A globally convergent algorithm to solve an inverse problem for waves with potential.

Maya de Buhan
Joint work with Lucie Baudouin and Sylvain Ervedoza

Global Carleman estimates for waves and applications, Communications in PDE, 38, 1-37, 2013.

Workshop: PDE, Optimal design and Numerics
Benasque, august 2013
Outline

1. Introduction
 - The wave equation with potential
 - The inverse problem
 - Classical uniqueness and stability result
 - Classical resolution method

2. A Carleman estimate

3. Our algorithm

4. Numerical issues

5. Conclusion
Let Ω be a smooth bounded domain of \mathbb{R}^n, $n \geq 1$, and $T > 0$. We consider the wave equation with potential

$$\begin{array}{ll}
\frac{\partial^2 t}{\partial t^2} w - \Delta w + pw = g, & \text{in } \Omega \times (0, T), \\
w = 0, & \text{on } \partial \Omega \times (0, T), \\
w(0) = w_0, \quad \partial_t w(0) = w_1, & \text{in } \Omega.
\end{array}$$ \hspace{1cm} (1)

Here, w denotes the amplitude of the waves, p is a potential supposed to be in $L^\infty(\Omega)$, g is a source term for instance in $L^2(\Omega \times (0, T))$ and (w_0, w_1) are the initial data lying in $H^1_0(\Omega) \times L^2(\Omega)$.

D'Alembertian operator:

$$\square = \partial_t^2 - \Delta.$$
Given the source term g and the initial data (w_0, w_1), can we determine the unknown potential $p(x), \forall x \in \Omega$, from the additional knowledge of the flux

$$\mu = \partial_{\nu} w, \quad \text{on } \Gamma_0 \times (0, T),$$

where Γ_0 is a part of $\partial \Omega$?

Uniqueness? Stability? Numerical resolution?
Theorem (Baudouin-Puel)

Geometric condition:

\[
\exists x_0 \notin \overline{\Omega} \text{ such that } \Gamma_0 \supset \{x \in \partial \Omega, \ (x - x_0) \cdot \nu(x) \geq 0\},
\]
Introduction
Classical uniqueness and stability result

Theorem (Baudouin-Puel)

- **Geometric condition:**
 \[
 \exists x_0 \not\in \bar{\Omega} \text{ such that } \Gamma_0 \supset \{ x \in \partial \Omega, \ (x - x_0) \cdot \nu(x) \geq 0 \},
 \]

- **Time condition:** \(T > \sup_{x \in \Omega} |x - x_0| , \)
Introduction
Classical uniqueness and stability result

Theorem (Baudouin-Puel)

- **Geometric condition:**
 \[
 \exists x_0 \notin \overline{\Omega} \text{ such that } \Gamma_0 \supset \{ x \in \partial \Omega, \ (x - x_0) \cdot \nu(x) \geq 0 \},
 \]

- **Time condition:** \(T > \sup_{x \in \Omega} |x - x_0|, \)

- **Regularity assumption:** \(w \in H^1((0, T); L^\infty(\Omega)), \)
Theorem (Baudouin-Puel)

- **Geometric condition:**
 \[\exists x_0 \not\in \overline{\Omega} \text{ such that } \Gamma_0 \supset \{ x \in \partial\Omega, \ (x - x_0) \cdot \nu(x) \geq 0 \}, \]

- **Time condition:** \[T > \sup_{x \in \Omega} |x - x_0|, \]

- **Regularity assumption:** \[w \in H^1((0, T); L^\infty(\Omega)), \]

- **Positivity condition:** \[\exists \alpha > 0 \text{ such that } |w_0| > \alpha \text{ in } \Omega. \]
Theorem (Baudouin-Puel)

- **Geometric condition:**
 \[\exists x_0 \not\in \overline{\Omega} \text{ such that } \Gamma_0 \supset \{ x \in \partial \Omega, \ (x - x_0) \cdot \nu(x) \geq 0 \}, \]

- **Time condition:** \(T > \sup_{x \in \Omega} |x - x_0|, \)

- **Regularity assumption:** \(w \in H^1((0, T); L^\infty(\Omega)), \)

- **Positivity condition:** \(\exists \alpha > 0 \text{ such that } |w_0| > \alpha \text{ in } \Omega. \)

