}}(t) \rangle = 0, \quad \forall 1 \leq k < j \leq N.
\]

Controllability: There exists \(\hat{\eta} \in (0, \bar{\eta}) \) such that for any \(\eta \in (0, \hat{\eta}) \), for any suitable \((\Psi_0, \Psi_f) \in H^3(V) \), there exists \(\nu \in L^2((0, T), \mathbb{R}) \) such that the solution initiated from \(\Psi_0 \) satisfies

\[
\Psi^{\eta}(T) = \Psi_f.
\]
Controllability of $\langle \psi^j, \eta(T), \Phi_k, V(T) \rangle$ for $j \in \{1, \ldots, N\}$ and $k \in \mathbb{N}^*$.

<table>
<thead>
<tr>
<th>$\langle \psi^j, \eta, \Phi_k, V \rangle$</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>N</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ^1, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ^2, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ^N, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choice of η small enough + moment problem

Minimal family for diagonal directions.

Invariants
Sketch of proof

Controllability of $\langle \Psi^j, \eta(T), \Phi_k, V(T) \rangle$ for $j \in \{1, \ldots, N\}$ and $k \in \mathbb{N}^*$.

<table>
<thead>
<tr>
<th>$\langle \Psi^j, \eta, \Phi_k, V \rangle$</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>N</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ^1, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ^2, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\ddots</td>
</tr>
<tr>
<td>ψ^N, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Choice of η small enough + moment problem
 - For $\eta = 0$: $j \in \{1, \ldots, N\}$, $k \geq j + 1$ and $k = j = N$

$$
\langle \Psi^j, 0(T), \Phi_k, V(T) \rangle = i \langle \mu \varphi_j, V, \varphi_k, V \rangle \int_0^T v(t)e^{i(\lambda_k, V - \lambda_j, V)t}dt,
$$

solve a trigonometric moment problem (Conditions (C_3) and (C_4)).
Sketch of proof

Controllability of \(\langle \Psi^j, \eta(T), \Phi_k, V(T) \rangle \) for \(j \in \{1, \ldots, N\} \) and \(k \in \mathbb{N}^* \).

<table>
<thead>
<tr>
<th>(\langle \Psi^j, \eta, \Phi_k, V \rangle)</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>N</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Psi^1, \eta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Psi^2, \eta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td></td>
<td></td>
<td>(\cdot)</td>
<td></td>
<td>(\cdot)</td>
</tr>
<tr>
<td>(\Psi^N, \eta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Choice of \(\eta \) small enough + moment problem**
 - For \(\eta = 0 \): \(j \in \{1, \ldots, N\} \), \(k \geq j + 1 \) and \(k = j = N \)
 \[
 \langle \Psi^{j,0}, (T), \Phi_k, V(T) \rangle = i \langle \mu \varphi_j, V, \varphi_k, V \rangle \int_0^T v(t) e^{i(\lambda_k, V - \lambda_j, V)t} dt,
 \]
 solve a trigonometric moment problem (Conditions \((C_3) \) and \((C_4) \)).
 - **Choice of \(\eta \) sufficiently small \(\Longrightarrow \) controllability of \(\langle \Psi^j, \eta(T), \Phi_k, V(T) \rangle \).
Controllability of $\langle \Psi^j, \eta(T), \Phi_k, V(T) \rangle$ for $j \in \{1, \ldots, N\}$ and $k \in \mathbb{N}^*$.

<table>
<thead>
<tr>
<th>$\langle \Psi^j, \eta, \Phi_k, V \rangle$</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>N</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ^1, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ψ^2, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ψ^N, η</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Choice of η small enough + moment problem
- Minimal family for diagonal directions.

- For $\eta = 0$:
 \[
 \langle \Psi^j, 0(T), \Phi_j, V(T) \rangle \sim \langle \mu \phi_j, \nu, \phi_j, \nu \rangle \int_0^T \nu(t) dt, \quad \forall j \in \{1, \ldots, N\}.
 \]
Sketch of proof

Controllability of $\langle \Psi^j, \eta(T), \Phi_k, \nu(T) \rangle$ for $j \in \{1, \ldots, N\}$ and $k \in \mathbb{N}^*$.

