A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit

Eduardo Godoy1 Mario Durán2

1Ingenieros Matemáticos Consultores Asociados S.A. (INGMAT), Santiago, Chile.

2Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.

22 May 2014
Overview

1. Motivation and basic equations
2. Analytical solution in series form
3. Boundary conditions on the hemispherical pit
4. Numerical results and validation
5. Conclusions and perspectives for future work
Motivation and basic equations

Analytical solution in series form

Boundary conditions on the hemispherical pit

Numerical results and validation

Conclusions and perspectives for future work
Main motivation: Stresses in surface excavations

Need for determining gravity stresses in the surrounding rock mass

Estimate potential slope failure or landslide occurring
Main motivation: Stresses in surface excavations

Need for determining gravity stresses in the surrounding rock mass
Estimate potential slope failure or landslide occurring
Difficulties associated with this problem

When trying to solve this problem using mathematical and numerical approaches, the following difficulties are encountered:

1. Complex geometry of the excavation and its surrounding area
2. Complex internal structure of the rock mass (inhomogeneous, anisotropic and with discontinuities)
3. The surrounding area is in practice unbounded (to be stored in a computer it needs to be truncated)

Most commercial software to solve this type of problems (usually based on FEM) are able to deal with difficulties 1 and 2, but they fail in resolving adequately difficulty 3 (problem of unboundedness)
Difficulties associated with this problem

When trying to solve this problem using mathematical and numerical approaches, the following difficulties are encountered:

1. Complex geometry of the excavation and its surrounding area
2. Complex internal structure of the rock mass (inhomogeneous, anisotropic and with discontinuities)
3. The surrounding area is in practice unbounded (to be stored in a computer it needs to be truncated)

Most commercial software to solve this type of problems (usually based on FEM) are able to deal with difficulties 1 and 2, but they fail in resolving adequately difficulty 3 (problem of unboundedness)
Difficulties associated with this problem

When trying to solve this problem using mathematical and numerical approaches, the following difficulties are encountered

1. Complex geometry of the excavation and its surrounding area
2. Complex internal structure of the rock mass (inhomogeneous, anisotropic and with discontinuities)
3. The surrounding area is in practice unbounded (to be stored in a computer it needs to be truncated)

Most commercial software to solve this type of problems (usually based on FEM) are able to deal with difficulties 1 and 2, but they fail in resolving adequately difficulty 3 (problem of unboundedness)
Difficulties associated with this problem

When trying to solve this problem using mathematical and numerical approaches, the following difficulties are encountered:

1. Complex geometry of the excavation and its surrounding area
2. Complex internal structure of the rock mass (inhomogeneous, anisotropic and with discontinuities)
3. The surrounding area is in practice unbounded (to be stored in a computer it needs to be truncated)

Most commercial software to solve this type of problems (usually based on FEM) are able to deal with difficulties 1 and 2, but they fail in resolving adequately difficulty 3 (problem of unboundedness).
Difficulties associated with this problem

When trying to solve this problem using mathematical and numerical approaches, the following difficulties are encountered:

1. Complex geometry of the excavation and its surrounding area.
2. Complex internal structure of the rock mass (inhomogeneous, anisotropic and with discontinuities).
3. The surrounding area is in practice unbounded (to be stored in a computer it needs to be truncated).

Most commercial software to solve this type of problems (usually based on FEM) are able to deal with difficulties 1 and 2, but they fail in resolving adequately difficulty 3 (problem of unboundedness).
Approach considered in this work

Difficulties associated with complex geometry and internal structure are simplified, focusing the attention on treating appropriately the problem of unboundedness.

We thus assume the following hypotheses:

1. Excavation is an hemispherical pit surrounded by a half-space.
2. Half-space occupied by a homogenous isotropic elastic solid.
3. Gravity force acting downwards everywhere in the half-space.

A simplified mathematical model of our problem is built.

A semi-analytical solution method is considered, which takes advantage of the axisymmetry of the domain.

E. Godoy
INGMAT
Approach considered in this work

Difficulties associated with complex geometry and internal structure are simplified, focusing the attention on treating appropriately the problem of unboundedness.

We thus assume the following hypotheses:

1. Excavation is an hemispherical pit surrounded by a half-space.
2. Half-space occupied by a homogenous isotropic elastic solid.
3. Gravity force acting downwards everywhere in the half-space.

A simplified mathematical model of our problem is built.

A semi-analytical solution method is considered, which takes advantage of the axisymmetry of the domain.
Approach considered in this work

Difficulties associated with complex geometry and internal structure are simplified, focusing the attention on treating appropriately the problem of unboundedness.

We thus assume the following hypotheses:

1. Excavation is an hemispherical pit surrounded by a half-space.
2. Half-space occupied by a homogenous isotropic elastic solid.
3. Gravity force acting downwards everywhere in the half-space.

A simplified mathematical model of our problem is built.

A semi-analytical solution method is considered, which takes advantage of the axisymmetry of the domain.
Approach considered in this work

Difficulties associated with complex geometry and internal structure are simplified, focusing the attention on treating appropriately the problem of unboundedness.

We thus assume the following hypotheses:

1. Excavation is an hemispherical pit surrounded by a half-space.
2. Half-space occupied by a homogenous isotropic elastic solid.
3. Gravity force acting downwards everywhere in the half-space.

A simplified mathematical model of our problem is built.

A semi-analytical solution method is considered, which takes advantage of the axisymmetry of the domain.
Approach considered in this work

Difficulties associated with complex geometry and internal structure are simplified, focusing the attention on treating appropriately the problem of unboundedness.

We thus assume the following hypotheses:

1. Excavation is an hemispherical pit surrounded by a half-space.
2. Half-space occupied by a homogenous isotropic elastic solid.
3. Gravity force acting downwards everywhere in the half-space.

A simplified mathematical model of our problem is built.

A semi-analytical solution method is considered, which takes advantage of the axisymmetry of the domain.
Approach considered in this work

Difficulties associated with complex geometry and internal structure are simplified, focusing the attention on treating appropriately the problem of unboundedness.

We thus assume the following hypotheses:

1. Excavation is an hemispherical pit surrounded by a half-space.
2. Half-space occupied by a homogenous isotropic elastic solid.
3. Gravity force acting downwards everywhere in the half-space.

A simplified mathematical model of our problem is built.

A semi-analytical solution method is considered, which takes advantage of the axisymmetry of the domain.
Approach considered in this work

Difficulties associated with complex geometry and internal structure are simplified, focusing the attention on treating appropriately the problem of unboundedness.

We thus assume the following hypotheses:

1. Excavation is an hemispherical pit surrounded by a half-space.
2. Half-space occupied by a homogenous isotropic elastic solid.
3. Gravity force acting downwards everywhere in the half-space.

A simplified mathematical model of our problem is built.

A semi-analytical solution method is considered, which takes advantage of the axisymmetry of the domain.
Axisymmetric domain

Axisymmetric spherical coordinates \((r, \phi)\)

Unit vectors \(\hat{r}, \hat{\phi}\) and \(\hat{k}\)

Pit radius \(h\), gravity acceleration \(\vec{g}\)

Domain and boundaries:

\[
\Omega = \{(r, \phi) : \ h < r < \infty, \ \pi/2 < \phi < \pi\}
\]
\[
\Gamma_h = \{(r, \phi) : \ r = h, \ \pi/2 < \phi < \pi\}
\]
\[
\Gamma_\infty = \{(r, \phi) : \ r \geq h, \ \phi = \pi/2\}
\]
\[
\Gamma_s = \{(r, \phi) : \ r \geq h, \ \phi = \pi\}
\]
Axisymmetric domain

Axisymmetric spherical coordinates \((r, \phi)\)

Unit vectors \(\hat{r}, \hat{\phi}\) and \(\hat{k}\)

Pit radius \(h\), gravity acceleration \(\vec{g}\)

Domain and boundaries:

\[
\Omega = \{(r, \phi) : h < r < \infty, \pi/2 < \phi < \pi\}
\]

\[
\Gamma_h = \{(r, \phi) : r = h, \pi/2 < \phi < \pi\}
\]

\[
\Gamma_{\infty} = \{(r, \phi) : r \geq h, \phi = \pi/2\}
\]

\[
\Gamma_s = \{(r, \phi) : r \geq h, \phi = \pi\}
\]
Axisymmetric domain

Axisymmetric spherical coordinates \((r, \phi)\)

Unit vectors \(\hat{r}, \hat{\phi}\) and \(\hat{k}\)

Pit radius \(h\), gravity acceleration \(\vec{g}\)

Domain and boundaries:

\[
\Omega = \{(r, \phi) : h < r < \infty, \frac{\pi}{2} < \phi < \pi\}
\]

\[
\Gamma_h = \{(r, \phi) : r = h, \frac{\pi}{2} < \phi < \pi\}
\]

\[
\Gamma_\infty = \{(r, \phi) : r \geq h, \phi = \frac{\pi}{2}\}
\]

\[
\Gamma_s = \{(r, \phi) : r \geq h, \phi = \pi\}
\]
Axisymmetric domain

Axisymmetric spherical coordinates \((r, \phi)\)

Unit vectors \(\hat{r}, \hat{\phi}\) and \(\hat{k}\)

Pit radius \(h\), gravity acceleration \(\vec{g}\)

