Recent result on porous medium equations with nonlocal pressure

Diana Stan

Basque Center of Applied Mathematics

joint work with Félix del Teso and Juan Luis Vázquez

November 2016

4th workshop on Fractional Calculus, Probability and Non-local Operators BCAM
Preliminaries

- Physical Model: a continuum (fluid or population) with density distribution $u(x, t) \geq 0$ and velocity field $v(x, t)$.
- Continuity equation $u_t = \nabla (u \cdot v)$.
- Darcy’s law: v derives from a potential (fluids in porous media): $v = -\nabla P$.
- The relation between P and u: for gasses in porous media, Leibenzon and Muskat (1930) derived a relation in the form of the state law

$$P = f(u),$$

where f is a nondecreasing scalar function. $f(u)$ is linear when the flow is isothermal and is a higher power of u when the flow is adiabatic, i.e. $f(u) = cu^{m-1}$ with $c > 0$ and $m > 1$.

- The linear dependence $f(u) = cu \rightarrow$ Boussinesq (1903) modelling water infiltration in an almost horizontal soil layer $\rightarrow u_t = c\Delta u^2$.
- The model $u_t = (c/m) \Delta u^m$.
- The Porous Medium Equation $u_t = \Delta u^m$.
Porous Medium Equation / Fast Diffusion Equation

PME/FDE \[u_t(x, t) = \Delta u^m(x, t) \quad x \in \mathbb{R}^N, \ t > 0 \]

Self Similar solutions: \[U(x, t) = t^{-\frac{N}{N(m-1)+2}} F(|x| t^{-\frac{1}{N(m-1)+2}}) \]

Slow Diffusion
- \(m > 1 \), Profile \(\sim (R^2 - |y|^2)^{1/(m-1)} \)

Fast Diffusion
- \(m < 1 \), Profile \(\sim (R^2 + |y|^2)^{-1/(1-m)} \)
Definition of the Fractional Laplacian

Several equivalent definitions of the nonlocal operator \((-\Delta)^s\) (Laplacian of order 2s):

1. **Fourier transform** \(\widehat{(-\Delta)^s g(\xi)} = (2\pi|\xi|)^{2s}\hat{g}(\xi).\)

 [can be used for positive and negative values of \(s\)]

2. **Singular Kernel** \((-\Delta)^s g(x) = c_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{g(x) - g(z)}{|x - z|^{N+2s}} dz\)

 [can be used for \(0 < s < 1\), where \(c_{N,s}\) is a normalization constant.]

3. **Heat semigroup**

 \[(-\Delta)^s g(x) = \frac{1}{\Gamma(-s)} \int_0^\infty \left(e^{t\Delta} g(x) - g(x) \right) \frac{dt}{t^{1+s}}.\]

4. **Generator of the 2s-stable Levy process:**

 \((-\Delta)^s g(x) = \lim_{h \to 0} \frac{1}{h} \mathbb{E}[g(x) - g(x + X_h)].\)
Porous medium with nonlocal pressure

- The pressure $p = (\Delta)^{-s}(u)$, $0 < s < 1$:

$$(-\Delta)^{-s}(u) = K_s * u = \int_{\mathbb{R}^N} \frac{u(y)}{|x - y|^{N-2s}} \, dy, \quad K_s(x) = C_{N,s}|x|^{-(N-2s)}.$$

- The model:

$$\partial_t u = \nabla \cdot (u \nabla p), \quad p = (-\Delta)^{-s}(u).$$

Difficulties: no maximum principle, no uniqueness.

References:

- Existence and finite speed of propagation: Caffarelli and Vázquez, ARMA 2011.
- Asymptotic behavior: Caffarelli and Vázquez, DCDS 2011.
- Regularity: Caffarelli, Soria and Vázquez, JEMS 2013.
- Exponential convergence towards stationary states in 1D: Carrillo, Huang, Santos and Vázquez, JDE 2015.
Porous Medium with nonlocal pressure

\[\partial_t u = \nabla \cdot (u^{m-1} \nabla p), \quad p = (-\Delta)^{-s}(u). \quad (P) \]

for \(x \in \mathbb{R}^N, \ t > 0, \ N \geq 1. \) We take \(m > 1, \ 0 < s < 1 \) and \(u(x, t) \geq 0. \)

The initial data \(u(x, 0) = u_0(x) \) for \(x \in \mathbb{R}^N, \ u_0 : \mathbb{R}^N \to [0, \infty) \) is assumed to be a bounded integrable function.

