Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the $1 - d$ wave equation

Aurora Mihaela Marica

Basque Center for Applied Mathematics (BCAM)
Bilbao, Basque Country, Spain
marica@bcamath.org

Workshop on Non-Standard Numerical Methods for PDEs
Universita´ degli Studi di Pavia, Italy
June 30th 2010

joint work with Enrique Zuazua
Motivation: Control of the wave equation

The Cauchy problem for the $1-d$ wave equation - well posed in the energy space $\dot{H}^1 \times L^2(\mathbb{R})$:

\[
\begin{aligned}
\partial_t^2 u(x, t) - \partial_x^2 u(x, t) &= 0, & x \in \mathbb{R}, & t > 0 \\
u(x, 0) &= u^0(x), & u_t(x, 0) &= u^1(x), & x \in \mathbb{R}.
\end{aligned}
\] (1)

Conservation of the total energy: $E(u^0, u^1) = \frac{1}{2} \int_{\mathbb{R}} (|\partial_x u(x, t)|^2 + |\partial_t u(x, t)|^2) \, dx$.

Observability property

\[
\forall T > 2 \text{ (characteristic time), } \exists C(T) > 0 \text{ s.t. } \forall (u^0, u^1) \text{ of finite energy:}
\]

\[
E(u^0, u^1) \leq C(T) \int_0^T E_\Omega(u^0, u^1, t) \, dt,
\] (2)

where $\Omega = \mathbb{R} \setminus (-1, 1)$ and $E_\Omega(u^0, u^1, t)$ is the energy concentrated in Ω,

\[
E_\Omega(u^0, u^1, t) = \frac{1}{2} \int_{\Omega} (|\partial_x u(x, t)|^2 + |\partial_t u(x, t)|^2) \, dx.
\]

By HUM, the observability problem (2) is equivalent to an exact controllability problem:

Exact controllability

\[\forall T > T^* = 2, \forall (u^0, u^1) \in \dot{H}^1(\mathbb{R}) \times L^2(\mathbb{R}), \text{there exists a control function } f \in L^2(\Omega \times (0, T)) \text{ s.t.} \]

the solution of the inhomogeneous Cauchy problem

\[
\begin{cases}
\partial_t^2 u(x, t) - \partial_x^2 u(x, t) = f(x, t)\chi_\Omega(x), & x \in \mathbb{R}, \ t \in (0, T] \\
u(x, 0) = u^0(x), \ \partial_t u(x, 0) = u^1(x), & x \in \mathbb{R}
\end{cases}
\]

satisfies \(u(x, T) = \partial_t u(x, T) = 0 \) for all \(x \in \mathbb{R} \) (\(\chi_\Omega = \text{the characteristic function of } \Omega \)).

Geometric Control Condition (GCC)

All rays of Geometric Optics enter the observation set during the observability time.

No GCC \(\Rightarrow \) the observability property fails.

References

The SIPG semi-discretizations of the wave equation

Jumps and averages: \[f(x) = f(x-) - f(x+), \{ f \}(x) = \frac{f(x+) + f(x-)}{2}. \]

The finite element space \(V_h := U_A^h \oplus U_J^h \), with \(U_A^h = \text{span}\{\phi_i^A, i \in \mathbb{Z}\} \) and \(U_J^h = \text{span}\{\phi_i^J, i \in \mathbb{Z}\} \), where \(\phi_i^A(x) = \left[1 - \frac{|x-x_i|}{h} \right]^+ \), \(\phi_i^J(x) = \frac{1}{2} \text{sign}(x_i - x) \left[1 - \frac{|x-x_i|}{h} \right]^+ \).

Figure: Typical basis functions for the \(P_1 \)-discontinuous Galerkin methods: \(\phi_i^A \) (left) and \(\phi_i^J \) (right).

In the SIPG method, the Laplacian is discretized by the following bilinear form:

\[a_h^s(u, v) = \sum_{j \in \mathbb{Z}} \int_{x_j}^{x_{j+1}} u_x(x)v_x(x) \, dx - \sum_{j \in \mathbb{Z}} [u](x_j) \{v_x\}(x_j) - \sum_{j \in \mathbb{Z}} [v](x_j) \{u_x\}(x_j) + \frac{s}{h} \sum_{j \in \mathbb{Z}} [u](x_j)[v](x_j). \]