<table>
<thead>
<tr>
<th>$\langle \Psi^j, \eta, \Phi_k, \nu \rangle$</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>N</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Psi^{1, \eta}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Psi^{2, \eta}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td>\ldots</td>
<td></td>
<td>\ldots</td>
</tr>
<tr>
<td>$\Psi^{N, \eta}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Choice of η small enough + moment problem
- Minimal family for diagonal directions.

For $\eta = 0$:

$\langle \Psi^{j, 0}(T), \Phi_j, \nu(T) \rangle \sim \langle \mu \varphi_j, \nu, \varphi_j, \nu \rangle \int_0^T \nu(t) dt$, $\forall j \in \{1, \ldots, N\}$.

For $\eta > 0$:

$\langle \Psi^{j, \eta}(T), \Phi_j, \nu(T) \rangle \sim \int_0^T \nu(t) \langle \mu \psi_{ref}^{j, \eta}(t), \psi_{ref}^{j, \eta}(t) \rangle dt$, $\forall j \in \{1, \ldots, N\}$.

Independence condition on $\langle \mu \psi_{ref}^{j, \eta}(t), \psi_{ref}^{j, \eta}(t) \rangle$ in the construction of ψ_{ref}^{η}.
Sketch of proof

Controllability of \(\langle \Psi^j, \eta(T), \Phi_k, \nu(T) \rangle \) for \(j \in \{1, \ldots, N\} \) and \(k \in \mathbb{N}^* \).

<table>
<thead>
<tr>
<th>(\langle \Psi^j, \eta, \Phi_k, \nu \rangle)</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>N</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi^1, \eta)</td>
<td></td>
<td></td>
<td>\cellcolor{brown}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi^2, \eta)</td>
<td></td>
<td>\cellcolor{green}</td>
<td></td>
<td>\cellcolor{brown}</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\cellcolor{green}</td>
<td>\cellcolor{green}</td>
<td>\cellcolor{green}</td>
<td>\cellcolor{brown}</td>
<td>\cellcolor{green}</td>
</tr>
<tr>
<td>(\psi^N, \eta)</td>
<td>\cellcolor{green}</td>
<td>\cellcolor{green}</td>
<td>\cellcolor{green}</td>
<td>\cellcolor{green}</td>
<td>\cellcolor{green}</td>
</tr>
</tbody>
</table>

- Choice of \(\eta \) small enough + moment problem
- Minimal family for diagonal directions.
- Invariants

\[
\langle \Psi^j, \eta, \psi^k, \eta_{\text{ref}}(t) \rangle + \langle \Psi^k, \eta, \psi^j, \eta_{\text{ref}}(t) \rangle = 0, \quad \forall 1 \leq k < j \leq N.
\]
1 Introduction

2 Approximate controllability towards finite sums of eigenvectors

3 Local exact controllability around finite sums of eigenvectors.

4 Global exact controllability
 - Global exact controllability under favourable hypotheses
 - Global exact controllability for an arbitrary potential
$V, \mu \in H^4((0,1), \mathbb{R})$ such that

(C$_6$) for any $j \in \mathbb{N}^*$, $\exists c_j > 0$;

$$|\langle \mu \varphi_j, \nu, \varphi_k, \nu \rangle| \geq \frac{c_j}{k^3}, \quad \forall k \in \mathbb{N}^*,$$

(C$_7$) \{$1, (\lambda_j, \nu)_{j \in \mathbb{N}^*}\} are rationally independent: $\forall M \in \mathbb{N}^*$,

$$\forall \mathbf{r} \in \mathbb{Q}^{M+1}\setminus \{\mathbf{0}\},$$

$$r_0 + \sum_{j=1}^{M} r_j \lambda_j, \nu \neq 0.$$

Conditions (C$_6$)-(C$_7$) \implies Conditions (C$_1$)-(C$_5$), for any $N \in \mathbb{N}^*$.