Domain and boundaries:

\[
\Omega = \{(r, \phi) : h < r < \infty, \pi/2 < \phi < \pi\}
\]

\[
\Gamma_h = \{(r, \phi) : r = h, \pi/2 < \phi < \pi\}
\]

\[
\Gamma_\infty = \{(r, \phi) : r \geq h, \phi = \pi/2\}
\]

\[
\Gamma_s = \{(r, \phi) : r \geq h, \phi = \pi\}
\]
Axisymmetric domain

Axisymmetric spherical coordinates \((r, \phi)\)

Unit vectors \(\hat{r}, \hat{\phi}\) and \(\hat{k}\)

Pit radius \(h\), gravity acceleration \(\vec{g}\)

Domain and boundaries:

\[
\begin{align*}
\Omega &= \{(r, \phi) : h < r < \infty, \pi/2 < \phi < \pi\} \\
\Gamma_h &= \{(r, \phi) : r = h, \pi/2 < \phi < \pi\} \\
\Gamma_\infty &= \{(r, \phi) : r \geq h, \phi = \pi/2\} \\
\Gamma_s &= \{(r, \phi) : r \geq h, \phi = \pi\}
\end{align*}
\]
Basic equations

Displacement field \mathbf{u}, **stress tensor** $\mathbf{\sigma}(\mathbf{u})$

Isotropic Hooke’s law $\mathbf{\sigma}(\mathbf{u}) = \lambda(\nabla \cdot \mathbf{u})\mathbf{I} + \mu(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$

with $\lambda \geq 0$ and $\mu > 0$ the Lamé constants of the elastic solid

Poisson’s ratio $\nu = \frac{\lambda}{2(\lambda + \mu)}$

Equation of elastostatic equilibrium $\nabla \cdot \mathbf{\sigma}(\mathbf{u}) = -\rho g \hat{\mathbf{k}}$

with ρ the density of the elastic solid

Traction-free boundary conditions (Neumann-type) $\mathbf{\sigma}(\mathbf{u})\hat{\mathbf{n}} = 0$

with $\hat{\mathbf{n}}$ the outward unit normal vector
Basic equations

Displacement field u, stress tensor $\sigma(u)$

Isotropic Hooke’s law $\sigma(u) = \lambda(\nabla \cdot u)I + \mu(\nabla u + \nabla u^T)$

with $\lambda \geq 0$ and $\mu > 0$ the Lamé constants of the elastic solid

Poisson’s ratio $\nu = \frac{\lambda}{2(\lambda + \mu)}$

Equation of elastostatic equilibrium $\nabla \cdot \sigma(u) = -\rho g \hat{k}$

with ρ the density of the elastic solid

Traction-free boundary conditions (Neumann-type) $\sigma(u)\hat{n} = 0$

with \hat{n} the outward unit normal vector
Basic equations

Displacement field \(\mathbf{u} \), stress tensor \(\sigma(\mathbf{u}) \)

Isotropic Hooke’s law \(\sigma(\mathbf{u}) = \lambda(\nabla \cdot \mathbf{u}) \mathbf{I} + \mu(\nabla \mathbf{u} + \nabla \mathbf{u}^T) \)

with \(\lambda \geq 0 \) and \(\mu > 0 \) the Lamé constants of the elastic solid

Poisson’s ratio \(\nu = \frac{\lambda}{2(\lambda + \mu)} \)

Equation of elastostatic equilibrium \(\nabla \cdot \sigma(\mathbf{u}) = -\rho g \mathbf{k} \)

with \(\rho \) the density of the elastic solid

Traction-free boundary conditions (Neumann-type) \(\sigma(\mathbf{u}) \hat{n} = 0 \)

with \(\hat{n} \) the outward unit normal vector
Basic equations

Displacement field u, stress tensor $\sigma(u)$

Isotropic Hooke’s law $\sigma(u) = \lambda(\nabla \cdot u)I + \mu(\nabla u + \nabla u^T)$
with $\lambda \geq 0$ and $\mu > 0$ the Lamé constants of the elastic solid

Poisson’s ratio $\nu = \frac{\lambda}{2(\lambda + \mu)}$

Equation of elastostatic equilibrium $\nabla \cdot \sigma(u) = -\rho g \hat{k}$
with ρ the density of the elastic solid

Traction-free boundary conditions (Neumann-type) $\sigma(u)\hat{n} = 0$
with \hat{n} the outward unit normal vector
Basic equations

Displacement field \mathbf{u}, stress tensor $\sigma(\mathbf{u})$

Isotropic Hooke’s law $\sigma(\mathbf{u}) = \lambda (\nabla \cdot \mathbf{u}) I + \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$

with $\lambda \geq 0$ and $\mu > 0$ the Lamé constants of the elastic solid

Poisson’s ratio $\nu = \frac{\lambda}{2(\lambda + \mu)}$

Equation of elastostatic equilibrium $\nabla \cdot \sigma(\mathbf{u}) = -\rho g \hat{k}$

with ρ the density of the elastic solid

Traction-free boundary conditions (Neumann-type) $\sigma(\mathbf{u}) \hat{n} = 0$

with \hat{n} the outward unit normal vector

A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit
Elasticity in axisymmetric spherical coordinates

A generic displacement field \(u \) is given by components as

\[
\mathbf{u}(r, \phi) = u_r(r, \phi) \hat{r} + u_\phi(r, \phi) \hat{\phi}
\]

The stress tensor \(\sigma \) has the following four components:

\[
\sigma_r(u) = (\lambda + 2\mu) \frac{\partial u_r}{\partial r} + \frac{\lambda}{r} \left[2u_r + \frac{\partial u_\phi}{\partial \phi} + \cot \phi u_\phi \right]
\]

\[
\sigma_\phi(u) = \lambda \frac{\partial u_r}{\partial r} + \frac{1}{r} \left[2(\lambda + \mu)u_r + (\lambda + 2\mu) \frac{\partial u_\phi}{\partial \phi} + \lambda \cot \phi u_\phi \right]
\]

\[
\sigma_\theta(u) = \lambda \frac{\partial u_r}{\partial r} + \frac{1}{r} \left[2(\lambda + \mu)u_r + \lambda \frac{\partial u_\phi}{\partial \phi} + (\lambda + 2\mu) \cot \phi u_\phi \right]
\]

\[
\sigma_{r\phi}(u) = \mu \left[\frac{1}{r} \frac{\partial u_r}{\partial \phi} + \frac{\partial u_\phi}{\partial r} - \frac{u_\phi}{r} \right]
\]
Elasticity in axisymmetric spherical coordinates

A generic displacement field u is given by components as

$$u(r, \phi) = u_r(r, \phi) \hat{r} + u_\phi(r, \phi) \hat{\phi}$$

The stress tensor σ has the following four components:

$$\sigma_r(u) = (\lambda + 2\mu) \frac{\partial u_r}{\partial r} + \frac{\lambda}{r} \left[2u_r + \frac{\partial u_\phi}{\partial \phi} + \cot \phi u_\phi \right]$$

$$\sigma_\phi(u) = \lambda \frac{\partial u_r}{\partial r} + \frac{1}{r} \left[2(\lambda + \mu) u_r + (\lambda + 2\mu) \frac{\partial u_\phi}{\partial \phi} + \lambda \cot \phi u_\phi \right]$$

$$\sigma_\theta(u) = \lambda \frac{\partial u_r}{\partial r} + \frac{1}{r} \left[2(\lambda + \mu) u_r + \lambda \frac{\partial u_\phi}{\partial \phi} + (\lambda + 2\mu) \cot \phi u_\phi \right]$$

$$\sigma_{r\phi}(u) = \mu \left[\frac{1}{r} \frac{\partial u_r}{\partial \phi} + \frac{\partial u_\phi}{\partial r} - \frac{u_\phi}{r} \right]$$
Boundary-value problem (BVP) in u

In absence of pit the half-space undergoes lithostatic displacement

$$u_g(x, y, z) = -\frac{\rho g z^2}{2(\lambda + 2\mu)} \hat{k}$$

In presence of pit the displacement field u satisfies the BVP

$$\nabla \cdot \sigma(u) = -\rho g \hat{k} \quad \text{in } \Omega$$

$$\sigma(u)\hat{k} = 0 \quad \text{on } \Gamma_\infty$$

$$\sigma(u)\hat{r} = 0 \quad \text{on } \Gamma_h$$

$$\sigma(u)\hat{\phi} \cdot \hat{r} = u \cdot \hat{\phi} = 0 \quad \text{on } \Gamma_s$$

$$|u - u_g| = O\left(\frac{1}{r}\right) \quad \text{as } r \to \infty$$
Motivation
Analytical solution
Boundary conditions on the pit
Numerical results
Conclusions

Boundary-value problem (BVP) in u

In absence of pit the half-space undergoes lithostatic displacement

$$u_g(x, y, z) = -\frac{\rho g z^2}{2(\lambda + 2\mu)} \hat{k}$$

In presence of pit the displacement field u satisfies the BVP

$$\nabla \cdot \sigma(u) = -\rho g \hat{k} \quad \text{in} \ \Omega$$

$$\sigma(u) \hat{k} = 0 \quad \text{on} \ \Gamma_\infty$$

$$\sigma(u) \hat{r} = 0 \quad \text{on} \ \Gamma_h$$

$$\sigma(u) \hat{\phi} \cdot \hat{r} = u \cdot \hat{\phi} = 0 \quad \text{on} \ \Gamma_s$$

$$|u - u_g| = O\left(\frac{1}{r}\right) \quad \text{as} \ r \to \infty$$
Boundary-value problem (BVP) in ν