Then for \(m > 0, \) there exists a positive constant \(M = M(\Omega, T, x_0, m) \) such that for all \(p \) and \(q \) in \(L^\infty_m(\Omega) = \{ p \in L^\infty(\Omega), \| p \|_{L^\infty(\Omega)} \leq m \} : \)

\[\| p - q \|_{L^2(\Omega)} \leq M \| \partial_t (\partial_\nu w[p] - \partial_\nu w[q]) \|_{L^2(\Gamma_0 \times (0, T))}, \]

where \(w[p] \) and \(w[q] \) denote the corresponding solutions of (1).
A classical method for solving this inverse problem consists in minimizing

\[J(q) = \| \partial_t (\partial_\nu w[q] - \mu) \|_{L^2(\Gamma_0 \times (0, T))}^2, \]

where \(\mu = \partial_\nu w[p] \) is the observation.
A classical method for solving this inverse problem consists in minimizing

\[J(q) = \| \partial_t (\partial_\nu w[q] - \mu) \|_{L^2(\Gamma_0 \times (0, T))}^2, \]

where \(\mu = \partial_\nu w[p] \) is the observation. Unfortunately, \(J \) is not convex and may have several local minima. Classical minimization algorithms are not guaranteed to converge toward the global minimum of \(J \).
A classical method for solving this inverse problem consists in minimizing

\[J(q) = \| \partial_t (\partial_N w[q] - \mu) \|_{L^2(\Gamma_0 \times (0, T))}^2, \]

where \(\mu = \partial_N w[p] \) is the observation. Unfortunately, \(J \) is not convex and may have several local minima. Classical minimization algorithms are not guaranteed to converge toward the global minimum of \(J \).

We propose a new algorithm to solve the inverse problem and prove its global convergence. It is based on Carleman estimates.
Outline

1. Introduction

2. A Carleman estimate
 - Carleman weight function for waves
 - An estimate with pointwise term in time 0

3. Our algorithm

4. Numerical issues

5. Conclusion
A Carleman estimate
Carleman weight function for waves

We define, for \((x, t) \in \Omega \times (0, T)\),

\[
\psi(x, t) = |x - x_0|^2 - \beta t^2 + C_0,
\]

and

\[
\varphi(x, t) = e^{\lambda \psi(x, t)},
\]

where \(\beta > 0, \lambda > 0\) and \(C_0 > 0\) is chosen such that \(\psi \geq 1\) in \(\Omega \times (0, T)\).

Function \(\psi\) for \(x_0 = 0, \beta = 1\) and \(C_0 = 0\)

\[
\psi(t) \leq \psi(0), \quad \forall t \in (0, T).
\]
A Carleman estimate
An estimate with pointwise term in time 0

Theorem

Assume the geometric and time conditions. Suppose $\beta \in (0, 1)$ and

$$\beta T > \sup_{x \in \Omega} |x - x_0|.$$
A Carleman estimate
An estimate with pointwise term in time 0

Theorem

Assume the geometric and time conditions. Suppose $\beta \in (0, 1)$ and

$$\beta T > \sup_{x \in \Omega} |x - x_0|.$$

Then with $m > 0$, there exists a constant $M > 0$ such that for all s and λ large enough, for all $q \in L^\infty_m(\Omega)$ and for all $z \in L^2(0, T; H^1_0(\Omega))$ satisfying

$${\Box}z + qz \in L^2(\Omega \times (0, T)), \quad \partial_\nu z \in L^2(\Gamma_0 \times (0, T))$$

and $z(0) = 0$ in Ω:

$$s^{1/2} \int_\Omega e^{2s\varphi(0)} |\partial_t z(0)|^2 \, dx$$

\text{initial energy}

$$\leq M \int_0^T \int_\Omega e^{2s\varphi} |{\Box}z + qz|^2 \, dx \, dt + M s \int_0^T \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z|^2 \, d\gamma \, dt.$$

\text{source} \quad \text{observations}

Proof
Outline

1 Introduction

2 A Carleman estimate

3 Our algorithm
 - Iterative loop
 - Convergence result
 - Proof of the convergence result

4 Numerical issues

5 Conclusion
Our algorithm
Iterative loop

Initialization: \(q^0 = 0 \).

Iteration: Given \(q^k \),

\[
\begin{align*}
\text{Initialization: } & \quad q^0 = 0. \\
\text{Iteration: } & \quad \text{Given } q^k, \\
\end{align*}
\]
Our algorithm

Iterative loop

Initialization: \(q^0 = 0 \).

Iteration: Given \(q^k \),

1. Compute \(w[q^k] \) the solution of

\[
\begin{cases}
\partial_t^2 w - \Delta w + q^k w = g, & \text{in } \Omega \times (0, T), \\
w = 0, & \text{on } \partial\Omega \times (0, T), \\
w(0) = w_0, \quad \partial_t w(0) = w_1, & \text{in } \Omega,
\end{cases}
\]

and set \(\mu^k = \partial_t (\partial_\nu w[q^k] - \partial_\nu w[p]) \) on \(\Gamma_0 \times (0, T) \).
Our algorithm
Iterative loop

Initialization: \(q^0 = 0 \).