The semi-discrete wave equation:

\[
\begin{cases}
\bar{u}_h^s(x, t) \in V_h, \text{ for all } t > 0 \\
\partial_t^2 \int_{\mathbb{R}} u_h^s(x, t)v(x) \, dx = a_h^s(u_h^s(\cdot, t), v), \text{ for all } v \in V_h \\
u_h^s(x, 0) = u_0^h(x) \in V_h, \partial_t u_h^s(x, 0) = u_1^h(x) \in V_h.
\end{cases}
\]

Numerical solution = continuous part + jump part:

\[u_h^s(x, t) = \sum_{k \in \mathbb{Z}} A_k(t)\phi_k^A(x) + \sum_{k \in \mathbb{Z}} J_k(t)\phi_k^J(x). \]

Matricial form:

\[
\begin{cases}
M_h \bar{U}_{tt}^h(t) + R_h^s \bar{U}^h(t) = 0 \\
\bar{U}^h(0) = \bar{U}_{0}^h, \quad \bar{U}_{t}^h(0) = \bar{U}_{1}^h,
\end{cases}
\]

where \(\bar{U}^h(t) = (\bar{A}^h(t), \bar{J}^h(t)) \) and \(M_h, R_h^s \) are infinite mass and stiffness matrices generated by

\[
m_h = \begin{pmatrix}
\frac{h}{6} & -\frac{h}{12} & \frac{2h}{3} & 0 & \frac{h}{6} & \frac{h}{12} \\
\frac{h}{12} & -\frac{h}{24} & 0 & \frac{h}{6} & -\frac{h}{12} & -\frac{h}{24}
\end{pmatrix}, \quad r_h^s = \begin{pmatrix}
-\frac{1}{h} & 0 & \frac{2}{h} & 0 & -\frac{1}{h} & 0 \\
0 & -\frac{1}{4h} & 0 & \frac{2s-1}{2h} & 0 & -\frac{1}{4h}
\end{pmatrix}.
\]
Fourier analysis of the SIPG method

\[\Pi_h := [-\pi/h, \pi/h]. \quad \hat{A}^h(\xi, t), \hat{J}^h(\xi, t) = \text{SDFTs of } \hat{A}^h(t), \hat{J}^h(t), \hat{U}^h(\xi, t) := (\hat{A}^h(\xi, t), \hat{J}^h(\xi, t))'. \]

The system (4) can be transformed into the following Cauchy problem:

\[
\begin{cases}
\hat{U}_{tt}^h(\xi, t) + A_s^h(\xi)\hat{U}^h(\xi, t) = 0, & \xi \in \Pi_h, \ t > 0 \\
\hat{U}^h(\xi, 0) = \hat{U}^{h,0}(\xi), & \hat{U}_t^h(\xi, 0) = \hat{U}^{h,1}(\xi), & \xi \in \Pi_h,
\end{cases}
\]

(5)

where \(A_s^h(\xi) = (M_s^h(\xi))^{-1}R_s^h(\xi) \) and \(M_s^h(\xi), R_s^h(\xi) \) are the Fourier symbols of \(M_h(\xi) \) and \(R_h(\xi) \), with

\[
M_h(\xi) = \begin{pmatrix}
-\frac{2+\cos(\xi h)}{3} & \frac{i\sin(\xi h)}{6} \\
\frac{i\sin(\xi h)}{2} & -\frac{6-\cos(\xi h)}{12}
\end{pmatrix}, \quad R_s^h(\xi) = \begin{pmatrix}
\frac{4}{h^2} \sin^2 \left(\frac{\xi h}{2} \right) & 0 \\
0 & \frac{s-\cos^2 \left(\frac{\xi h}{2} \right)}{h^2}
\end{pmatrix}.
\]

The total energy \(E_s^h(\hat{U}^{h,0}, \hat{U}^{h,1}) \) is conserved in time.

Discrete observability inequality (DGOI):

\[
E_s^h(\hat{U}^{h,0}, \hat{U}^{h,1}) \leq C_s^h(T) \int_0^T E_{\Omega, h}^s(\hat{U}^{h,0}, \hat{U}^{h,1}, t) \, dt.
\]

\[
\hat{U}^h(\xi, t) = \sum_{\pm} \frac{1}{2} \left[P_s^h(\xi) \begin{pmatrix}
\exp(\pm it\lambda_{ph, h}^s(\xi)) & 0 \\
0 & \exp(\pm it\lambda_{sp, h}^s(\xi))
\end{pmatrix} \left(P_s^h(\xi) \right)^{-1} \hat{U}^{h,0}(\xi)
\right.
\]

\[
+ P_s^h(\xi) \begin{pmatrix}
\pm \exp(\pm it\lambda_{ph, h}^s(\xi)) \\
\pm \frac{\exp(\pm it\lambda_{sp, h}^s(\xi))}{i\lambda_{sp, h}^s(\xi)}
\end{pmatrix} \left(P_s^h(\xi) \right)^{-1} \hat{U}^{h,1}(\xi) \right].
\]
Properties of the eigenvalues and eigenvectors of $A_h^s(\xi)$