Infinite vs. finite speed of propagation

Figure: $m = 1.5, s = 0.25$

Figure: $m = 2, s = 0.25$

Figure: $m = 1.5, s = 0.75$

Figure: $m = 2, s = 0.75$
New idea: existence for all \(m > 1 \) when \(u_0 \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \)

We write the problem in the form

\[
 u_t = \nabla \cdot (u^{m-1} \nabla (-\Delta)^{-1} (-\Delta)^{1-s} u)
\]

Then, formally:

\[
 \int_{\mathbb{R}^N} u_0^p(x) \, dx - \int_{\mathbb{R}^N} u(x, t)^p \, dx = C_1 \int_0^t \int_{\mathbb{R}^N} u^{m+p-2} (-\Delta)^{1-s} u \, dx \, dt \\
 \geq C_2 \int_0^t \int_{\mathbb{R}^N} \left| (-\Delta)^{\frac{1-s}{2}} u^{\frac{m+p-2}{2}} \right|^2 \, dx \, dt
\]

by the Stroock-Varoupolos Inequality.

Here \(C_1 = (p - 1)/(m + p - 2) \).

\[\text{D. Stan, F. del Teso and J.L. Vázquez,} \text{ Existence of weak solutions for a general porous medium equation with nonlocal pressure, arXiv:1609.05139.}\]
New approximation method

\[u_t = \nabla \cdot (u^{m-1} \nabla (-\Delta)^{-1} (-\Delta)^{1-s} u) \] \hspace{1cm} (P)

Then we approximate the operator \(\mathcal{L} = (-\Delta)^{1-s} \) by

\[\mathcal{L}^{1-s}_\epsilon (u)(x) = C_{N,1-s} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{(|x-y|^2 + \epsilon^2)^{\frac{N+2-2s}{2}}} \, dy. \]

- **Convergence:** \(\mathcal{L}^{1-s}_\epsilon [u] \to (-\Delta)^{1-s} u \) pointwise in \(\mathbb{R}^N \) as \(\epsilon \to 0 \)

- **Generalized Stroock-Varopoulos Inequality for \(\mathcal{L}^s_\epsilon \):** Let \(u \in H^s_\epsilon (\mathbb{R}^N) \). Let \(\psi : \mathbb{R} \to \mathbb{R} \) such that \(\psi \in C^1(\mathbb{R}) \) and \(\psi' \geq 0 \). Then

\[\int_{\mathbb{R}^N} \psi(u) \mathcal{L}^s_\epsilon [u] \, dx \geq \int_{\mathbb{R}^N} \left[(\mathcal{L}^s_\epsilon)^{\frac{1}{2}} [\psi(u)] \right]^2 \, dx, \]

where \(\psi' = (\Psi')^2 \).
Approximating problem

We consider the approximating problem \((P_{\epsilon \delta \mu R})\)

\[
\begin{aligned}
(U_1)_t &= \delta \Delta U_1 + \nabla \cdot ((U_1 + \mu)^{m-1} \nabla (-\Delta)^{-1} \mathcal{L}_{\epsilon}^{1-s}[U_1]) \\
U_1(x, 0) &= \tilde{u}_0(x) \\
U_1(x, t) &= 0
\end{aligned}
\]

for \((x, t) \in B_R \times (0, T)\),
for \(x \in B_R\),
for \(x \in \partial B_R\), \(t \in (0, T)\),

with parameters \(\epsilon, \delta, \mu, R > 0\).

- **Existence of solutions of** \((P_{\epsilon \delta \mu R}) \rightarrow \) fixed points of the following map given by the Duhamel’s formula

\[
\mathcal{T}(v)(x, t) = e^{\delta t \Delta} u_0(x) + \int_0^t \nabla e^{\delta (t-\tau) \Delta} \cdot G(v)(x, \tau) d\tau,
\]

where \(G(v) = (v + \mu)^{m-1} \nabla (-\Delta)^{-1} \mathcal{L}_{\epsilon}^{s}[v]\) and \(e^{t \Delta}\) is the Heat Semigroup.