Iteration: Given \(q^k \),

1 - Compute \(w[q^k] \) the solution of

\[
\begin{cases}
\partial_t^2 w - \Delta w + q^k w = g, & \text{in } \Omega \times (0, T), \\
w = 0, & \text{on } \partial\Omega \times (0, T), \\
w(0) = w_0, \quad \partial_t w(0) = w_1, & \text{in } \Omega,
\end{cases}
\]

and set \(\mu^k = \partial_t (\partial_\nu w[q^k] - \partial_\nu w[p]) \) on \(\Gamma_0 \times (0, T) \).

2 - Introduce the functional

\[
J^k_0(z) = \int_0^T \int_\Omega e^{2s\varphi} |\Box z + q^k z|^2 \, dxdt + s \int_0^T \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z - \mu^k|^2 \, d\gamma dt,
\]

on the space \(T^k = \{ z \in L^2(0, T; H^1_0(\Omega)), z(0) = 0, \Box z + q^k z \in L^2(\Omega \times (0, T)), \partial_\nu z \in L^2(\Gamma_0 \times (0, T)) \} \).
Our algorithm
Iterative loop

Theorem

Assume the geometric and time conditions. Then, for all \(s > 0 \) and \(k \in \mathbb{N} \), the functional \(J^k_0 \) is continuous, strictly convex and coercive on \(T^k \) endowed with a suitable weighted norm.
Our algorithm
Iterative loop

Theorem

Assume the **geometric and time conditions**. Then, for all \(s > 0 \) and \(k \in \mathbb{N} \), the functional \(J^k_0 \) is continuous, strictly convex and coercive on \(T^k \) endowed with a suitable weighted norm.

3 - Let \(Z^k \) be the unique minimizer of the functional \(J^k_0 \), and then set

\[
\tilde{q}^{k+1} = q^k + \frac{\partial_t Z^k(0)}{w_0},
\]

where \(w_0 \) is the initial condition of (1).
Our algorithm
Iterative loop

Theorem

Assume the geometric and time conditions. Then, for all \(s > 0 \) and \(k \in \mathbb{N} \), the functional \(J_0^k \) is continuous, strictly convex and coercive on \(T^k \) endowed with a suitable weighted norm.

3 - Let \(Z^k \) be the unique minimizer of the functional \(J_0^k \), and then set

\[
\tilde{q}^{k+1} = q^k + \frac{\partial_t Z^k(0)}{w_0},
\]

where \(w_0 \) is the initial condition of (1).

4 - Finally, set

\[
q^{k+1} = T_m(\tilde{q}^{k+1}), \quad \text{where } T_m(q) = \begin{cases}
q, & \text{if } |q| \leq m, \\
\text{sign}(q)m, & \text{if } |q| \geq m.
\end{cases}
\]
Theorem

Assume the geometric and time conditions, the regularity assumption and the positivity condition. Let $p \in L^\infty_m(\Omega)$. There exists a constant $M > 0$ such that for all s large enough and for all $k \in \mathbb{N}$,

$$\int_\Omega e^{2s\varphi(0)}(q^k - p)^2 \, dx \leq \left(\frac{M}{\sqrt{s}} \right)^k \int_\Omega e^{2s\varphi(0)} p^2 \, dx.$$

In particular, if s is large enough, q^k converges toward p when k goes to infinity.
Our algorithm

Proof of the convergence result

The algorithm is based on the fact that \(z^k = \partial_t (w[q^k] - w[p]) \) solves

\[
\begin{aligned}
\partial_t^2 z^k - \Delta z^k + q^k z^k &= g^k, & \text{in } \Omega \times (0, T), \\
z^k &= 0, & \text{on } \partial\Omega \times (0, T), \\
z^k(0) = 0, & \quad \partial_t z^k(0) = z_1^k, & \text{in } \Omega,
\end{aligned}
\]

where

\[
g^k = (p - q^k) \partial_t w[p], \quad z_1^k = (p - q^k) w_0.
\]
Our algorithm
Proof of the convergence result

The algorithm is based on the fact that $z^k = \partial_t (w[q^k] - w[p])$ solves

$$
\begin{align*}
\partial_t^2 z^k - \Delta z^k + q^k z^k &= g^k, \quad \text{in } \Omega \times (0, T), \\
z^k &= 0, \quad \text{on } \partial \Omega \times (0, T), \\
z^k(0) &= 0, \quad \partial_t z^k(0) = z_1^k, \quad \text{in } \Omega,
\end{align*}
$$

where

$$g^k = (p - q^k) \partial_t w[p], \quad z_1^k = (p - q^k) w_0.$$

Moreover, by definition,

$$\mu^k = \partial_\nu z^k \text{ on } \Gamma_0 \times (0, T),$$

and we notice that z^k is the unique minimizer of the functional:

$$J_{g^k}(z) = \int_0^T \int_{\Omega} e^{2s\varphi} |\Box z + q^k z - g^k|^2 \, dx dt + s \int_0^T \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z - \mu^k|^2 \, d\gamma dt,$$
Let us write the Euler Lagrange equations satisfied by:

- \(Z^k \) minimizer of \(J_0^k \):

\[
\nabla J_0^k(Z^k, z) = \int_0^T \int_\Omega e^{2s\varphi}(\Box Z^k + q^k Z^k)(\Box z + q^k z) \, dx \, dt \\
+ s \int_0^T \int_{\Gamma_0} e^{2s\varphi}(\partial_\nu Z^k - \mu^k)\partial_\nu z \, d\gamma \, dt = 0,
\]
Let us write the Euler Lagrange equations satisfied by:

- Z^k minimizer of J^k_0:

$$\nabla J^k_0(Z^k, z) = \int_0^T \int_\Omega e^{2s\varphi}(\Box Z^k + q^k Z^k)(\Box z + q^k z) \, dx \, dt$$

$$+ s \int_0^T \int_{\Gamma_0} e^{2s\varphi}(\partial_\nu Z^k - \mu^k)\partial_\nu z \, d\gamma \, dt = 0,$$

- and z^k minimizer of $J^k_{g_k}$:

$$\nabla J^k_{g_k}(z^k, z) = \int_0^T \int_\Omega e^{2s\varphi}(\Box z^k + q^k z^k - g^k)(\Box z + q^k z) \, dx \, dt$$

$$+ s \int_0^T \int_{\Gamma_0} e^{2s\varphi}(\partial_\nu z^k - \mu^k)\partial_\nu z \, d\gamma \, dt = 0,$$

for all $z \in \mathcal{T}^k$.

Our algorithm

Proof of the convergence result
Applying these equations to $z = Z^k - z^k$ and subtracting the two identities, we obtain:

$$
\int_0^T \int_\Omega e^{2s\varphi} |\Box z + q^k z|^2 \, dx \, dt + s \int_0^T \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z|^2 \, d\gamma \, dt
$$

$$
= \int_0^T \int_\Omega e^{2s\varphi} g^k (\Box z + q^k z) \, dx \, dt.
$$
Our algorithm

Proof of the convergence result

Applying these equations to $z = Z^k - z^k$ and subtracting the two identities, we obtain:

$$
\int_0^T \int_\Omega e^{2s\varphi} |\Box z + q^k z|^2 \, dx dt + s \int_0^T \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z|^2 \, d\gamma dt
= \int_0^T \int_\Omega e^{2s\varphi} g^k (\Box z + q^k z) \, dx dt.
$$

This implies $(2ab \leq a^2 + b^2)$ that

$$
\frac{1}{2} \int_0^T \int_\Omega e^{2s\varphi} |\Box z + q^k z|^2 \, dx dt + s \int_0^T \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z|^2 \, d\gamma dt \\
\leq \frac{1}{2} \int_0^T \int_\Omega e^{2s\varphi} |g^k|^2 \, dx dt.
$$
The left hand side precisely is the right hand side of the Carleman estimate.
Hence, we deduce:

\[
s^{1/2} \int_{\Omega} e^{2s\varphi(0)} |\partial_t z(0)|^2 \, dx \leq M \int_0^T \int_{\Omega} e^{2s\varphi} |g^k|^2 \, dx \, dt,
\]

where

\[
\partial_t z(0) = \partial_t Z^k(0) - \partial_t z^k(0).
\]
The left hand side precisely is the right hand side of the Carleman estimate. Hence, we deduce:

\[s^{1/2} \int_{\Omega} e^{2s\varphi(0)} |\partial_t z(0)|^2 \, dx \leq M \int_{0}^{T} \int_{\Omega} e^{2s\varphi} |g^k|^2 \, dxdt, \]

where

\[\partial_t z(0) = \partial_t Z^k(0) - \partial_t z^k(0). \]

Moreover

\[\partial_t Z^k(0) = (\tilde{q}^{k+1} - q^k)w_0, \text{ by definition of } \tilde{q}^{k+1}, \]

\[\partial_t z^k(0) = z_1^k = (p - q^k)w_0, \]

\[g^k = (p - q^k)\partial_t w[p]. \]
Therefore, since $\varphi(t) \leq \varphi(0)$ for all $t \in (0, T)$ we have:

$$s^{1/2} \int_{\Omega} e^{2s\varphi(0)} |w_0|^2 (\tilde{q}^{k+1} - p)^2 \, dx$$

$$\leq M \|\partial_t w[p]\|_{L^2(0, T; L^\infty(\Omega))}^2 \int_{\Omega} e^{2s\varphi(0)} (q^k - p)^2 \, dx.$$
Therefore, since $\varphi(t) \leq \varphi(0)$ for all $t \in (0, T)$ we have:

\[
\begin{align*}
 s^{1/2} \int_{\Omega} e^{2s\varphi(0)} |w_0|^2 (\tilde{q}^{k+1} - p)^2 \, dx \\
 &\leq M \| \partial_t w[p] \|_{L^2(0, T; L^\infty(\Omega))}^2 \int_{\Omega} e^{2s\varphi(0)} (q^k - p)^2 \, dx.
\end{align*}
\]