We use the decomposition $u = u_g + \nu$, with ν satisfying the BVP

\[\nabla \cdot \sigma(\nu) = 0 \quad \text{in } \Omega \]
\[\sigma(\nu) \hat{k} = 0 \quad \text{on } \Gamma_\infty \]
\[\sigma(\nu) \hat{r} = f \quad \text{on } \Gamma_h \]
\[\sigma(\nu) \hat{\phi} \cdot \hat{r} = \nu \cdot \hat{\phi} = 0 \quad \text{on } \Gamma_s \]
\[|\nu| = O\left(\frac{1}{r}\right) \quad \text{as } r \to \infty \]

with $f(\phi) = \frac{\rho gh \cos \phi}{1 - \nu} \left((\nu + (1 - 2\nu) \cos^2 \phi) \hat{r} - (1 - 2\nu) \cos \phi \sin \phi \hat{\phi}\right)$

In what follows, this BVP in ν is solved
Boundary-value problem (BVP) in v

We use the decomposition $u = u_g + v$, with v satisfying the BVP

$$\nabla \cdot \sigma(v) = 0 \quad \text{in } \Omega$$

$$\sigma(v)\hat{k} = 0 \quad \text{on } \Gamma_\infty$$

$$\sigma(v)\hat{r} = f \quad \text{on } \Gamma_h$$

$$\sigma(v)\hat{\phi} \cdot \hat{r} = v \cdot \hat{\phi} = 0 \quad \text{on } \Gamma_s$$

$$|v| = O\left(\frac{1}{r}\right) \quad \text{as } r \to \infty$$

with $f(\phi) = \frac{\rho gh \cos \phi}{1 - \nu} \left((\nu + (1 - 2\nu) \cos^2 \phi) \hat{r} - (1 - 2\nu) \cos \phi \sin \phi \hat{\phi} \right)$

In what follows, this BVP in v is solved.
Boundary-value problem (BVP) in v

We use the decomposition $u = u_g + v$, with v satisfying the BVP

\[
\nabla \cdot \sigma(v) = 0 \quad \text{in } \Omega \\
\sigma(v) \hat{k} = 0 \quad \text{on } \Gamma_{\infty} \\
\sigma(v) \hat{r} = f \quad \text{on } \Gamma_h \\
\sigma(v) \hat{\phi} \cdot \hat{r} = v \cdot \hat{\phi} = 0 \quad \text{on } \Gamma_s \\
|v| = O\left(\frac{1}{r}\right) \quad \text{as } r \to \infty
\]

with $f(\phi) = \frac{\rho gh \cos \phi}{1 - \nu} \left((\nu + (1 - 2\nu) \cos^2 \phi) \hat{r} - (1 - 2\nu) \cos \phi \sin \phi \hat{\phi} \right)$

In what follows, this BVP in v is solved

E. Godoy INGMAT

A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit
Motivation and basic equations

Analytical solution in series form

Boundary conditions on the hemispherical pit

Numerical results and validation

Conclusions and perspectives for future work
Displacement in terms of Boussinesq potentials

The displacement v is sought under the form

$$2\mu v = \nabla(\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}$$

where Φ and Ψ are scalar functions (Boussinesq potentials).

This v satisfies the equation of elastostatic equilibrium provided that Φ and Ψ are harmonic functions in Ω.

As v has to fulfill the decaying condition $|v| = O\left(\frac{1}{r}\right)$ as $r \to \infty$, Boussinesq potentials Ψ and Φ must satisfy

$$\begin{cases}
\Delta \Psi = 0 \quad \text{in } \Omega \\
\Psi = O\left(\frac{1}{r}\right) \quad \text{as } r \to \infty
\end{cases}$$

$$\begin{cases}
\Delta \Phi = 0 \quad \text{in } \Omega \\
|\nabla \Phi| = O\left(\frac{1}{r}\right) \quad \text{as } r \to \infty
\end{cases}$$
Displacement in terms of Boussinesq potentials

The displacement v is sought under the form

$$2\mu v = \nabla (\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}$$

where Φ and Ψ are scalar functions (Boussinesq potentials)

This v satisfies the equation of elastostatic equilibrium provided that Φ and Ψ are harmonic functions in Ω

As v has to fulfil the decaying condition $|v| = O\left(\frac{1}{r}\right)$ as $r \to \infty$, Boussinesq potentials Ψ and Φ must satisfy

$$\begin{cases}
\Delta \Psi = 0 & \text{in } \Omega \\
\Psi = O\left(\frac{1}{r}\right) & \text{as } r \to \infty
\end{cases} \quad \begin{cases}
\Delta \Phi = 0 & \text{in } \Omega \\
|\nabla \Phi| = O\left(\frac{1}{r}\right) & \text{as } r \to \infty
\end{cases}$$
Displacement in terms of Boussinesq potentials

The displacement v is sought under the form

$$2\mu v = \nabla(\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}$$

where Φ and Ψ are scalar functions (Boussinesq potentials).

This v satisfies the equation of elastostatic equilibrium provided that Φ and Ψ are harmonic functions in Ω.

As v has to fulfil the decaying condition $|v| = O\left(\frac{1}{r}\right)$ as $r \to \infty$, Boussinesq potentials Ψ and Φ must satisfy

$$\begin{cases}
\Delta \Psi = 0 & \text{in } \Omega \\
\Psi = O\left(\frac{1}{r}\right) & \text{as } r \to \infty
\end{cases} \quad \begin{cases}
\Delta \Phi = 0 & \text{in } \Omega \\
|\nabla \Phi| = O\left(\frac{1}{r}\right) & \text{as } r \to \infty
\end{cases}$$
Expressions for the Boussinesq potentials

Laplace equation in spherical coordinates \((r, \phi)\) for \(F = \Psi, \Phi\)

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial F(r, \phi)}{\partial r} \right) + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial F(r, \phi)}{\partial \phi} \right) = 0
\]

Standard separation of variables in \(\Omega\) yields \(F_n(r, \phi) = \frac{P_n(\cos \phi)}{r^{n+1}}\)
where \(P_n(\cdot)\) is the Legendre polynomial of order \(n \geq 0\)

Solutions \(\Psi\):

Decaying condition is \(\Psi = O\left(\frac{1}{r}\right)\) as \(r \to \infty\)

\[
\Psi_n(r, \phi) = \frac{P_n(\cos \phi)}{r^{n+1}} \quad n \geq 0
\]
Expressions for the Boussinesq potentials

Laplace equation in spherical coordinates \((r, \phi)\) for \(F = \Psi, \Phi\)

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial F(r, \phi)}{\partial r} \right) + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial F(r, \phi)}{\partial \phi} \right) = 0
\]

Standard separation of variables in \(\Omega\) yields \(F_n(r, \phi) = \frac{P_n(\cos \phi)}{r^{n+1}}\)

where \(P_n(\cdot)\) is the Legendre polynomial of order \(n \geq 0\)

Solutions \(\Psi\):

Decaying condition is \(\Psi = O\left(\frac{1}{r}\right)\) as \(r \to \infty\)

\[
\Psi_n(r, \phi) = \frac{P_n(\cos \phi)}{r^{n+1}} \quad n \geq 0
\]
Expressions for the Boussinesq potentials

Laplace equation in spherical coordinates \((r, \phi)\) for \(F = \Psi, \Phi\)

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial F(r, \phi)}{\partial r} \right) + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial F(r, \phi)}{\partial \phi} \right) = 0
\]

Standard separation of variables in \(\Omega\) yields \(F_n(r, \phi) = \frac{P_n(\cos \phi)}{r^{n+1}}\)

where \(P_n(\cdot)\) is the Legendre polynomial of order \(n \geq 0\)

Solutions \(\Psi\):

Decaying condition is \(\Psi = O\left(\frac{1}{r}\right)\) as \(r \to \infty\)

\[
\Psi_n(r, \phi) = \frac{P_n(\cos \phi)}{r^{n+1}} \quad n \geq 0
\]
Expressions for the Boussinesq potentials

Laplace equation in spherical coordinates \((r, \phi)\) for \(F = \Psi, \Phi\)

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial F(r, \phi)}{\partial r} \right) + \frac{1}{r^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial F(r, \phi)}{\partial \phi} \right) = 0
\]

Standard separation of variables in \(\Omega\) yields \(F_n(r, \phi) = \frac{P_n(\cos \phi)}{r^{n+1}}\)

where \(P_n(\cdot)\) is the Legendre polynomial of order \(n \geq 0\)

Solutions \(\Phi\):

Decaying condition is \(|\nabla \Phi| = O\left(\frac{1}{r}\right)\) as \(r \to \infty\)

\[
\Phi_n(r, \phi) = \begin{cases}
\ln(r - r \cos \phi) & n = -1 \\
\frac{P_n(\cos \phi)}{r^{n+1}} & n \geq 0
\end{cases}
\]
Obtaining the series

Solutions in **series form** are built by **substituting** the following two combinations of **Boussinesq potentials**

1. \(\Phi = \Phi_n \quad \Psi = 0 \quad n \geq -1 \)
2. \(\Psi = (2n + 1)\Psi_n \quad \Phi = -(n - 4 + 4\nu)\Phi_{n-1} \quad n \geq 0 \)

in the expression

\[
2\mu v = \nabla (\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}
\]

These **displacements** are denoted respectively by \(v_n^{(1)} \) and \(v_n^{(2)} \).