$P_{ph,h}^s(\xi), P_{sp,h}^s(\xi) =$ physical, spurious eigenvectors

$\Lambda_{ph,h}^s(\xi), \Lambda_{sp,h}^s(\xi) =$ physical, spurious eigenvalue, $\lambda_{ph,h}^s(\xi) = \sqrt{\Lambda_{ph,h}^s(\xi)}, \lambda_{sp,h}^s(\xi) = \sqrt{\Lambda_{sp,h}^s(\xi)}$.

Properties of the eigenvalues and of the group velocities:

- $\forall s > 1, \lim_{\xi \to 0} \partial_\xi \lambda_{ph,h}^s(\xi) = 1$ and $\lim_{\xi \to 0} \partial_\xi \lambda_{sp,h}^s(\xi) = 0$.
- $\forall s \in (1, \infty) \setminus \{3\}, \lim_{\xi \to \pm \pi/h} \partial_\xi \lambda_{ph,h}^s(\xi) = \lim_{\xi \to \pm \pi/h} \partial_\xi \lambda_{sp,h}^s(\xi) = 0$.
- $\lim_{\xi \to \pm \pi/h} \partial_\xi \lambda_{ph,h}^3(\xi) = 1$ and $\lim_{\xi \to \pm \pi/h} \partial_\xi \lambda_{sp,h}^3(\xi) = -1$.

Figure: $\lambda_{ph,1}^s(\xi)$ (black) and $\lambda_{sp,1}^s(\xi)$ (dotted black) for $s = 1, 5, 2, 3, 5$.
Non-uniform observability inequality

When the vector valued initial data \(\hat{U}^{h,i} \) in (5), \(i = 0, 1 \), are of the form

\[
\hat{U}^{h,i}(\xi) = P_{ph,h}(\xi)\hat{u}^{h,i}(\xi),
\]

the corresponding solutions of (5) involve only the physical dispersion relation:

\[
\hat{U}^{h}(\xi, t) = P_{ph,h}(\xi) \frac{1}{2} \sum_{\pm} \left(\hat{u}^{h,0}(\xi) \pm \frac{\hat{u}^{h,1}(\xi)}{i\lambda_{ph,h}(\xi)} \right) \exp(\pm it\lambda_{ph,h}(\xi)).
\]

Proposition

Let \(T > 0 \) fixed s.t. the ray \(x_{ph}(t) = x^* - t\partial_{\xi}\lambda_{ph,1}(\eta_0) \) that does not enter the observation region before \(T \); \(\gamma := \gamma(h) > 0 \) s.t. \(\gamma \gg 1 \) and \(h\gamma \ll 1 \), \(\phi \in S(\mathbb{R}) \) and (5) with \(\hat{U}^{h,i}(\xi) \) s.t. (6) holds, with

\[
\hat{u}^{h,0}(\xi) = \sqrt{\frac{2\pi}{\gamma}} \hat{\phi} \left(\frac{\xi - \xi_0}{\gamma} \right) \exp(-ix^*(\xi - \xi_0))\chi_{\Pi,h}(\xi) \text{ and } \hat{u}^{h,1}(\xi) = i\lambda_{ph,h}(\xi)\hat{u}^{h,0}(\xi).
\]

Then \(\forall \alpha \in \mathbb{R}_+ \), the observability constant \(C_h^s(T) \) in the DGOI satisfies

\[
C_h^s(T) \geq C_{\alpha}(\phi, T, s)\gamma^{\alpha}.
\]

Stationary phase lemma, L. Evans, PDEs: If \(\hat{\sigma} \in C_c^\infty(\mathbb{R}^d) \), \(\psi \in C^\infty(\mathbb{R}^d) \) s.t. \(\nabla \psi \neq 0 \) in \(\text{supp}(\hat{\sigma}) \), Then

\[
I_\epsilon = \int_{\mathbb{R}^d} \hat{\sigma}(\xi) \exp(i\psi(\xi)/\epsilon) \, d\xi = O(\epsilon^N), \quad \forall N \in \mathbb{N}.
\]
Concentration on the physical mode + Fourier filtering

For $\delta \in (0,1)$, $\Pi^\delta := [-\pi \delta/h, \pi \delta/h]$.