Using the positivity condition on w_0 and the fact that

\[|q^{k+1} - p| = |T_m(\tilde{q}^{k+1}) - T_m(p)| \leq |\tilde{q}^{k+1} - p|\]

because T_m is Lipschitz and $T_m(p) = p$, we immediately deduce

\[
\int_{\Omega} e^{2s\varphi(0)} (q^{k+1} - p)^2 \, dx \leq \left(\frac{M}{\sqrt{s}} \right)^{k+1} \int_{\Omega} e^{2s\varphi(0)} (q^0 - p)^2 \, dx.
\]
Outline

1 Introduction

2 A Carleman estimate

3 Our algorithm

4 Numerical issues
 - Discretization of the problem
 - Discrete Carleman estimate
 - Examples in 1D
 - Example in 2D

5 Conclusion
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1], x_0 = -0.1, \Gamma_0 = \{x = 1\}, \beta = 0.99, T = 1.5, \lambda = 0.1, s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0, w_1 = 0, w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$

- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- \(\Omega = [0, 1], \ x_0 = -0.1, \ \Gamma_0 = \{ x = 1 \}, \ \beta = 0.99, \ T = 1.5, \ \lambda = 0.1, \ s = 1 \)

- finite differences in space \(h = 0.02 \), explicit Euler scheme in time \(\tau = 0.01 \)
- \(g = 0, \ w_1 = 0, \ w_0(x) = \sin(x\pi) \)
Numerical issues
Discretization of the problem

- \(\Omega = [0, 1] \), \(x_0 = -0.1 \), \(\Gamma_0 = \{ x = 1 \} \), \(\beta = 0.99 \), \(T = 1.5 \), \(\lambda = 0.1 \), \(s = 1 \)

- finite differences in space \(h = 0.02 \), explicit Euler scheme in time \(\tau = 0.01 \)
- \(g = 0 \), \(w_1 = 0 \), \(w_0(x) = \sin(x\pi) \)
Numerical issues

Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1], \ x_0 = -0.1, \ \Gamma_0 = \{x = 1\}, \ \beta = 0.99, \ T = 1.5, \ \lambda = 0.1, \ s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0, \ \omega_1 = 0, \ \omega_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1], x_0 = -0.1, \Gamma_0 = \{x = 1\}, \beta = 0.99, T = 1.5, \lambda = 0.1, s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1], \ x_0 = -0.1, \ \Gamma_0 = \{x = 1\}, \ \beta = 0.99, \ T = 1.5, \ \lambda = 0.1, \ s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0, \ w_1 = 0, \ w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1], \ x_0 = -0.1, \ \Gamma_0 = \{x = 1\}, \ \beta = 0.99, \ T = 1.5, \ \lambda = 0.1, \ s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0, \ w_1 = 0, \ w_0(x) = \sin(x\pi)$
Numerical issues

Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1], \ x_0 = -0.1, \ \Gamma_0 = \{x = 1\}, \ \beta = 0.99, \ T = 1.5, \ \lambda = 0.1, \ s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0, \ w_1 = 0, \ w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- \(\Omega = [0, 1], \ x_0 = -0.1, \ \Gamma_0 = \{x = 1\}, \ \beta = 0.99, \ T = 1.5, \ \lambda = 0.1, \ s = 1 \)

- finite differences in space \(h = 0.02 \), explicit Euler scheme in time \(\tau = 0.01 \)
- \(g = 0, \ w_1 = 0, \ w_0(x) = \sin(x\pi) \)
Numerical issues

Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$

- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1], \ x_0 = -0.1, \ \Gamma_0 = \{x = 1\}, \ \beta = 0.99, \ T = 1.5, \ \lambda = 0.1, \ s = 1$

 $x_0 \quad 0 \quad 1 \quad \Gamma_0$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$

- additional noise on the observation data:

 $\mu = (1 + \alpha \ \text{Normal}(0, 0.5)) \ \mu, \quad \alpha \geq 0.$
Numerical issues
Discretization of the problem

- $\Omega = [0, 1]$, $x_0 = -0.1$, $\Gamma_0 = \{x = 1\}$, $\beta = 0.99$, $T = 1.5$, $\lambda = 0.1$, $s = 1$

- finite differences in space $h = 0.02$, explicit Euler scheme in time $\tau = 0.01$
- $g = 0$, $w_1 = 0$, $w_0(x) = \sin(x\pi)$

- additional noise on the observation data:

$$\mu = (1 + \alpha \text{Normal}(0, 0.5)) \mu, \quad \alpha \geq 0.$$

- minimization of J by a conjugate gradient
Baudouin-Ervedoza
A regularization term must be added to make the Carleman estimates uniform with respect to the discretization parameter h.