The associated **stress tensors**, denoted by \(\sigma_n^{(1)} \) and \(\sigma_n^{(2)} \) respectively, are obtained explicitly with the aid of the Hooke's law in spherical coordinates.
Obtaining the series

Solutions in **series form** are built by **substituting** the following two combinations of **Boussinesq potentials**

1. \(\Phi = \Phi_n \quad \Psi = 0 \quad n \geq -1 \)
2. \(\Psi = (2n + 1)\Psi_n \quad \Phi = -(n - 4 + 4\nu)\Phi_{n-1} \quad n \geq 0 \)

in the expression

\[
2\mu v = \nabla(\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}
\]

These **displacements** are denoted respectively by \(v_n^{(1)} \) and \(v_n^{(2)} \)

The associated **stress tensors**, denoted by \(\sigma_n^{(1)} \) and \(\sigma_n^{(2)} \) respectively, are obtained explicitly with the aid of the **Hooke's law** in spherical coordinates.
Obtaining the series

Solutions in **series form** are built by **substituting** the following two combinations of **Boussinesq potentials**

1. \(\Phi = \Phi_n \quad \Psi = 0 \quad n \geq -1 \)
2. \(\Psi = (2n + 1)\Psi_n \quad \Phi = -(n - 4 + 4\nu)\Phi_{n-1} \quad n \geq 0 \)

in the expression

\[
2\mu v = \nabla(\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}
\]

These displacements are denoted respectively by \(v_n^{(1)} \) and \(v_n^{(2)} \).

The associated **stress tensors**, denoted by \(\sigma_n^{(1)} \) and \(\sigma_n^{(2)} \) respectively, are obtained explicitly with the aid of the **Hooke’s law in spherical coordinates**.
Obtaining the series

Solutions in **series form** are built by **substituting** the following two combinations of **Boussinesq potentials**

1. \(\Phi = \Phi_n \quad \Psi = 0 \quad n \geq -1 \)
2. \(\Psi = (2n + 1)\Psi_n \quad \Phi = -(n - 4 + 4\nu)\Phi_{n-1} \quad n \geq 0 \)

in the expression

\[
2\mu v = \nabla(\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}
\]

These displacements are denoted respectively by \(v_n^{(1)} \) and \(v_n^{(2)} \)

The associated **stress tensors**, denoted by \(\sigma_n^{(1)} \) and \(\sigma_n^{(2)} \) respectively, are obtained explicitly with the aid of the Hooke's law in spherical coordinates.
Obtaining the series

Solutions in series form are built by substituting the following two combinations of Boussinesq potentials

1. \(\Phi = \Phi_n \quad \Psi = 0 \quad n \geq -1 \)
2. \(\Psi = (2n + 1)\Psi_n \quad \Phi = -(n - 4 + 4\nu)\Phi_{n-1} \quad n \geq 0 \)

in the expression

\[
2\mu v = \nabla(\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}
\]

These displacements are denoted respectively by \(v^{(1)}_n \) and \(v^{(2)}_n \)

The associated stress tensors, denoted by \(\sigma^{(1)}_n \) and \(\sigma^{(2)}_n \) respectively, are obtained explicitly with the aid of the Hooke’s law in spherical coordinates
Solutions in **series form** are built by substituting the following two combinations of **Boussinesq potentials**

1. \(\Phi = \Phi_n \quad \Psi = 0 \quad n \geq -1 \)
2. \(\Psi = (2n + 1)\Psi_n \quad \Phi = -(n - 4 + 4\nu)\Phi_{n-1} \quad n \geq 0 \)

in the expression

\[
2\mu v = \nabla(\Phi + z\Psi) - 4(1 - \nu)\Psi \hat{k}
\]

These **displacements** are denoted respectively by \(v_n^{(1)} \) and \(v_n^{(2)} \)

The associated **stress tensors**, denoted by \(\sigma_n^{(1)} \) and \(\sigma_n^{(2)} \) respectively, are obtained explicitly with the aid of the **Hooke’s law** in **spherical coordinates**
Obtaining the series

The basic displacements and stresses can be reexpressed as

\[
\begin{align*}
 v_n^{(1)}(r, \phi) &= \frac{w_n^{(1)}(\phi)}{r^{n+2}}, & \sigma_n^{(1)}(r, \phi) &= \frac{\tau_n^{(1)}(\phi)}{r^{n+3}}, & n \geq -1 \\
 v_n^{(2)}(r, \phi) &= \frac{w_n^{(2)}(\phi)}{r^{n+1}}, & \sigma_n^{(2)}(r, \phi) &= \frac{\tau_n^{(2)}(\phi)}{r^{n+2}}, & n \geq 0
\end{align*}
\]

where for \(j = 1, 2, w_n^{(j)}, \tau_n^{(j)} \) are functions depending on \(\phi \)

The general solution \((v, \sigma)\) is then expressed as

\[
\begin{align*}
 v(r, \phi) &= \sum_{n=-1}^{\infty} \frac{1}{r^{n+2}} \left(a_n^{(1)} w_n^{(1)}(\phi) + a_{n+1}^{(2)} w_{n+1}^{(2)}(\phi) \right) \\
 \sigma(r, \phi) &= \sum_{n=-1}^{\infty} \frac{1}{r^{n+3}} \left(a_n^{(1)} \tau_n^{(1)}(\phi) + a_{n+1}^{(2)} \tau_{n+1}^{(2)}(\phi) \right)
\end{align*}
\]

where for \(n \geq -1, a_n^{(1)} \) and \(a_n^{(2)} \) are generic real coefficients
Obtaining the series

The basic displacements and stresses can be reexpressed as

\[v_n^{(1)}(r, \phi) = \frac{w_n^{(1)}(\phi)}{r^{n+2}} \quad \sigma_n^{(1)}(r, \phi) = \frac{\tau_n^{(1)}(\phi)}{r^{n+3}} \quad n \geq -1 \]

\[v_n^{(2)}(r, \phi) = \frac{w_n^{(2)}(\phi)}{r^{n+1}} \quad \sigma_n^{(2)}(r, \phi) = \frac{\tau_n^{(2)}(\phi)}{r^{n+2}} \quad n \geq 0 \]

where for \(j = 1, 2, \) \(w_n^{(j)}, \tau_n^{(j)} \) are functions depending on \(\phi \)

The general solution \((v, \sigma)\) is then expressed as

\[v(r, \phi) = \sum_{n=-1}^{\infty} \frac{1}{r^{n+2}} \left(a_n^{(1)} w_n^{(1)}(\phi) + a_{n+1}^{(2)} w_{n+1}^{(2)}(\phi) \right) \]

\[\sigma(r, \phi) = \sum_{n=-1}^{\infty} \frac{1}{r^{n+3}} \left(a_n^{(1)} \tau_n^{(1)}(\phi) + a_{n+1}^{(2)} \tau_{n+1}^{(2)}(\phi) \right) \]

where for \(n \geq -1, \) \(a_n^{(1)} \) and \(a_n^{(2)} \) are generic real coefficients
Traction-free boundary conditions on Γ_∞

Let us recall the **boundary conditions** imposed on the **plane surface**

$$\sigma(u)\hat{k} = 0 \quad \text{on } \Gamma_\infty$$

For $z = 0$, $\hat{k} = -\hat{\phi} \implies \sigma(v)\hat{k} = -\sigma_r\phi(v)\hat{r} - \sigma_\phi(v)\hat{\phi}$

Imposing $\sigma_\phi(v) = \sigma_r\phi(v) = 0$ to the general solution yields the following relations for the coefficients $a_n^{(1)}$ and $a_n^{(2)}$

$$a_{-1}^{(1)} = (3 - 2\nu)a_0^{(2)}$$
$$ (2n + 1)a_{2n}^{(1)} = \alpha_{2n} a_{2n+1}^{(2)} \quad n \geq 0 $$
$$ (2n + 2)a_{2n+1}^{(1)} = \alpha_{2n+2} a_{2n+2}^{(2)} \quad n \geq 0 $$

with $\alpha_{2n} = (2n + 1)^2 - 2(1 - \nu)$
Traction-free boundary conditions on Γ_∞

Let us recall the boundary conditions imposed on the plane surface

$$\sigma(u)\hat{k} = 0 \quad \text{on } \Gamma_\infty$$

For $z = 0$, $\hat{k} = -\hat{\phi}$ \Rightarrow $\sigma(v)\hat{k} = -\sigma_r\phi(v)\hat{r} - \sigma_\phi(v)\hat{\phi}$

Imposing $\sigma_\phi(v) = \sigma_r\phi(v) = 0$ to the general solution yields the following relations for the coefficients $a_n^{(1)}$ and $a_n^{(2)}$

$$a_{-1}^{(1)} = (3 - 2\nu)a_0^{(2)}$$

$$(2n + 1)a_{2n}^{(1)} = \alpha_{2n}a_{2n+1}^{(2)} \quad n \geq 0$$

$$(2n + 2)a_{2n+1}^{(1)} = \alpha_{2n+2}a_{2n+2}^{(2)} \quad n \geq 0$$

with $\alpha_{2n} = (2n + 1)^2 - 2(1 - \nu)$
Traction-free boundary conditions on Γ_∞

Let us recall the **boundary conditions** imposed on the **plane surface**

$$\sigma(u) \hat{k} = 0 \quad \text{on } \Gamma_\infty$$

For $z = 0$, $\hat{k} = -\hat{\phi}$ \Rightarrow $\sigma(v) \hat{k} = -\sigma_r(v) \hat{r} - \sigma_\phi(v) \hat{\phi}$

