PetIGA
A Framework for High Performance Isogeometric Analysis

Lisandro Dalcin1,3, Nathaniel Collier2, Adriano Côrtes3, Victor M. Calo3

1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Santa Fe, Argentina

2Oak Ridge National Laboratory (ORNL), Knoxville, United States

3King Abdullah University of Science and Technology (KAUST)
Thuwal, Saudi Arabia

Third International Workshop on Multiphysics, Multiscale, and Optimization Problems
Bilbao, Spain – May 22-23, 2014
What is PetIGA?

PetIGA is an implementation of isogeometric analysis built on top of PETSc (the Portable, Extensible Toolkit for Scientific Computation).

$$\text{PetIGA} = \text{Pet} \ (\text{PETSc}) + \text{IGA} \ (\text{isogeometric analysis})$$
IGA: FEM + B-Spline/NURBS

\[
p = 2 \ C^0
\]

\[
p = 2 \ C^1
\]

\[
p = 3 \ C^0
\]

\[
p = 3 \ C^2
\]
Portable, Extensible Toolkit for Scientific Computation

We base our framework on PETSc

- Eases development of large-scale scientific codes
- Provides a rich environment for prototyping
- Grants parallelism with little interaction with MPI

Solving time-dependent, nonlinear PDE-based problems

- Requires specification of two user-defined functions:
 1. Residual (or Function) evaluation (Vec)
 2. Tangent (or Jacobian) evaluation (Mat)
- Rest is handled inside a hierarchy of solvers:
 - Timestepping loop (TS)
 - Nonlinear loop (SNES)
 - Linear loop (KSP)
 - Preconditioner (PC)
Main Routine

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Preconditioners (PC)

Application

Initialization

Function Evaluation

Jacobian Evaluation

Postprocessing

PETSc
Parallel implementation

How it works …

Structured grid

Processors

\[P_0 \quad P_1 \]
\[P_2 \quad P_3 \]
Parallel implementation

Natural vs. Global numbering

<table>
<thead>
<tr>
<th>Natural numbering</th>
<th>Global numbering</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 31 32</td>
<td>24 25 26</td>
</tr>
<tr>
<td>24 25 26</td>
<td>27 28 29</td>
</tr>
<tr>
<td>18 19 20</td>
<td>21 22 23</td>
</tr>
<tr>
<td>12 13 14</td>
<td>15 16 17</td>
</tr>
<tr>
<td>6 7 8</td>
<td>9 10 11</td>
</tr>
<tr>
<td>0 1 2</td>
<td>3 4 5</td>
</tr>
<tr>
<td></td>
<td>33 34 35</td>
</tr>
<tr>
<td></td>
<td>21 22 23</td>
</tr>
<tr>
<td></td>
<td>27 28 29</td>
</tr>
<tr>
<td></td>
<td>15 16 17</td>
</tr>
<tr>
<td></td>
<td>12 13 14</td>
</tr>
<tr>
<td></td>
<td>9 10 11</td>
</tr>
<tr>
<td></td>
<td>0 1 2</td>
</tr>
</tbody>
</table>
Parallel implementation

Global vs. Local numbering: C^0 case

<table>
<thead>
<tr>
<th>24</th>
<th>25</th>
<th>26</th>
<th>33</th>
<th>34</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Global numbering

<table>
<thead>
<tr>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>X</td>
</tr>
</tbody>
</table>

Local numbering

<table>
<thead>
<tr>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Parallel implementation

Global vs. Local numbering: C^1 case

<table>
<thead>
<tr>
<th>24 25 26</th>
<th>33 34 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 22 23</td>
<td>30 31 32</td>
</tr>
<tr>
<td>18 19 20</td>
<td>27 28 29</td>
</tr>
<tr>
<td>6 7 8</td>
<td>15 16 17</td>
</tr>
<tr>
<td>3 4 5</td>
<td>12 13 14</td>
</tr>
<tr>
<td>0 1 2</td>
<td>9 10 11</td>
</tr>
</tbody>
</table>

Global numbering

<table>
<thead>
<tr>
<th>X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 21 22</td>
</tr>
<tr>
<td>15 16 17</td>
</tr>
<tr>
<td>10 11 12</td>
</tr>
<tr>
<td>5 6 7</td>
</tr>
<tr>
<td>0 1 2</td>
</tr>
</tbody>
</table>

Local numbering
PetIGA: basic usage

- Initialize the IGA context

```c
IGA iga;
IGACreate(PETSC_COMM_WORLD,&iga);
IGASetDof(iga,1); // scalar problem
IGASetDim(iga,2); // in 2D
IGASetFromOptions(iga);
IGASetUp(iga);
```
PetIGA: basic usage

- Set boundary conditions

  ```c
  PetscInt axis, side;
  for (axis=0; axis<2; axis++)
    for (side=0; side<2; side++)
      IGASetBoundaryValue(iga, axis, side, 0, 0.0);
  ```

- Specify routine to evaluate at quadrature points.

  ```c
  IGASetFormSystem(iga, Poisson, NULL);
  ```
int Poisson(IGAPoint p, double K[], double F[], void *ctx) {
 int a, b, nen = p->nen;
 double *N0 = (typeof(N0)) p->shape[0];
 double (*N1)[2] = (typeof(N1)) p->shape[1];

 for (a=0; a<nen; a++) {
 for (b=0; b<nen; b++)
 K[a*nen+b] = N1[a][0]*N1[b][0] +
 N1[a][1]*N1[b][1];
 F[a] = N0[a] * 1.0; // unit body force
 }
 return 0;
}
Get matrix and vectors from the IGA context

```c
Mat A;
IGACreateMat(iga,&A);
Vec x,b;
IGACreateVec(iga,&x);
IGACreateVec(iga,&b);
```