$$J_{0,h}^k(z_h) = \int_0^T \int_0^1 e^{2s\varphi} |\Box_h z_h + q^k z_h|^2 dt + s \int_0^T e^{2s\varphi(t,1)} |\partial_h^- z_h(t,1) - \mu^k|^2 dt$$

$$+ s \int_0^T \int_0^1 e^{2s\varphi} |h\partial_h^+ \partial_t z_h|^2 dt.$$

This term is needed due to spurious waves created by the discretization process (Ervedoza-Zuazua).
Numerical issues
Examples in 1D

\[p(x) = \sin(2\pi x) \]

without regularization with regularization

oise \alpha = 0\%
Numerical issues
Examples in 1D

2% noise
Numerical issues
Examples in 1D

2% noise

10% noise
Numerical issues
Examples in 1D

\[p(x) = 1 \]

\[p(x) = 0 \text{ or } 1 \]

\[p(x) = \sin(1 - 1/x) \]
Numerical issues
Example in 2D

p in 2D-view

p in 3D-view
Numerical issues

Example in 2D

p in 2D-view

p in 3D-view

p_h

q_h
Outline

1. Introduction
2. A Carleman estimate
3. Our algorithm
4. Numerical issues
5. Conclusion
 - Drawbacks of the method
 - Prospects
Conclusion

Drawbacks of the method

- We have to derive in time the observation flux: $\partial_t(\partial_\nu w[p])$

 observation at $x = 1$ \hspace{1cm} time derivative

\Rightarrow we regularize the signal by convolutions with a gaussian.
Conclusion

Drawbacks of the method

- We have to derive in time the observation flux: $\partial_t(\partial_\nu w[p])$

observation at $x = 1$

time derivative

\Rightarrow we regularize the signal by convolutions with a gaussian.

- For $\lambda = 1$ and $s = 3$, $\max(\exp(2s\varphi))/\min(\exp(2s\varphi)) = 10^{110}$!

\Rightarrow we tried to work with the conjugate variable $\tilde{z} = e^{s\varphi} z$,

\Rightarrow we are trying to change the weights (coming soon...hopefully).
Conclusion
Prospects

- Recovery of the wave propagation speed $c(x)$

\[
\begin{aligned}
\partial_t^2 w - \nabla \cdot (c^2 \nabla w) &= g, & \text{in } \Omega \times (0, T), \\
w &= 0, & \text{on } \partial \Omega \times (0, T), \\
w(0) = w_0, \quad \partial_t w(0) = w_1, & \text{in } \Omega.
\end{aligned}
\]

Application to medical imaging or radar.

⋆⋆⋆
Assume the geometric and time conditions. Define the weight functions φ with $\beta \in (0, 1)$ being such that

$$\beta T > \sup_{x \in \Omega} |x - x_0|.$$
Proofs
A global Carleman estimate for the wave equation

Theorem

Assume the geometric and time conditions. Define the weight functions φ with $\beta \in (0, 1)$ being such that

$$\beta T > \sup_{x \in \Omega} |x - x_0|.$$

Then there exist a constant $M > 0$ such that for all s and λ large enough:

$$s \int_{-T}^{T} \int_{\Omega} e^{2s\varphi} \left(|\partial_t z|^2 + |\nabla z|^2 \right) \, dx \, dt + s^3 \int_{-T}^{T} \int_{\Omega} e^{2s\varphi} |z|^2 \, dx \, dt$$

$$\leq M \int_{-T}^{T} \int_{\Omega} e^{2s\varphi} |\Box z|^2 \, dx \, dt + Ms \int_{-T}^{T} \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z|^2 \, d\gamma \, dt,$$

for all $z \in L^2((-T, T); H^1_0(\Omega))$ satisfying

$\Box z = \partial_t^2 z - \Delta z \in L^2(\Omega \times (-T, T))$ and $\partial_\nu z \in L^2(\partial \Omega \times (-T, T))$.

Proofs

Sketch of the proof of the global Carleman estimate

Define, for $s > 0$, the conjugate variable $w = e^{s\varphi} \chi z$, where χ is an cut-off function in time.
Proofs
Sketch of the proof of the global Carleman estimate

- Define, for $s > 0$, the conjugate variable $w = e^{s\varphi} \chi z$, where χ is an cut-off function in time.

- Introduce the conjugate operator:

 \[Pw = e^{s\varphi} \Box (e^{-s\varphi} w) = \partial_t^2 w - \Delta w + s^2 ((\partial_t \varphi)^2 - |\nabla \varphi|^2) w \]
 \[- s(\partial_t^2 \varphi - \Delta \varphi) w + s^2 ((\partial_t \varphi)^2 - |\nabla \varphi|^2) w - 2s \partial_t w \partial_t \varphi + 2s \nabla w \cdot \nabla \varphi. \]
Proofs

Sketch of the proof of the global Carleman estimate

- Define, for $s > 0$, the conjugate variable $w = e^{s\varphi} \chi z$, where χ is an cut-off function in time.