- **Existence of solutions of** \((P)\)

\[
(P_{\epsilon \delta \mu R})_{\epsilon \rightarrow 0} \rightarrow (P_{\delta \mu R})_{R \rightarrow \infty} \rightarrow (P_{\delta \mu})_{\mu \rightarrow 0} \rightarrow (P_{\delta})_{\epsilon \rightarrow 0} \rightarrow (P).
\]
Existence of weak solutions for $m > 1$

Theorem. Let $1 < m < \infty$, $N \geq 1$, and let $u_0 \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$ and nonnegative.

Main results:

- **Existence of a weak solution** $u \geq 0$ of Problem (PMFP) with initial data u_0.

- **Conservation of mass:** For all $0 < t < T$ we have
 \[\int_{\mathbb{R}^N} u(x, t) \, dx = \int_{\mathbb{R}^N} u_0(x) \, dx. \]

- **L^∞ estimate:** $\| u(\cdot, t) \|_\infty \leq \| u_0 \|_\infty$, $\forall 0 < t < T$.

- **L^p energy estimate:** For all $1 < p < \infty$ and $0 < t < T$ we have
 \[\int_{\mathbb{R}^N} u^p(x, t) \, dx + \frac{4p(p-1)}{(m+p-1)^2} \int_0^t \int_{\mathbb{R}^N} \left| (-\Delta)^{\frac{1-s}{2}} u \frac{m+p-1}{2} \right|^2 \, dx \, dt \leq \int_{\mathbb{R}^N} u_0^p(x) \, dx. \]

- **Second energy estimate:** For all $0 < t < T$ we have
 \[\frac{1}{2} \int_{\mathbb{R}^N} \left| (-\Delta)^{-\frac{s}{2}} u(t) \right|^2 \, dx + \int_0^t \int_{\mathbb{R}^N} u^{m-1} \left| \nabla (-\Delta)^{-s} u(t) \right|^2 \, dx \, dt \leq \frac{1}{2} \int_{\mathbb{R}^N} \left| (-\Delta)^{-\frac{s}{2}} u_0 \right|^2 \, dx. \]
Smoothing effect

Theorem

Let $u \geq 0$ be a weak solution of Problem (PMFP) with $u_0 \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$, $u_0 \geq 0$, as constructed before. Then

$$\|u(\cdot, t)\|_{L^\infty(\mathbb{R}^N)} \leq C_{N,s,m,p} t^{-\gamma_p} \|u_0\|_{L^p(\mathbb{R}^N)}^{\delta_p}$$

for all $t > 0$,

where $\gamma_p = \frac{N}{(m-1)N+2p(1-s)}$, $\delta_p = \frac{2p(1-s)}{(m-1)N+2p(1-s)}$.

\Rightarrow Existence of weak solutions for only $u_0 \in M^+(\mathbb{R}^N)$.

\Rightarrow Existence of weak solutions for only $u_0 \in L^1(\mathbb{R}^N)$.
Existence for measure data

Let $1 < m < \infty$, $N \geq 1$ and $\mu \in \mathcal{M}^+(\mathbb{R}^N)$. Then there exists a weak solution $u \geq 0$ of Problem (P) s.t. the smoothing effect holds for $p = 1$ in the following sense:

$$\|u(\cdot, t)\|_{L^\infty(\mathbb{R}^N)} \leq C_{N,s,m} t^{-\gamma} \mu(\mathbb{R}^N)^{\delta} \quad \text{for all} \quad t > 0,$$

where $\gamma = \frac{N}{(m-1)N + 2(1-s)}$, $\delta = \frac{2(1-s)}{(m-1)N + 2(1-s)}$. Moreover,

- **Regularity:**
 $$u \in L^\infty((\tau, \infty) : L^1(\mathbb{R}^N)) \cap L^\infty(\mathbb{R}^N \times (\tau, \infty)) \cap L^\infty((0, \infty) : \mathcal{M}^+(\mathbb{R}^N)) \quad \text{for all} \quad \tau > 0$$

- **Conservation of mass:** For all $0 < t < T$ we have
 $$\int_{\mathbb{R}^N} u(x, t) \, dx = \int_{\mathbb{R}^N} d\mu(x).$$

- **L^p energy estimate:** For all $1 < p < \infty$ and $0 < \tau < t < T$ we have
 $$\int_{\mathbb{R}^N} u^p(x, t) \, dx + \frac{4p(p-1)}{(m+p-1)^2} \int_{\tau}^{t} \int_{\mathbb{R}^N} \left| (-\Delta)^{\frac{1-s}{2}} \frac{u^{m+p-1}}{2} \right|^2 \, dx \, dt \leq \int_{\mathbb{R}^N} u^p(x, \tau) \, dx.$$