$I^\delta_h := \{ \hat{f} \in \ell^2(h\mathbb{Z}) : \text{supp}(\hat{f}^h) \subset \Pi^\delta_h \}$ - the space of Fourier filtered data with parameter δ.

$\Gamma^\delta_h \hat{f}_j = \frac{1}{2\pi} \int_{\Pi^\delta_h} \hat{f}^h(\xi) \exp(i\xi x_j) d\xi$ - the projection on I^δ_h of $\hat{f} \in \ell^2(h\mathbb{Z})$.

Theorem

Set $\Omega = \{ x : |x| > 1 \}$. In (5), consider initial data concentrated on the physical mode, i.e.

$$\hat{U}^{h,i}(\xi) = P_{\text{ph},h}(\xi) \hat{u}^{h,i}(\xi), \quad i = 0, 1,$$ s.t. $\hat{u}^{h,i} \in I^\delta_h$ i.e. filtered with parameter δ. Then for all $T > T_{\text{ph}}^{s,\delta}$, with

$$T_{\text{ph}}^{s,\delta} = \frac{2}{\min_{\xi \in \Pi^\delta_h} \partial_\xi \lambda_{\text{ph},h}^s(\xi)} (1 + C_{\text{ph}}^{s,\delta})$$

and $C_{\text{ph}}^{s,\delta} \in (0,1)$, and all $s > 1$, the following observability inequality holds uniformly as $h \to 0$:

$$E^s_h(\hat{U}^{h,0}, \hat{U}^{h,1}) \leq C_{\text{ph}}^{s,\delta}(T) \int_0^T E^s_{\Omega, h}(\hat{U}^{h,0}, \hat{U}^{h,1}, t) dt,$$

with observability constant

$$C_{\text{ph}}^{s,\delta}(T) = \frac{1}{T - T_{\text{ph}}^{s,\delta}}.$$
Figure: The hachured zone corresponds to frequencies eliminated by the filtering mechanism. Concentration on the physical mode + Fourier filtering.
Concentration on the physical mode + bi-grid algorithm

Theorem

In (5), consider initial data concentrated on the physical mode, i.e.

\[\hat{U}^{h,i}(\xi) = P_{ph,h}(\xi)\hat{u}^{h,i}(\xi), \]

\(i = 0, 1, \) s.t. \(\hat{u}^{h,i} \) satisfies the bi-grid condition

\[u^i_{2j} = \frac{u^i_{2j+1} + u^i_{2j-1}}{2}. \]

For all \(T > T_{ph}^{s,1/2} \) and all \(s > 1 \), there exists a constant \(C_{ph,bigrid}(T) > 0 \) independent of \(h \) s.t. the following observability inequality holds:

\[E_{h}^{s}(\hat{U}^{h,0}, \hat{U}^{h,1}) \leq C_{ph,bigrid}(T) \int_{0}^{T} E_{\Omega,h}^{s}(\hat{U}^{h,0}, \hat{U}^{h,1}, t) \, dt. \]

Proof based on the following result + dyadic decomposition argument:

Proposition

For all \(s > 1 \) and all initial data concentrated on the physical mode s.t. \(\hat{u}^{h,i} \) satisfies the bi-grid condition, there exists a constant \(C_{ph} > 0 \), independent of \(h \) and of \(s \), s.t.

\[E_{h}^{s}(\hat{U}^{h,0}, \hat{U}^{h,1}) \leq C_{ph} E_{h}^{s}(\Gamma_{h}^{1/2} \hat{U}^{h,0}, \Gamma_{h}^{1/2} \hat{U}^{h,1}). \]
Figure: The hachured zone corresponds to frequencies eliminated by the filtering mechanism Concentration on the physical mode + bi-grid algorithm
Bigrid algorithms

Projection 1

Aurora Marica (BCAM)
Projection 2

Graphs showing trends over time.
Physical mode, without bigrid, $s=1.5$

Physical mode, bigrid of ratio 1/2, $s=1.5$

Physical mode, biggrid of ratio 1/4, $s=1.5$
Physical mode, without bigrid, $s=1.5$