Imposing $\sigma_\phi(v) = \sigma_r(v) = 0$ to the **general solution** yields the following **relations** for the **coefficients** $a_n^{(1)}$ and $a_n^{(2)}$

$$a_{-1}^{(1)} = (3 - 2\nu)a_0^{(2)}$$

$$(2n + 1)a_{2n}^{(1)} = \alpha_{2n}a_{2n+1}^{(2)} \quad n \geq 0$$

$$(2n + 2)a_{2n+1}^{(1)} = \alpha_{2n+2}a_{2n+2}^{(2)} \quad n \geq 0$$

with $\alpha_{2n} = (2n + 1)^2 - 2(1 - \nu)$
Rearranging appropriately the general solution, it is reexpressed as

\[
\begin{align*}
\mathbf{v}(r, \phi) &= \sum_{n=0}^{\infty} A_n \left(\frac{h}{r} \right)^{2n+2} \mathbf{w}_n^{(A)}(\phi) + \sum_{n=-1}^{\infty} B_n \left(\frac{h}{r} \right)^{2n+3} \mathbf{w}_n^{(B)}(\phi) \\
\mathbf{\sigma}(r, \phi) &= \frac{1}{h} \left[\sum_{n=0}^{\infty} A_n \left(\frac{h}{r} \right)^{2n+3} \mathbf{\tau}_n^{(A)}(\phi) + \sum_{n=-1}^{\infty} B_n \left(\frac{h}{r} \right)^{2n+4} \mathbf{\tau}_n^{(B)}(\phi) \right]
\end{align*}
\]

where functions \(\mathbf{w}_n^{(A)}, \mathbf{w}_n^{(B)}, \mathbf{\tau}_n^{(A)} \) and \(\mathbf{\tau}_n^{(B)} \) are defined in terms of \(\mathbf{w}_n^{(1)}, \mathbf{w}_n^{(2)}, \mathbf{\tau}_n^{(1)} \) and \(\mathbf{\tau}_n^{(2)} \), and \(A_n, B_n \) are generic real coefficients.

It is easily verified that this general solution also satisfies the axisymmetric boundary conditions on \(\Gamma_s: v_\phi = \sigma_{r\phi}(\mathbf{v}) = 0 \)
Analytical solution expressed in series form

Rearranging appropriately the general solution, it is reexpressed as

\[
v(r, \phi) = \sum_{n=0}^{\infty} A_n \left(\frac{h}{r} \right)^{2n+2} w^{(A)}_n(\phi) + \sum_{n=-1}^{\infty} B_n \left(\frac{h}{r} \right)^{2n+3} w^{(B)}_n(\phi)
\]

\[
\sigma(r, \phi) = \frac{1}{h} \left[\sum_{n=0}^{\infty} A_n \left(\frac{h}{r} \right)^{2n+3} \tau^{(A)}_n(\phi) + \sum_{n=-1}^{\infty} B_n \left(\frac{h}{r} \right)^{2n+4} \tau^{(B)}_n(\phi) \right]
\]

where functions \(w^{(A)}_n \), \(w^{(B)}_n \), \(\tau^{(A)}_n \) and \(\tau^{(B)}_n \) are defined in terms of \(w^{(1)}_n \), \(w^{(2)}_n \), \(\tau^{(1)}_n \) and \(\tau^{(2)}_n \), and \(A_n, B_n \) are generic real coefficients.

It is easily verified that this general solution also satisfies the axisymmetric boundary conditions on \(\Gamma_s \): \(v_\phi = \sigma_{r\phi}(v) = 0 \)
Rearranging appropriately the general solution, it is reexpressed as

\[
v(r, \phi) = \sum_{n=0}^{\infty} A_n \left(\frac{h}{r} \right)^{2n+2} w_n^{(A)}(\phi) + \sum_{n=-1}^{\infty} B_n \left(\frac{h}{r} \right)^{2n+3} w_n^{(B)}(\phi)
\]

\[
\sigma(r, \phi) = \frac{1}{h} \left[\sum_{n=0}^{\infty} A_n \left(\frac{h}{r} \right)^{2n+3} \tau_n^{(A)}(\phi) + \sum_{n=-1}^{\infty} B_n \left(\frac{h}{r} \right)^{2n+4} \tau_n^{(B)}(\phi) \right]
\]

where functions \(w_n^{(A)}, w_n^{(B)}, \tau_n^{(A)}\) and \(\tau_n^{(B)}\) are defined in terms of \(w_n^{(1)}, w_n^{(2)}, \tau_n^{(1)}\) and \(\tau_n^{(2)}\), and \(A_n, B_n\) are generic real coefficients.

It is easily verified that this general solution also satisfies the axisymmetric boundary conditions on \(\Gamma_s\): \(v_{\phi} = \sigma_{r\phi}(v) = 0\)
<table>
<thead>
<tr>
<th></th>
<th>Motivation and basic equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Analytical solution in series form</td>
</tr>
<tr>
<td>3</td>
<td>Boundary conditions on the hemispherical pit</td>
</tr>
<tr>
<td>4</td>
<td>Numerical results and validation</td>
</tr>
<tr>
<td>5</td>
<td>Conclusions and perspectives for future work</td>
</tr>
</tbody>
</table>
Truncation of the series

Up to now we have obtained a solution that is fully analytical.

It satisfies the equation of elastostatic equilibrium, boundary conditions on Γ_∞ and Γ_s, and a decaying condition at infinity.

The boundary condition on Γ_h cannot be imposed analytically, so it is enforced numerically, giving rise to a semi-analytical solution.

First of all the infinite series are truncated at a finite order N:

$$v(r, \phi) = \sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+2} w_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+3} w_n^{(B)}(\phi)$$

$$\sigma(r, \phi) = \frac{1}{h} \left[\sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+3} \tau_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+4} \tau_n^{(B)}(\phi) \right]$$
Truncation of the series

Up to now we have obtained a solution that is fully analytical.

It satisfies the equation of elastostatic equilibrium, boundary conditions on Γ_∞ and Γ_s, and a decaying condition at infinity.

The boundary condition on Γ_h cannot be imposed analytically, so it is enforced numerically, giving rise to a semi-analytical solution.

First of all the infinite series are truncated at a finite order N:

\[v(r, \phi) = \sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+2} w_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+3} w_n^{(B)}(\phi) \]

\[\sigma(r, \phi) = \frac{1}{h} \left[\sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+3} \tau_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+4} \tau_n^{(B)}(\phi) \right] \]
Motivation Analytical solution Boundary conditions on the pit Numerical results Conclusions

Truncation of the series

Up to now we have obtained a solution that is fully analytical. It satisfies the equation of elastostatic equilibrium, boundary conditions on Γ_∞ and Γ_s, and a decaying condition at infinity. The boundary condition on Γ_h cannot be imposed analytically, so it is enforced numerically, giving rise to a semi-analytical solution.

First of all the infinite series are truncated at a finite order N:

$$v(r, \phi) = \sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+2} w_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+3} w_n^{(B)}(\phi)$$

$$\sigma(r, \phi) = \frac{1}{h} \left[\sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+3} \tau_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+4} \tau_n^{(B)}(\phi) \right]$$
Truncation of the series

Up to now we have obtained a solution that is fully analytical. It satisfies the equation of elastostatic equilibrium, boundary conditions on Γ_∞ and Γ_s, and a decaying condition at infinity. The boundary condition on Γ_h cannot be imposed analytically, so it is enforced numerically, giving rise to a semi-analytical solution.

First of all the infinite series are truncated at a finite order N:

$$v(r, \phi) = \sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+2} w_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+3} w_n^{(B)}(\phi)$$

$$\sigma(r, \phi) = \frac{1}{h} \left[\sum_{n=0}^{N} A_n \left(\frac{h}{r} \right)^{2n+3} \tau_n^{(A)}(\phi) + \sum_{n=-1}^{N} B_n \left(\frac{h}{r} \right)^{2n+4} \tau_n^{(B)}(\phi) \right]$$
Let us recall the **boundary condition** on the **hemispherical surface**

\[\sigma(v) \hat{r} = f \quad \text{on } \Gamma_h \]

The numerical enforcement of this boundary condition yields approximate values of a finite number of coefficients \(A_n \) and \(B_n \). For this, we define the following **quadratic functional of energy**

\[
J(v) = -\frac{1}{2h^2} \int_{\Gamma_h} \sigma \hat{r} \cdot v \, ds + \frac{1}{h^2} \int_{\Gamma_h} f \cdot v \, ds
\]

The numerical minimisation of this functional leads to a **linear system of equations** for the coefficients \(A_n \) and \(B_n \), whose particular structure allows us to solve it in a very efficient form.
Quadratic functional of energy

Let us recall the **boundary condition** on the **hemispherical surface**

\[\sigma(v) \hat{r} = f \quad \text{on } \Gamma_h \]

The **numerical enforcement** of this **boundary condition** yields approximate values of a **finite number of coefficients** \(A_n \) and \(B_n \). For this we define the following **quadratic functional of energy**

\[J(v) = -\frac{1}{2h^2} \int_{\Gamma_h} \sigma \hat{r} \cdot v \, ds + \frac{1}{h^2} \int_{\Gamma_h} f \cdot v \, ds \]

The **numerical minimisation** of this functional leads to a **linear system of equations** for the coefficients \(A_n \) and \(B_n \), whose particular structure allows us to solve it in a very efficient form.