- **Second energy estimate:** For all $0 < \tau < t < T$ we have
 $$\frac{1}{2} \int_{\mathbb{R}^N} \left| (-\Delta)^{-\frac{s}{2}} u(t) \right|^2 \, dx + \int_{\tau}^{t} \int_{\mathbb{R}^N} u^{m-1} \left| \nabla (-\Delta)^{-s} u(t) \right|^2 \, dx \, dt \leq \frac{1}{2} \int_{\mathbb{R}^N} \left| (-\Delta)^{-\frac{s}{2}} u(\tau) \right|^2 \, dx.$$
Finite speed of propagation for $m \geq 2$

Theorem

Assume that u_0 has compact support and $u(x, t)$ is bounded for all x, t. Then $u(\cdot, t)$ is compactly supported for all $t > 0$.

If $0 < s < 1/2$ and

$$u_0(x) \leq U_0(x) := a(|x| - b)^2,$$

then there is a constant C large enough s.t.

$$u(x, t) \leq U(x, t) := a(Ct - (|x| - b))^2.$$

For $1/2 \leq s < 2 \Rightarrow C = C(t)$ is an increasing function of t.

Consequence: Free Boundaries!

Figure: $u_0 \leq U_0$

Figure: $u(x, t) \leq U(x, t)$
Theorem. Let \(m \in (1, 2) \), \(s \in (0, 1) \) and \(N = 1 \). Let \(u \) be the solution of Problem (PMFP) with initial data \(u_0 \geq 0 \) radially symmetric and monotone decreasing in \(|x| \). Then \(u(x, t) > 0 \) for all \(t > 0, x \in \mathbb{R} \).

Idea of the proof: Prove that \(v(x, t) = \int_{-\infty}^{x} u(y, t) dy > 0 \) for \(t > 0, x \in \mathbb{R} \).

The integrated problem

\[
\partial_t v = -|v_x|^{m-1}(\Delta)^{1-s} v \quad (IP)
\]

The initial data is given by \(v_0(x) = \int_{-\infty}^{x} u_0(y) dy \).

Initial data \(v_0(x) \) satisfies:
\(v_0(x) = 0 \) for \(x < -\eta \),
\(v_0(x) = M \) for \(x > \eta \),
\(v'_0(x) \geq 0 \) for \(x \in (-\eta, \eta) \).

Figure: Typical initial data for models (P) and (IP).
Fractional Porous Medium Equation

\[U_t + (-\Delta)^s U^m = 0 \quad \text{(FPME)} \]

Porous Medium with Fractional Pressure

\[V_t = \nabla \cdot (V^{\tilde{m}-1} \nabla (-\Delta)^{-\tilde{s}} V) \quad \text{(PMFP)} \]

Self Similar Solutions

\[U(x, t) = t^{-\alpha_1} F_1(t^{-\beta_1} x) \quad \text{with} \]
\[\alpha_1 = N\beta_1, \quad \beta_1 = \frac{1}{N(m-1)+2s}, \]
\[(-\Delta)^s F_1^m = \beta_1 \nabla \cdot (y F_1). \quad \text{(P1)} \]

\[V(x, t) = t^{-\alpha_2} F_2(t^{-\beta_2} x) \quad \text{with} \]
\[\alpha_2 = N\beta_2, \quad \beta_2 = \frac{1}{N(\tilde{m}-1)+2-2s}, \]
\[\nabla \cdot (F_2^{\tilde{m}-1} \nabla (-\Delta)^{-\tilde{s}} F_2) = -\beta_2 \nabla \cdot (y F_2). \quad \text{(P2)} \]

J. L. Vázquez. *Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type.* JEMS 2014.

Theorem. Transformation of self similar solutions

If \(m > N/(N + 2s) \), \(s \in (0, 1) \) and \(F_1 \) is a solution to the profile equation (P1) then

\[F_2(x) = (\beta_1/\beta_2)^{1-m} (F_1(x))^m \]

is a solution to the profile equation (P2) if we put \(\tilde{m} = (2m - 1)/m \) and \(\tilde{s} = 1 - s \).
FPME: The profile $F_1(y)$ is a smooth and positive function in \mathbb{R}^N, it is a radial function, it is monotone decreasing in $r = |y|$ and has a definite decay rate as $|y| \to \infty$, that depends on m. For $m > N/(N + 2s)$, $F_1(y) \sim |y|^{-(N+2s)}$ for large $|y|$. [Vázquez, JEMS 2014]