Physical mode, bigrid of ratio $1/2$, $s=1.5$

Physical mode, biggrid of ratio $1/4$, $s=1.5$
In (4), consider initial data $\vec{U}^{h,i} = (\vec{A}^{h,i}, \vec{J}^{h,i})'$, $i = 0, 1$, having null jump part, i.e. $\vec{J}^{h,i} = 0$ and s.t. $\vec{A}^{h,i} \in \mathcal{I}_h^\delta$, $\delta \in (0, 1)$. Then for all $T > T_{ph}^{s,\delta}$ and all $s > 1$ s.t.

$$\max_{\xi \in \Pi_h^\delta} |\lambda_{ph,h}^s(\xi)| < \min_{\xi \in \Pi_h} |\lambda_{sp,h}^s(\xi)|$$,

there exists a constant $C_0^s(T) > 0$ uniform as $h \to 0$ s.t.

$$E_h^s(\vec{U}^{h,0}, \vec{U}^{h,1}) \leq C_0^s(T) \int_0^T E_{\Omega,h}^s(\vec{U}^{h,0}, \vec{U}^{h,1}, t) \, dt.$$

Proposition

In (4), consider $\vec{U}^{h,i} = (\vec{A}^{h,i}, \vec{J}^{h,i})'$, $i = 0, 1$, s.t. $\vec{J}^{h,i} = 0$ and $\vec{A}^{h,i} \in \mathcal{I}_h^\delta$. Then $\exists C(\delta) > 0$ s.t.

$$E_h^s(\vec{U}^{h,0}, \vec{U}^{h,1}) \leq C(\delta) E_h^s(\Gamma_{ph} \vec{U}^{h,0}, \Gamma_{ph} \vec{U}^{h,1}).$$

If $\vec{f}^h(t)$ is an evolution process s.t.

$$\hat{f}^h(\xi, t) = \hat{f}_{ph}^h(\xi) \exp(it\lambda_{ph,h}^s(\xi)) + \hat{f}_{sp}^h(\xi) \exp(it\lambda_{sp,h}^s(\xi)),$$

its projection on the physical branch is

$$\Gamma_{ph} f_j(t) = \frac{1}{2\pi} \int_{\Pi_h} \hat{f}_{ph}^h(\xi) \exp(it\lambda_{ph,h}^s(\xi)) \exp(i\xi x_j) \, d\xi.$$
Theorem

In (4) consider $\vec{U}^{h,i} = (\vec{A}^{h,i}, \vec{J}^{h,i})'$, $i = 0, 1$, s.t. $\vec{J}^{h,i} = 0$ and $\vec{A}^{h,i}$ is given by a bi-grid algorithm, i.e. $A_{2j}^i = \frac{A_{2j+1}^i + A_{2j-1}^i}{2}$. For all $T > T_{ph}^{s,1/2}$ and all $s > 1$ s.t.

$$\max_{\xi \in \Pi_{1/2}^{1/2}} |\lambda_{ph,h}^s(\xi)| < \min_{\xi \in \Pi_h} |\lambda_{sp,h}^s(\xi)|$$,

there exists a constant $C_{0,\text{bigrid}}^s(T) > 0$ independent of h s.t.

$$E_h^s(\vec{U}^{h,0}, \vec{U}^{h,1}) \leq C_{0,\text{bigrid}}^s(T) \int_0^T E_{\Omega_h}^s(\vec{U}^{h,0}, \vec{U}^{h,1}, t) \, dt.$$

Proposition

In (4), consider initial data $\vec{U}^{h,i} = (\vec{A}^{h,i}, \vec{J}^{h,i})'$, $i = 0, 1$, s.t. $\vec{J}^{h,i} = 0$ and $\vec{A}^{h,i}$ is given by a bi-grid algorithm. For all $s > 1$, the following estimate holds

$$E_h^s(\vec{U}^{h,0}, \vec{U}^{h,1}) \leq 2E_h^s(\Gamma_{h}^{1/2} \vec{U}^{h,0}, \Gamma_{h}^{1/2} \vec{U}^{h,1}).$$
Null jumps, without bigrid, $s=1.5$

Null jumps, bigrid of ratio $1/2$, $s=1.5$

Null jumps, bigrid of ratio $1/4$, $s=1.5$
Conclusions

- DG provides a rich class of schemes allowing to regulate the physical components of the system, using the penalty parameter s, to fit better the behavior of the continuous wave equation.
- Despite of this, these schemes generate high frequency spurious oscillations which behave badly, generating possibly wave packets traveling in the wrong sense.
- propagation properties of other DG schemes: LDG.
- fully discrete DG schemes
- DG in higher dimensions on uniform grids
- other equations (Schrödinger) semi-discretized using DG, etc.

Thank you very much!