Assemble LHS matrix and RHS vector

```c
IGAComputeSystem(iga,A,b);
```
PetIGA: basic usage

- Create and setup linear solver

  ```c
  KSP  ksp;
  IGACreateKSP(iga,&ksp);
  KSPSetOperators(ksp,A,A);
  KSPSetFromOptions(ksp);
  ```

- Solve linear system

  ```c
  KSPSolve(ksp,b,x);
  ```

- Write geometry and solution to disk

  ```c
  IGAWrite(iga,"PoissonGeometry.dat");
  IGAWriteVec(iga,x,"PoissonSolution.dat");
  ```
$ mpiexec -n 4 ./CahnHilliard2D \
 -ts_type alpha -ts_max_time 0.1 \
 -snes_type ls -snes_rtol 1e-6 \
 -ksp_type gmres -ksp_rtol 1e-6 -pc_type asm \
 -ts_monitor -snes_monitor -ksp_monitor

...
Runtime monitoring solution evolution

PETSc has basic 2D visualization capabilities to aid debugging

$ mpiexec -n 4 ./NSK2D -ts_monitor_solution

Plot control variables on control mesh (no spline interpolation)
PETSc can approximate Jacobians

1. Code residual function (Gauss point evaluation)
2. Approximate Jacobian with \textit{finite differences}
 2.1 Use a \textbf{matrix free} approach (\texttt{-snes mf})
 \begin{itemize}
 \item Allows checking bug-free residual function implementation
 \item Potentially slow, no black-box preconditioner available
 \end{itemize}
 2.2 Use \textbf{colored finite differences} (\texttt{-snes_fd_color})
 \begin{itemize}
 \item Computes sparse matrix with approximate Jacobian explicitly
 \item This alternative allows black-box preconditioning
 \item Still slow for large problems
 \end{itemize}
Practical approach to nonlinear problems

PETSc can check hand-coded Jacobians

1. Code residual function (Gauss point evaluation)
2. Code Jacobian function (Gauss point evaluation)
3. Check Jacobian correctness using built-in facilities
 ▶ Approximate Jacobian with matrix-free (-snes_mf_operator)
 ▶ Invert computed Jacobian as a preconditioner (-pc_type lu)

If Jacobian is correct, KSP converges in one iteration
Geometry handling

Creation of initial (simple?) geometries is a nontrivial task

▶ Volume NURBS representations are cumbersome and are (mostly) developed manually
▶ Bridging the CAD/CAE gap is on going

Geometry handling made easier by:

1. Running in parametric mode if possible – avoid mapping cubes into cubes

2. Creating Python interfaces to low-level NURBS routines (knot insertion, degree elevation) – Python scripting is very flexible

3. Using binary files that PETSc reads/writes in parallel
 ▶ Sidesteps issue of parallel I/O
 ▶ No need to manually partition the domain
from igakit.cad import *

C0 = circle(radius=1)
C1 = circle(radius=2)

annulus = ruled(C0, C1)

pipe = extrude(annulus,
 displ=3.0, axis=2,
).reverse(2)

elbow = revolve(annulus,
 point=(3,0,0),
 axis=(0,-1,0),
 angle=Pi/2)

bentpipe = join(pipe, elbow, axis=2)
Solver Scalability

- Incompressible Navier–Stokes with VMS turbulence modeling
- 10 time steps × 2 Newton steps × 30 GMRES iterations
- B-spline space: \(p = 2, \ C^1 \); geometrical mapping: identity

Parallel efficiency, single node (Lonestar, TACC)

<table>
<thead>
<tr>
<th>mesh</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32^3)</td>
<td>100%</td>
<td>98%</td>
<td>91%</td>
<td>84%</td>
<td>85%</td>
<td>77%</td>
<td>81%</td>
</tr>
<tr>
<td>(64^3)</td>
<td>100%</td>
<td>93%</td>
<td>85%</td>
<td>77%</td>
<td>79%</td>
<td>77%</td>
<td></td>
</tr>
</tbody>
</table>

Parallel efficiency, multiple node (Lonestar, TACC)

<table>
<thead>
<tr>
<th>mesh</th>
<th>64</th>
<th>216</th>
<th>512</th>
<th>1000</th>
<th>1728</th>
<th>4104</th>
</tr>
</thead>
<tbody>
<tr>
<td>(120^3)</td>
<td>100%</td>
<td>102%</td>
<td>100%</td>
<td>97%</td>
<td>87%</td>
<td>74%</td>
</tr>
<tr>
<td>(168^3)</td>
<td>100%</td>
<td>100%</td>
<td>90%</td>
<td>91%</td>
<td>93%</td>
<td>74%</td>
</tr>
</tbody>
</table>
Applications: Elasticity
Applications: Navier-Stokes + VMS
Applications: Cahn-Hilliard equation
Applications: Navier-Stokes-Korteweg equation
Applications: Phase-Field Crystal equation
Conclusions

- Propose framework for solving problems using IGA
- Reuse PETSc data structures to simplify parallelism
- Acceptable scaling up to 4K processors
- Ongoing work: support for H-div/H-curl conforming spaces
- To do: extend to multipatch domains
Source code:

- https://bitbucket.org/dalcinl/petiga
- https://bitbucket.org/dalcinl/igakit

Tutorial (in development):

- https://petiga-igakit.readthedocs.org/

Questions & Comments:

- dalcinl@gmail.com
- nathaniel.collier@gmail.com
- adrimacortes@gmail.com