- Introduce the conjugate operator:

$$Pw = e^{s\varphi} \Box (e^{-s\varphi} w) = \partial_t^2 w - \Delta w + s^2((\partial_t \varphi)^2 - |\nabla \varphi|^2)w$$
$$- s(\partial_t^2 \varphi - \Delta \varphi)w + s^2((\partial_t \varphi)^2 - |\nabla \varphi|^2)w - 2s \partial_t w \partial_t \varphi + 2s \nabla w \cdot \nabla \varphi.$$

- Using integrations by part, develop the term $\int_{-T}^{T} \int_{\Omega} |Pw|^2 \, dxdt$.

Proofs
Sketch of the proof of the global Carleman estimate

- Define, for $s > 0$, the conjugate variable $w = e^{s\varphi} \chi z$, where χ is a cut-off function in time.

- Introduce the conjugate operator:

$$Pw = e^{s\varphi} \Box(e^{-s\varphi} w) = \partial_t^2 w - \Delta w + s^2((\partial_t \varphi)^2 - |\nabla \varphi|^2)w$$
$$- s(\partial_t^2 \varphi - \Delta \varphi)w + s^2((\partial_t \varphi)^2 - |\nabla \varphi|^2)w - 2s\partial_t w \partial_t \varphi + 2s\nabla w \cdot \nabla \varphi.$$

- Using integrations by part, develop the term $\int_{-T}^{T} \int_{\Omega} |Pw|^2 \, dx \, dt$.

- Show that the terms in $|w|^2$, $|\nabla w|^2$, and $|\partial_t w|^2$ can be bounded by below when s is large enough.
Proofs

Sketch of the proof of the global Carleman estimate

- Define, for $s > 0$, the conjugate variable $w = e^{s\varphi} \chi z$, where χ is an cut-off function in time.

- Introduce the conjugate operator:

$$Pw = e^{s\varphi} \Box(e^{-s\varphi} w) = \partial_t^2 w - \Delta w + s^2((\partial_t \varphi)^2 - |\nabla \varphi|^2)w$$
$$- s(\partial_t^2 \varphi - \Delta \varphi)w + s^2((\partial_t \varphi)^2 - |\nabla \varphi|^2)w - 2s\partial_t w \partial_t \varphi + 2s\nabla w \cdot \nabla \varphi.$$

- Using integrations by part, develop the term $\int_{-T}^T \int_{\Omega} |Pw|^2 \, dx \, dt$.

- Show that the terms in $|w|^2$, $|\nabla w|^2$ and $|\partial_t w|^2$ can be bounded by below when s is large enough.

- Finally, come back to the initial variable z and absorb the residual terms thanks to the weights s.
Proofs

Proof of the estimate with pointwise term in time 0

Since \(z(0) = 0 \) in \(\Omega \), we can extend the function \(z \) by \(z(t) = z(-t) \) for \(t \in (-T, 0) \) and apply the Carleman estimate to this extended function \(z \). Of course, since each term is odd or even, the integrals on \((-T, T)\) simply are twice the integrals on \((0, T)\).
Since $z(0) = 0$ in Ω, we can extend the function z by $z(t) = z(-t)$ for $t \in (-T, 0)$ and apply the Carleman estimate to this extended function z. Of course, since each term is odd or even, the integrals on $(-T, T)$ simply are twice the integrals on $(0, T)$.

The Carleman estimate for the operator $\Box + p$ with $p \in L^\infty(\Omega)$ is a direct consequence noticing that in $\Omega \times (0, T)$,

$$|\Box z|^2 \leq 2|\Box z + pz|^2 + 2\|p\|_{L^\infty(\Omega)}^2 |z|^2 \leq 2|\Box z + pz|^2 + 2m^2 |z|^2.$$
Proofs

Proof of the estimate with pointwise term in time 0

- Since \(z(0) = 0 \) in \(\Omega \), we can extend the function \(z \) by \(z(t) = z(-t) \) for \(t \in (-T, 0) \) and apply the Carleman estimate to this extended function \(z \). Of course, since each term is odd or even, the integrals on \((-T, T)\) simply are twice the integrals on \((0, T)\).