E. Godoy

A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit.
Quadratic functional of energy

Let us recall the boundary condition on the hemispherical surface

$$\sigma(v)\hat{r} = f \quad \text{on } \Gamma_h$$

The numerical enforcement of this boundary condition yields approximate values of a finite number of coefficients A_n and B_n. For this we define the following quadratic functional of energy

$$J(v) = -\frac{1}{2h^2} \int_{\Gamma_h} \sigma \hat{r} \cdot v \, ds + \frac{1}{h^2} \int_{\Gamma_h} f \cdot v \, ds$$

The numerical minimisation of this functional leads to a linear system of equations for the coefficients A_n and B_n, whose particular structure allows us to solve it in a very efficient form.
Quadratic functional of energy

Let us recall the boundary condition on the hemispherical surface

$$\sigma(v) \hat{r} = f \text{ on } \Gamma_h$$

The numerical enforcement of this boundary condition yields approximate values of a finite number of coefficients A_n and B_n.

For this we define the following quadratic functional of energy

$$J(v) = -\frac{1}{2h^2} \int_{\Gamma_h} \sigma \hat{r} \cdot \mathbf{v} \, ds + \frac{1}{h^2} \int_{\Gamma_h} f \cdot \mathbf{v} \, ds$$

The numerical minimisation of this functional leads to a linear system of equations for the coefficients A_n and B_n, whose particular structure allows us to solve it in a very efficient form.
Matrix form of the quadratic functional

Substituting in J the expressions for \mathbf{v} and $\mathbf{\sigma}$ as truncated series evaluated at $r = h$, and rearranging appropriately yields

$$J(\mathbf{v}) = \frac{1}{2} \sum_{n=0}^{N} \sum_{k=0}^{N} Q_{nk}^{(AA)} A_n A_k + \frac{1}{2} \sum_{n=0}^{N} \sum_{k=-1}^{N} Q_{nk}^{(AB)} A_n B_k$$

$$+ \frac{1}{2} \sum_{n=-1}^{N} \sum_{k=0}^{N} Q_{nk}^{(BA)} B_n A_k + \frac{1}{2} \sum_{n=-1}^{N} \sum_{k=-1}^{N} Q_{nk}^{(BB)} B_n B_k$$

$$- \sum_{n=0}^{N} c_n^{(A)} A_n - \sum_{n=-1}^{N} c_n^{(B)} B_n$$

for matrices $Q^{(AA)}$, $Q^{(AB)}$, $Q^{(BA)}$, $Q^{(BB)}$ and vectors $c^{(A)}$, $c^{(B)}$.
Matrix form of the quadratic functional

Substituting in J the expressions for ν and σ as truncated series evaluated at $r = h$, and rearranging appropriately yields

$$J(\nu) = \frac{1}{2} \sum_{n=0}^{N} \sum_{k=0}^{N} Q_{nk}^{(AA)} A_n A_k + \frac{1}{2} \sum_{n=0}^{N} \sum_{k=-1}^{N} Q_{nk}^{(AB)} A_n B_k$$

$$+ \frac{1}{2} \sum_{n=-1}^{N} \sum_{k=0}^{N} Q_{nk}^{(BA)} B_n A_k + \frac{1}{2} \sum_{n=-1}^{N} \sum_{k=-1}^{N} Q_{nk}^{(BB)} B_n B_k$$

$$- \sum_{n=0}^{N} c_n^{(A)} A_n - \sum_{n=-1}^{N} c_n^{(B)} B_n$$

for matrices $Q^{(AA)}$, $Q^{(AB)}$, $Q^{(BA)}$, $Q^{(BB)}$ and vectors $c^{(A)}$, $c^{(B)}$
Matrix form of the quadratic functional

For $i, j = A, B$ the entries of matrices $Q^{(ij)}$ and vectors $c^{(i)}$ are defined as

\[
Q^{(ij)}_{nk} = - \int_{\pi/2}^{\pi} \left(\left[w_n^{(i)} \right] r(\phi) \left[\tau_k^{(j)} \right] r(\phi) + \left[w_n^{(i)} \right] \phi(\phi) \left[\tau_k^{(j)} \right] r(\phi) \right) \sin \phi \, d\phi
\]

\[
c_n^{(i)} = - h \int_{\pi/2}^{\pi} \left(\left[w_n^{(i)} \right] r(\phi) f_r(\phi) + \left[w_n^{(i)} \right] \phi(\phi) f_\phi(\phi) \right) \sin \phi \, d\phi
\]

All these entries are calculated explicitly with the aid of integral formulae for Legendre polynomials and their derivatives, e.g.

\[
\int_{\pi/2}^{\pi} P_{2n}(\cos \phi) P_{2k+1}(\cos \phi) \sin \phi \, d\phi = - \frac{(2k + 1) P_{2n}(0) P_{2k}(0)}{(2k + 1 - 2n)(2k + 2 + 2n)}
\]
Matrix form of the quadratic functional

For $i, j = A, B$ the entries of matrices $Q^{(ij)}$ and vectors $c^{(i)}$ are defined as

$$Q_{nk}^{(ij)} = - \int_{\pi/2}^{\pi} \left([w_n^{(i)}]_r(\phi)[\tau_k^{(j)}]_r(\phi) + [w_n^{(i)}]_\phi(\phi)[\tau_k^{(j)}]_\phi(\phi) \right) \sin \phi \, d\phi$$

$$c_n^{(i)} = -h \int_{\pi/2}^{\pi} \left([w_n^{(i)}]_r(\phi)f_r(\phi) + [w_n^{(i)}]_\phi(\phi)f_\phi(\phi) \right) \sin \phi \, d\phi$$

All these entries are calculated explicitly with the aid of integral formulae for Legendre polynomials and their derivatives, e.g.

$$\int_{\pi/2}^{\pi} P_{2n}(\cos \phi) P_{2k+1}(\cos \phi) \sin \phi \, d\phi = -\frac{(2k + 1)P_{2n}(0)P_{2k}(0)}{(2k + 1 - 2n)(2k + 2 + 2n)}$$

E. Godoy

INGMAT
A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit
Structure of matrices

$$Q^{(AA)}$$, $$Q^{(AB)}$$, and $$Q^{(BB)}$$ are symmetric and positive definite matrices.

$$Q^{(BA)} = [Q^{(AB)}]^T$$

E. Godoy
INGMAT

A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit.
Structure of matrices

\[Q^{(AA)} \]

\[Q^{(AB)} \]

\[Q^{(BB)} \]

\[Q^{(BA)} = [Q^{(AB)}]^T \]

\[Q^{(AA)} \text{ and } Q^{(BB)} \text{ are symmetric and positive definite matrices} \]
Structure of matrices

\[Q^{(AA)} \quad Q^{(AB)} \quad Q^{(BB)} \]

\[\begin{align*}
Q^{(AA)} \text{ and } Q^{(BB)} \text{ are symmetric and positive definite matrices} \\
Q^{(BA)} &= [Q^{(AB)}]^T
\end{align*} \]
Minimisation of the functional and linear system

Defining the vectors \(x^{(A)} = (A_0 \ A_1 \ldots \ A_N)^T \in \mathbb{R}^{N+1} \) and
\(x^{(B)} = (B_{-1} \ B_0 \ldots \ B_N)^T \in \mathbb{R}^{N+2} \)

and the matrices and vectors by blocks

\[
Q = \begin{bmatrix}
Q^{(AA)} & Q^{(AB)} \\
[Q^{(AB)}]^T & Q^{(BB)}
\end{bmatrix}
\quad
x = \begin{bmatrix}
x^{(A)} \\
x^{(B)}
\end{bmatrix}
\quad
c = \begin{bmatrix}
c^{(A)} \\
c^{(B)}
\end{bmatrix}
\]

the quadratic functional is reexpressed as
\(J(x) = \frac{1}{2} x^T Q x - x^T c \)

As the matrix \(Q \) is symmetric and positive definite, \(J \) has a global minimum, which is reached when \(\nabla J(x) = 0 \)

This is equivalent to \(Qx = c \), which corresponds to a linear system of equations for the coefficients \(A_n \) and \(B_n \), stored in the vector \(x \)
Minimisation of the functional and linear system

Defining the vectors \(x^{(A)} = (A_0 \ A_1 \ \ldots \ A_N)^T \in \mathbb{R}^{N+1} \) and
\(x^{(B)} = (B_{-1} \ B_0 \ \ldots \ B_N)^T \in \mathbb{R}^{N+2} \)

and the matrices and vectors by blocks

\[
Q = \begin{bmatrix}
 Q^{(AA)} & Q^{(AB)} \\
 Q^{(AB)^T} & Q^{(BB)}
\end{bmatrix}
\]

\[
x = \begin{bmatrix}
 x^{(A)} \\
 x^{(B)}
\end{bmatrix}
\]

\[
c = \begin{bmatrix}
 c^{(A)} \\
 c^{(B)}
\end{bmatrix}
\]

the quadratic functional is reexpressed as \(J(x) = \frac{1}{2} x^T Q x - x^T c \)

As the matrix \(Q \) is symmetric and positive definite, \(J \) has a global minimum, which is reached when \(\nabla J(x) = 0 \)

This is equivalent to \(Qx = c \), which corresponds to a linear system of equations for the coefficients \(A_n \) and \(B_n \), stored in the vector \(x \)
Minimisation of the functional and linear system

Defining the vectors \(x^{(A)} = (A_0 \ A_1 \ \ldots \ A_N)^T \in \mathbb{R}^{N+1} \) and \(x^{(B)} = (B_{-1} \ B_0 \ \ldots \ B_N)^T \in \mathbb{R}^{N+2} \)

and the matrices and vectors by blocks

\[
Q = \begin{bmatrix}
Q^{(AA)} & Q^{(AB)} \\
Q^{(AB)} & Q^{(BB)}
\end{bmatrix}
\quad x = \begin{bmatrix}
x^{(A)} \\
x^{(B)}
\end{bmatrix}
\quad c = \begin{bmatrix}
c^{(A)} \\
c^{(B)}
\end{bmatrix}
\]

the quadratic functional is reexpressed as \(J(x) = \frac{1}{2} x^T Q x - x^T c \)