Theorem

Let $N \in \mathbb{N}^*$. Under Conditions (C$_6$)-(C$_7$), for any unitarily equivalent vectors $\varphi_0, \varphi_f \in S \cap H^4_{(V)}$, there are $T > 0, u \in L^2((0, T), \mathbb{R})$ such that

$$\psi(T, \varphi_0, u) = \varphi_f.$$
Sketch of proof

\[\psi_0 \quad \psi_f \]
Global approximate controllability

Existence of $M \in \mathbb{N}^*$

$z_0, z_f \in \mathcal{C}_M$

\[z_0, z_f \in \mathcal{C}_M \]
Sketch of proof

Exact controllability of \((S_M) \) around \(z_0, z_f \)
Sketch of proof

Time reversibility

ψ_0 \rightarrow ψ \rightarrow ψ_f \rightarrow $\overline{\psi}_f$
Dealing with an arbitrary potential V

$V \in H^4((0,1), \mathbb{R})$ arbitrary

\[
\begin{cases}
 i\partial_t \psi^j = - (\partial_{xx}^2 + V(x) + \mu(x)) \psi^j - u(t)\mu(x)\psi, & (t, x) \in (0, T) \times (0,1), \\
 \psi^j(t, 0) = \psi^j(t, 1) = 0, & j \in \{1, \ldots, N\}.
\end{cases}
\]

Link between propagators of (S_N) and (\tilde{S}_N):

$$\tilde{\psi}(T, \psi_0, u) = \psi(T, \psi_0, u - 1).$$

Q_V : set of $\mu \in H^4((0,1), \mathbb{R})$ such that Conditions (C_6) and (C_7) are satisfied for V replaced by $V + \mu$ i.e.

$$\forall j \in \mathbb{N}^*, \exists c_j > 0; \ |\langle \mu \varphi_j, V + \mu, \varphi_k, V + \mu \rangle| \geq \frac{c_j}{k^3}, \quad \forall k \in \mathbb{N}^*,$$

$$\{1, (\lambda_j, V + \mu)_{j \in \mathbb{N}^*}\}$$ are rationally independent.

$\mu \in Q_V$: global exact controllability of (\tilde{S}_N) in $S \cap H^4(V + \mu)$.
Assume $\mu \in Q_V$. Let $\psi_0, \psi_f \in S \cap H^4(V)$. Let $u_1 \in H^1((0, 1), \mathbb{R})$ with $u_1(0) = 0$, $u_1(1) = -1$. Then,
\[
\tilde{\psi}_0 := \psi(1, \psi_0, u_1), \quad \tilde{\psi}_f := \psi(1, \psi_f, u_1) \in S \cap H^4(V + \mu).
\]

Reaching the 'right space' : $\psi_0 \xrightarrow{1,u_1} \tilde{\psi}_0$, for (S_N),

Global exact controllability of (\tilde{S}_N) : $\exists \tilde{T} > 0$, $\exists \tilde{u} \in L^2((0, \tilde{T}), \mathbb{R})$ such that
\[
\tilde{\psi}_0 \xrightarrow{\tilde{T}, \tilde{u}} \tilde{\psi}_f, \quad \text{for} \ (\tilde{S}_N),
\]
i.e.
\[
\tilde{\psi}_0 \xrightarrow{\tilde{T}, \tilde{u}^{-1}} \tilde{\psi}_f, \quad \text{for} \ (S_N).
\]

Time reversibility : $\tilde{\psi}_f \xrightarrow{1,u_1(1-\cdot)} \psi_f$, for (S_N).

Q_V is residual in $H^4((0, 1), \mathbb{R})$.

Morgan MORANCEY Global exact simultaneous controllability of bilinear Schrödinger equations 34
Open problems and perspectives

Conclusion
- Global exact controllability
- Arbitrary number of equations
- No restriction on the potential

Open problems
- Large time: Lyapunov strategy, rotation (Kronecker diophantine approximation), compactness argument.
- Optimal spaces: $H^4(V)$, $H^3(V)$ (Lyapunov strategy in infinite dimension)
Open problems and perspectives

Conclusion

- Global exact controllability
- Arbitrary number of equations
- No restriction on the potential

Open problems

- Large time: Lyapunov strategy, rotation (Kronecker diophantine approximation), compactness argument.
- Optimal spaces: $H^4_{(V)}$, $H^3_{(V)}$ (Lyapunov strategy in infinite dimension)

Thank you for your attention.

DOI: 10.1016/j.anihpc.2013.05.001.