- The Carleman estimate for the operator \(\Box + p \) with \(p \in L^\infty_{\leq m}(\Omega) \) is a direct consequence noticing that in \(\Omega \times (0, T) \),

\[
|\Box z|^2 \leq 2|\Box z + pz|^2 + 2\|p\|^2_{L^\infty(\Omega)}|z|^2 \leq 2|\Box z + pz|^2 + 2m^2|z|^2.
\]

Then choosing \(s \) large enough, one can absorb the term

\[
2Mm^2 \int_0^T \int_\Omega e^{2s\varphi}|z|^2 \, dx \, dt,
\]

by the left hand side.
Proofs

Proof of the estimate with pointwise term in time 0

- We set

\[w = e^{s\varphi} \chi z \quad \text{and} \quad P_1w = \partial_t^2 w - \Delta w + s^2 w(\|\partial_t \varphi\|^2 - \|\nabla \varphi\|^2). \]
Proofs

Proof of the estimate with pointwise term in time 0

We set

\[w = e^{s\varphi} \chi z \quad \text{and} \quad P_1 w = \partial_t^2 w - \Delta w + s^2 w(\|\partial_t \varphi\|^2 - \|\nabla \varphi\|^2). \]

Under the condition \(z(0) = 0 \) in \(\Omega \), we get \(w(0) = 0 \) in \(\Omega \). This allows us to do the following computations

\[
\int_{-T}^0 \int_\Omega P_1 w \partial_t w \, dx \, dt = \int_{-T}^0 \int_\Omega (\partial_t^2 w - \Delta w + s^2 w(\|\partial_t \varphi\|^2 - \|\nabla \varphi\|^2) \partial_t w \, dx \, dt \\
\geq \frac{1}{2} \int_\Omega |\partial_t w(0)|^2 \, dx - M s^2 \int_{-T}^0 \int_\Omega |w|^2 \, dx \, dt,
\]
Proofs

Proof of the estimate with pointwise term in time 0

We set

\[w = e^{s\varphi} \chi z \quad \text{and} \quad P_1 w = \partial_t^2 w - \Delta w + s^2 w(|\partial_t \varphi|^2 - |\nabla \varphi|^2). \]

Under the condition \(z(0) = 0 \) in \(\Omega \), we get \(w(0) = 0 \) in \(\Omega \). This allows us to do the following computations

\[
\int_{-T}^{0} \int_{\Omega} P_1 w \, \partial_t w \, dx \, dt = \int_{-T}^{0} \int_{\Omega} (\partial_t^2 w - \Delta w + s^2 w(|\partial_t \varphi|^2 - |\nabla \varphi|^2) \, \partial_t w \, dx \, dt \\
\geq \frac{1}{2} \int_{\Omega} |\partial_t w(0)|^2 \, dx - Ms^2 \int_{-T}^{0} \int_{\Omega} |w|^2 \, dx \, dt,
\]

implying in particular, by Cauchy-Schwarz, that

\[
s^{1/2} \int_{\Omega} |\partial_t w(0)|^2 \, dx \leq \int_{-T}^{T} \int_{\Omega} |P_1 w|^2 \, dx \, dt + s \int_{-T}^{T} \int_{\Omega} |\partial_t w|^2 \, dx \, dt \\
+ Ms^{5/2} \int_{-T}^{T} \int_{\Omega} |w|^2 \, dx \, dt.
\]
Proofs

Proof of the estimate with pointwise term in time 0

We can use the Carleman estimate on w and, bounding each term from above and from below, we get:

$$s^{1/2} \int_{\Omega} |\partial_t w(0)|^2 \, dx + s \int_{-T}^{T} \int_{\Omega} (|\partial_t w|^2 + |\nabla w|^2) \, dx \, dt + s^3 \int_{-T}^{T} \int_{\Omega} |w|^2 \, dx \, dt$$

$$+ \int_{-T}^{T} \int_{\Omega} |P_1 w|^2 \, dx \, dt \leq M \int_{-T}^{T} \int_{\Omega} |Pw|^2 \, dx \, dt + Ms \int_{-T}^{T} \int_{\Gamma_0} |\partial_\nu w|^2 \, d\gamma \, dt.$$
Proofs

Proof of the estimate with pointwise term in time 0

We can use the Carleman estimate on w and, bounding each term from above and from below, we get:

$$s^{1/2} \int_{\Omega} |\partial_t w(0)|^2 \, dx + s \int_{-T}^{T} \int_{\Omega} (|\partial_t w|^2 + |\nabla w|^2) \, dxdt + s^3 \int_{-T}^{T} \int_{\Omega} |w|^2 \, dxdt$$

$$+ \int_{-T}^{T} \int_{\Omega} |P_1 w|^2 \, dxdt \leq M \int_{-T}^{T} \int_{\Omega} |Pw|^2 \, dxdt + Ms \int_{-T}^{T} \int_{\Gamma_0} |\partial_\nu w|^2 \, d\gamma dt.$$

Coming back to the initial variable z, we obtain

$$s^{1/2} \int_{\Omega} e^{2s\varphi(0)} |\partial_t z(0)|^2 \, dx$$

$$\leq M \int_{-T}^{T} \int_{\Omega} e^{2s\varphi} |\Box z|^2 \, dxdt + Ms \int_{-T}^{T} \int_{\Gamma_0} e^{2s\varphi} |\partial_\nu z|^2 \, d\gamma dt.$$