Consequence:

PMFP: $F_2 > 0$ and $F_2(x) \sim C|x|^{-(N+2-2\bar{s})/(2-\bar{m})}$ if $\bar{m} \in ((N - 2 + 2\bar{s})/N, 2)$.

\[\implies \text{Infinite Propagation for Self-Similar Solutions of the PMFP in } \mathbb{R}^N, \quad N \geq 1, \quad m < 2. \]

Similar results are proved for smaller values of m.
Explicit Solutions

Fractional Porous Medium Equation

\[U_t + (-\Delta)^s U^m = 0 \] \hspace{1cm} (FPME)

\[\forall s \in (0, 1) \rightarrow m = \frac{N+2-2s}{N+2s} > m_c = \frac{N-2s}{N} \]

\[u(x, t) = at^{-N\beta_1} \left(R^2 + |xt^{-\beta_1}|^2 \right)^{-(N+2s)/2} \]

Porous Medium with Fractional Pressure

(II) \[V_t = \nabla \cdot (V \nabla (-\Delta)^{-\tilde{s}} V^\tilde{m}-1), \tilde{m} > 1 \]

Biler, Imbert, Karch [2013]:

\[v(x, t) = at^{-N\beta_2} \left(R^2 - |xt^{-\beta_2}|^2 \right)^{(1-\tilde{s})/(\tilde{m}-1)} \]

Huang [2014]: \[\forall \tilde{s} \in (0, 1) \rightarrow \tilde{m} = \frac{N+6s-2}{N+2s} < 2 \]

\[v(x, t) = at^{-N\beta_2} \left(R^2 + |xt^{-\beta_2}|^2 \right)^{-(N+2\tilde{s})/2} \]
Explicit Solutions

Fractional Porous Medium Equation

\[
U_t + (-\Delta)^s U^m = 0
\]
(FPME)

\[
\forall s \in (0, 1) \rightarrow m = \frac{N+2-2s}{N+2s} > m_c = \frac{N-2s}{N}
\]

\[
u(x, t) = at^{-N\beta_1} \left(R^2 + |xt^{-\beta_1}|^2\right)^{-(N+2s)/2}
\]

Porous Medium with Fractional Pressure

(II) \[
V_t = \nabla \cdot (V \nabla (-\Delta)^{-s} V^{m-1}), \quad \tilde{m} > 1
\]

Biler, Imbert, Karch [2013]:

\[
\nu(x, t) = at^{-N\beta_2} \left(R^2 - |xt^{-\beta_2}|^2\right)^{(1-\tilde{s})/\tilde{m}-1}
\]

(I) \[
V_t = \nabla \cdot (V^{\tilde{m}-1} \nabla (-\Delta)^{-s} V), \quad m < 2
\]

Huang [2014]: \[
\forall \tilde{s} \in (0, 1) \rightarrow \tilde{m} = \frac{N+6\tilde{s}-2}{N+2\tilde{s}} < 2
\]

\[
\nu(x, t) = at^{-N\beta_2} \left(R^2 + |xt^{-\beta_2}|^2\right)^{-(N+2\tilde{s})/2}
\]
Nonlocal/Local. Self-Similar Solutions

\[V_t = \nabla \cdot (V \nabla (-\Delta)^{-s} V^{m-1}), \; m > 1 \]
\[V_t = \nabla \cdot (V^{m-1} \nabla (-\Delta)^{-s} V), \; \tilde{m} \geq 2 \]

\[U_t + (-\Delta)^s U^m = 0 \]
\[V_t = \nabla \cdot (V^{m-1} \nabla (-\Delta)^{-s} V), \; \tilde{m} < 2 \]

PME/FDE \[u_t = \Delta u^m \]
- \(m > 1 \), Profile \(\sim (R^2 - |y|^2)^{1/(m-1)} \)
- \(m < 1 \), Profile \(\sim (R^2 + |y|^2)^{-1/(1-m)} \)
Gracias!

Eskerrik asko!