As the matrix \(Q \) is symmetric and positive definite, \(J \) has a global minimum, which is reached when \(\nabla J(x) = 0 \)

This is equivalent to \(Qx = c \), which corresponds to a linear system of equations for the coefficients \(A_n \) and \(B_n \), stored in the vector \(x \)
Minimisation of the functional and linear system

Defining the vectors $x^{(A)} = (A_0 \ A_1 \ \ldots \ A_N)^T \in \mathbb{R}^{N+1}$ and $x^{(B)} = (B_{-1} \ B_0 \ \ldots \ B_N)^T \in \mathbb{R}^{N+2}$

and the matrices and vectors by blocks

$$Q = \begin{bmatrix} Q^{(AA)} & Q^{(AB)} \\ Q^{(AB)^T} & Q^{(BB)} \end{bmatrix} \quad x = \begin{bmatrix} x^{(A)} \\ x^{(B)} \end{bmatrix} \quad c = \begin{bmatrix} c^{(A)} \\ c^{(B)} \end{bmatrix}$$

the quadratic functional is reexpressed as $J(x) = \frac{1}{2} x^T Q x - x^T c$

As the matrix Q is symmetric and positive definite, J has a global minimum, which is reached when $\nabla J(x) = 0$

This is equivalent to $Qx = c$, which corresponds to a linear system of equations for the coefficients A_n and B_n, stored in the vector x.

E. Godoy

INGMAT

A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit
Minimisation of the functional and linear system

Defining the vectors \(x^{(A)} = (A_0 \ A_1 \ \ldots \ A_N)^T \in \mathbb{R}^{N+1} \) and
\(x^{(B)} = (B_{-1} \ B_0 \ \ldots \ B_N)^T \in \mathbb{R}^{N+2} \)

and the matrices and vectors by blocks

\[
Q = \begin{bmatrix}
Q^{(AA)} & Q^{(AB)} \\
Q^{(AB)} & Q^{(BB)}
\end{bmatrix} \quad \begin{bmatrix}
x^{(A)} \\
x^{(B)}
\end{bmatrix} \quad \begin{bmatrix}
c^{(A)} \\
c^{(B)}
\end{bmatrix}
\]

the quadratic functional is reexpressed as
\(J(x) = \frac{1}{2} x^T Q x - x^T c \)

As the matrix \(Q \) is symmetric and positive definite, \(J \) has a global minimum, which is reached when \(\nabla J(x) = 0 \)

This is equivalent to \(Q x = c \), which corresponds to a linear system of equations for the coefficients \(A_n \) and \(B_n \), stored in the vector \(x \).
Solution of the linear system

To solve

\[
\begin{bmatrix}
Q^{(AA)} & Q^{(AB)} \\
[Q^{(AB)}]^T & Q^{(BB)}
\end{bmatrix}
\begin{bmatrix}
x^{(A)} \\
x^{(B)}
\end{bmatrix}
=
\begin{bmatrix}
c^{(A)} \\
c^{(B)}
\end{bmatrix}
\]

we use the Schur-Banachiewicz blockwise inversion formula:

\[
x^{(A)} = ([Q^{(AA)}]^{-1} + [Q^{(AA)}]^{-1} Q^{(AB)} [\tilde{Q}^{(BB)}]^{-1} [Q^{(AB)}]^T [Q^{(AA)}]^{-1}) c^{(A)}
- [Q^{(AA)}]^{-1} Q^{(AB)} [\tilde{Q}^{(BB)}]^{-1} c^{(B)}
\]

\[
x^{(B)} = -[\tilde{Q}^{(BB)}]^{-1} [Q^{(AB)}]^T [Q^{(AA)}]^{-1} c^{(A)} + [\tilde{Q}^{(BB)}]^{-1} c^{(B)}
\]

where

\[
\tilde{Q}^{(BB)} = Q^{(BB)} - [Q^{(AB)}]^T [Q^{(AA)}]^{-1} Q^{(AB)}
\]

is the Schur complement of \(Q^{(BB)}\) in \(Q\).
Solution of the linear system

To solve

\[
\begin{bmatrix}
Q^{(AA)} & Q^{(AB)} \\
[Q^{(AB)}]^T & Q^{(BB)}
\end{bmatrix}
\begin{bmatrix}
x^{(A)} \\
x^{(B)}
\end{bmatrix}
= \begin{bmatrix}
c^{(A)} \\
c^{(B)}
\end{bmatrix}
\]

we use the Schur-Banachiewicz blockwise inversion formula:

\[
x^{(A)} = ([Q^{(AA)}]^{-1} + [Q^{(AA)}]^{-1} Q^{(AB)} \tilde{Q}(BB)^{-1} [Q^{(AB)}]^T [Q^{(AA)}]^{-1}) c^{(A)} \\
- [Q^{(AA)}]^{-1} Q^{(AB)} \tilde{Q}(BB)^{-1} c^{(B)}
\]

\[
x^{(B)} = -[\tilde{Q}(BB)]^{-1} [Q^{(AB)}]^T [Q^{(AA)}]^{-1} c^{(A)} + [\tilde{Q}(BB)]^{-1} c^{(B)}
\]

where

\[
\tilde{Q}(BB) = Q^{(BB)} - [Q^{(AB)}]^T [Q^{(AA)}]^{-1} Q^{(AB)}
\]

is the Schur complement of \(Q^{(BB)}\) in \(Q\).
Solution of the linear system

To solve

\[
\begin{bmatrix}
Q^{(AA)} & Q^{(AB)} \\
Q^{(AB)} & Q^{(BB)}
\end{bmatrix}
\begin{bmatrix}
x^{(A)} \\
x^{(B)}
\end{bmatrix}
= \begin{bmatrix}
c^{(A)} \\
c^{(B)}
\end{bmatrix}
\]

we use the Schur-Banachiewicz blockwise inversion formula:

\[
x^{(A)} = ([Q^{(AA)}]^{-1} + [Q^{(AA)}]^{-1} Q^{(AB)} [\tilde{Q}^{(BB)}]^{-1} [Q^{(AB)}]^{T} [Q^{(AA)}]^{-1}) c^{(A)} \\
\quad - [Q^{(AA)}]^{-1} Q^{(AB)} [\tilde{Q}^{(BB)}]^{-1} c^{(B)}
\]

\[
x^{(B)} = -[\tilde{Q}^{(BB)}]^{-1} [Q^{(AB)}]^{T} [Q^{(AA)}]^{-1} c^{(A)} + [\tilde{Q}^{(BB)}]^{-1} c^{(B)}
\]

where

\[
\tilde{Q}^{(BB)} = Q^{(BB)} - [Q^{(AB)}]^{T} [Q^{(AA)}]^{-1} Q^{(AB)}
\]

is the Schur complement of \(Q^{(BB)} \) in \(Q \).
Solution of the linear system

To evaluate the **Schur-Banachiewicz blockwise inversion formula** it is required to invert two matrices:

- The symmetric tridiagonal matrix $Q^{(AA)}$: It is efficiently inverted using the Thomas algorithm for tridiagonal systems.
- The positive definite symmetric full matrix $\tilde{Q}^{(BB)}$: It is efficiently inverted with the aid of its Cholesky factorisation.

The evaluation of the formula yields approximate values of coefficients A_0, A_1, \ldots, A_N and $B_{-1}, B_0, B_1, \ldots, B_N$.

Substituting these coefficients in the expressions of v and σ as truncated series, we obtain explicitly the semi-analytical solution.
Solution of the linear system

To evaluate the **Schur-Banachiewicz blockwise inversion formula** it is required to invert two matrices:

- The **symmetric tridiagonal matrix** $Q^{(AA)}$: It is efficiently inverted using the **Thomas algorithm** for tridiagonal systems.

- The **positive definite symmetric full matrix** $\tilde{Q}^{(BB)}$: It is efficiently inverted with the aid of its **Cholesky factorisation**.

The evaluation of the formula yields approximate values of coefficients A_0, A_1, \ldots, A_N and $B_{-1}, B_0, B_1, \ldots, B_N$.

Substituting these coefficients in the expressions of v and σ as truncated series, we obtain explicitly the **semi-analytical solution**.
Solution of the linear system

To evaluate the **Schur-Banachiewicz blockwise inversion formula** it is required to invert two matrices:

- The **symmetric tridiagonal matrix** $Q^{(AA)}$: It is efficiently inverted using the Thomas algorithm for tridiagonal systems.

- The **positive definite symmetric full matrix** $\tilde{Q}^{(BB)}$: It is efficiently inverted with the aid of its Cholesky factorisation.

The evaluation of the formula yields approximate values of coefficients A_0, A_1, \ldots, A_N and $B_{-1}, B_0, B_1, \ldots, B_N$. Substituting these coefficients in the expressions of v and σ as truncated series, we obtain explicitly the semi-analytical solution.
Solution of the linear system

To evaluate the Schur-Banachiewicz blockwise inversion formula it is required to invert two matrices:

- The symmetric tridiagonal matrix $Q^{(AA)}$: It is efficiently inverted using the Thomas algorithm for tridiagonal systems.
- The positive definite symmetric full matrix $\tilde{Q}^{(BB)}$: It is efficiently inverted with the aid of its Cholesky factorisation.

The evaluation of the formula yields approximate values of coefficients A_0, A_1, \ldots, A_N and $B_{-1}, B_0, B_1, \ldots, B_N$.

Substituting these coefficients in the expressions of v and σ as truncated series, we obtain explicitly the semi-analytical solution.
Solution of the linear system

To evaluate the Schur-Banachiewicz blockwise inversion formula it is required to invert two matrices:

- The symmetric tridiagonal matrix $Q^{(AA)}$: It is efficiently inverted using the Thomas algorithm for tridiagonal systems.
- The positive definite symmetric full matrix $\tilde{Q}^{(BB)}$: It is efficiently inverted with the aid of its Cholesky factorisation.

The evaluation of the formula yields approximate values of coefficients A_0, A_1, \ldots, A_N and $B_{-1}, B_0, B_1, \ldots, B_N$. Substituting these coefficients in the expressions of v and σ as truncated series, we obtain explicitly the semi-analytical solution.
A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit.
The semi-analytical solution was numerically evaluated using the following parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>h</th>
<th>g</th>
<th>ρ</th>
<th>E</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>600 m</td>
<td>9.81 m/s2</td>
<td>2725 Kg/m3</td>
<td>70.2 GPa</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The Lamé’s constants are obtained through the formulae

$$\lambda = \frac{\nu E}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}$$

A truncation order of $N = 50$ was considered.

Recall that the physical displacement is obtained as $u = u_g + \nu$
The semi-analytical solution was numerically evaluated using the following parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(h)</th>
<th>(g)</th>
<th>(\rho)</th>
<th>(E)</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>600 m</td>
<td>9.81 m/s²</td>
<td>2725 Kg/m³</td>
<td>70.2 GPa</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The Lamé’s constants are obtained through the formulae

\[
\lambda = \frac{\nu E}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}
\]

A truncation order of \(N = 50 \) was considered.

Recall that the physical displacement is obtained as \(u = u_g + \nu \)
Evaluation of the solution

The semi-analytical solution was numerically evaluated using the following parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>h</th>
<th>g</th>
<th>ρ</th>
<th>E</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>600 m</td>
<td>9.81 m/s2</td>
<td>2725 Kg/m3</td>
<td>70.2 GPa</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The Lamé’s constants are obtained through the formulae

$$
\lambda = \frac{\nu E}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}
$$

A truncation order of $N = 50$ was considered

Recall that the physical displacement is obtained as $u = u_g + v$
The semi-analytical solution was numerically evaluated using the following parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>h</th>
<th>g</th>
<th>ρ</th>
<th>E</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>600 m</td>
<td>9.81 m/s²</td>
<td>2725 Kg/m³</td>
<td>70.2 GPa</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The Lamé’s constants are obtained through the formulae

$$\lambda = \frac{\nu E}{(1 + \nu)(1 - 2\nu)}, \quad \mu = \frac{E}{2(1 + \nu)}$$

A truncation order of $N = 50$ was considered.

Recall that the physical displacement is obtained as $u = u_g + \nu$
A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit.
Validation of the solution

To validate the semi-analytical procedure of solution, the same axisymmetric boundary-value problem was numerically solved using the commercial FEM software *COMSOL Multiphysics*.

Dirichlet boundary conditions on the right and bottom boundaries.

Different values of the square length L were considered.

It is expected that as L increases, the numerical solution approaches the semi-analytical solution.
To validate the semi-analytical procedure of solution, the same axisymmetric boundary-value problem was numerically solved using the commercial FEM software *COMSOL Multiphysics*

Dirichlet boundary conditions on the right and bottom boundaries

Different values of the square length L were considered

It is expected that as L increases, the numerical solution approaches the semi-analytical solution
Validation of the solution

To validate the semi-analytical procedure of solution, the same axisymmetric boundary-value problem was numerically solved using the commercial FEM software *COMSOL Multiphysics*.

Dirichlet boundary conditions on the right and bottom boundaries

Different values of the square length L were considered.

It is expected that as L increases, the numerical solution approaches the semi-analytical solution.
Validation of the solution

To validate the semi-analytical procedure of solution, the same axisymmetric boundary-value problem was numerically solved using the commercial FEM software COMSOL Multiphysics.

Dirichlet boundary conditions on the right and bottom boundaries

Different values of the square length L were considered

It is expected that as L increases, the numerical solution approaches the semi-analytical solution.
Validation of the solution

To validate the semi-analytical procedure of solution, the same axisymmetric boundary-value problem was numerically solved using the commercial FEM software *COMSOL Multiphysics*.

Dirichlet boundary conditions on the right and bottom boundaries

Different values of the square length L were considered

It is expected that as L increases, the numerical solution approaches the semi-analytical solution.
Plots of the semi-analytical and numerical solution

Displacements on Γ_h obtained by the semi-analytical procedure and numerically by FEM for different values of L
A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit
Conclusions

- A semi-analytical procedure was developed to solve the problem of an elastic half-space with a hemispherical pit.
- The procedure imposes numerically boundary conditions on the hemispherical pit to a previously obtained fully analytical solution in series form.
- This numerical imposition is performed by minimising a quadratic functional of energy, leading to a symmetric and positive definite linear system for the coefficients of the series, whose structure allows to solve it efficiently.
- The obtained semi-analytical solution was evaluated, numerical results were provided and a validation procedure was carried out.

E. Godoy INGMAT

A semi-analytical method to solve the equilibrium equations of axisymmetric elasticity in a half-space with a hemispherical pit.
Conclusions

- A semi-analytical procedure was developed to solve the problem of an elastic half-space with a hemispherical pit.
- The procedure imposes numerically boundary conditions on the hemispherical pit to a previously obtained fully analytical solution in series form.
- This numerical imposition is performed by minimising a quadratic functional of energy, leading to a symmetric and positive definite linear system for the coefficients of the series, whose structure allows to solve it efficiently.
- The obtained semi-analytical solution was evaluated, numerical results were provided and a validation procedure was carried out.
Conclusions

- A semi-analytical procedure was developed to solve the problem of an elastic half-space with a hemispherical pit.

- The procedure imposes numerically boundary conditions on the hemispherical pit to a previously obtained fully analytical solution in series form.

- This numerical imposition is performed by minimising a quadratic functional of energy, leading to a symmetric and positive definite linear system for the coefficients of the series, whose structure allows to solve it efficiently.

- The obtained semi-analytical solution was evaluated, numerical results were provided and a validation procedure was carried out.
Conclusions

- A semi-analytical procedure was developed to solve the problem of an elastic half-space with a hemispherical pit.

- The procedure imposes numerically boundary conditions on the hemispherical pit to a previously obtained fully analytical solution in series form.

- This numerical imposition is performed by minimising a quadratic functional of energy, leading to a symmetric and positive definite linear system for the coefficients of the series, whose structure allows to solve it efficiently.

- The obtained semi-analytical solution was evaluated, numerical results were provided and a validation procedure was carried out.
Conclusions

- A semi-analytical procedure was developed to solve the problem of an elastic half-space with a hemispherical pit.
- The procedure imposes numerically boundary conditions on the hemispherical pit to a previously obtained fully analytical solution in series form.
- This numerical imposition is performed by minimising a quadratic functional of energy, leading to a symmetric and positive definite linear system for the coefficients of the series, whose structure allows to solve it efficiently.
- The obtained semi-analytical solution was evaluated, numerical results were provided and a validation procedure was carried out.
Perspectives for future work

- Calculation of an axisymmetric DtN (Dirichlet-to-Neumann) operator for the elastic half-space
- Coupling of this DtN operator with FEM 2D to treat pits with geometries other than hemispherical but still axisymmetric
- Calculation of a non-axisymmetric DtN operator for the elastic half-space
- Coupling of this DtN operator with FEM 3D to treat pits with non-axisymmetric geometry
Perspectives for future work

- Calculation of an axisymmetric DtN (Dirichlet-to-Neumann) operator for the elastic half-space
- Coupling of this DtN operator with FEM 2D to treat pits with geometries other than hemispherical but still axisymmetric
- Calculation of a non-axisymmetric DtN operator for the elastic half-space
- Coupling of this DtN operator with FEM 3D to treat pits with non-axisymmetric geometry
Calculation of an axisymmetric DtN (Dirichlet-to-Neumann) operator for the elastic half-space

Coupling of this DtN operator with FEM 2D to treat pits with geometries other than hemispherical but still axisymmetric

Calculation of a non-axisymmetric DtN operator for the elastic half-space

Coupling of this DtN operator with FEM 3D to treat pits with non-axisymmetric geometry
PERSPECTIVES FOR FUTURE WORK

- Calculation of an axisymmetric DtN (Dirichlet-to-Neumann) operator for the elastic half-space
- Coupling of this DtN operator with FEM 2D to treat pits with geometries other than hemispherical but still axisymmetric
- Calculation of a non-axisymmetric DtN operator for the elastic half-space
- Coupling of this DtN operator with FEM 3D to treat pits with non-axisymmetric geometry
Perspectives for future work

- Calculation of an axisymmetric DtN (Dirichlet-to-Neumann) operator for the elastic half-space
- Coupling of this DtN operator with FEM 2D to treat pits with geometries other than hemispherical but still axisymmetric
- Calculation of a non-axisymmetric DtN operator for the elastic half-space
- Coupling of this DtN operator with FEM 3D to treat pits with non-axisymmetric geometry
Thanks for your attention!

Any question?