SELF-ADAPTIVE \(hp \) FINITE-ELEMENT SIMULATION OF MULTI-COMPONENT INDUCTION MEASUREMENTS ACQUIRED IN DIPPING, INVADED, AND ANISOTROPIC FORMATIONS

M. J. Nam\(^1\), D. Pardo\(^2\)*, and C. Torres-Verdín\(^1\),

\(^1\)The University of Texas at Austin, USA
\(^2\)Basque Center for Applied Mathematics, Spain
*Formerly, at The University of Texas at Austin, USA

Presentation at SIG meeting (SPWLA) Oct. 21, 2008.
Houston, TX, USA
Outline

• Main Features of Our Technology
 – A Self-Adaptive Goal-Oriented hp-FEM
 – Fourier Finite-Element Method

• Introduction to Tri-Axial Induction

• Numerical Results:
 – in Dipping, Invaded, Anisotropic Formations (Resistive Mandrel)
 – with Tool Eccentricity (Conductive/Resistive Mandrel)

• Conclusions
Self-Adaptive Goal-Oriented hp-FEM

We vary locally the element size h and the polynomial order of approximation p throughout the grid.

Optimal grids are automatically generated by the hp-algorithm.

The self-adaptive goal-oriented hp-FEM provides exponential convergence rates in terms of the CPU time vs. the error in a user prescribed quantity of interest.
3D Deviated Well

Cartesian system of coordinates: \((x_1, x_2, x_3)\)

New non-orthogonal system of coordinates: \((\zeta_1, \zeta_2, \zeta_3)\)

Subdomain 1
\[
\begin{align*}
 x_1 &= \zeta_1 \cos \zeta_2 \\
 x_2 &= \zeta_1 \sin \zeta_2 \\
 x_3 &= \zeta_3
\end{align*}
\]

Subdomain 2
\[
\begin{align*}
 x_1 &= \zeta_1 \cos \zeta_2 \\
 x_2 &= \zeta_1 \sin \zeta_2 \\
 x_3 &= \zeta_3 + \tan \theta \frac{\zeta_1 - \rho_1}{\rho_2 - \rho_1} \rho_2 \cos \zeta_2
\end{align*}
\]

Subdomain 3
\[
\begin{align*}
 x_1 &= \zeta_1 \cos \zeta_2 \\
 x_2 &= \zeta_1 \sin \zeta_2 \\
 x_3 &= \zeta_3 + \zeta_1 \tan \theta \cos \zeta_2
\end{align*}
\]
3D Deviated Well

Cartesian system of coordinates: \((x_1, x_2, x_3)\)

New non-orthogonal system of coordinates: \((\zeta_1, \zeta_2, \zeta_3)\)

Constant material coefficients in the quasi-azimuthal direction \(\zeta_2\) in the new non-orthogonal system of coordinates!!!!
Fourier Series Expansion in ζ_2

Fourier Series Expansion of a Function ω in ζ_2:

$$\omega = \sum_{l=-\infty}^{l=\infty} \omega_l e^{j l \zeta_2} = \sum_{l=-\infty}^{l=\infty} F_l(\omega) e^{j l \zeta_2}$$

Final Variational Formulation of DC after Fourier Series Expansion in ζ_2:

Find $F_l(u) \in F_l(u_D) + H^1_D(\Omega_{2D})$ such that:

$$\sum_{k=-\infty}^{k=\infty} \sum_{l=k-2}^{l=k+2} \left< F_k \left(\frac{\partial v}{\partial \zeta} \right), F_{k-l} \left(\sigma_{NEW} \right) F_l \left(\frac{\partial u}{\partial \zeta} \right) \right>_{L^2(\Omega_{2D})}$$

$$= \sum_{k=-\infty}^{k=\infty} \left[\left< F_k(v), F_k(f_{NEW}) \right>_{L^2(\Omega_{2D})} + \left< F_k(v), F_k(g_{NEW}) \right>_{L^2(\Omega_{2D})} \right] \quad \forall F_k(v) \in H^1_D(\Omega),$$

because $F_{k-l}(\sigma_{NEW}) = 0$ for every $|k-l| > 2$.

Only Five Fourier Modes (l) are enough to represent σ_{NEW} EXACTLY for each k.

Therefore, we need to truncate only Fourier Modes (k) for 3D solution.
Eccentered Tool

Cartesian system of coordinates: \((x_1, x_2, x_3)\)

New non-orthogonal system of coordinates: \((\zeta_1, \zeta_2, \zeta_3)\)

\[
\begin{align*}
\text{Subdomain 1} & : \\
x_1 &= \rho_0 + \zeta_1 \cos \zeta_2 \\
x_2 &= \zeta_1 \sin \zeta_2 \\
x_3 &= \zeta_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{Subdomain 2} & : \\
x_1 &= \frac{\zeta_1 - \rho_2}{\rho_1 - \rho_2} \cdot \rho_0 + \zeta_1 \cos \zeta_2 \\
x_2 &= \zeta_1 \sin \zeta_2 \\
x_3 &= \zeta_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{Subdomain 3} & : \\
x_1 &= \zeta_1 \cos \zeta_2 \\
x_2 &= \zeta_1 \sin \zeta_2 \\
x_3 &= \zeta_3 \\
\end{align*}
\]
Tri-Axial Induction Tool

\[L = 1.016 \text{ m (40 in.)} \]

Operating frequency: 20 kHz

\(\theta \): dip angle

\(\alpha \): tool orientation angle
3D Source Implementation

1. Solenoidal Coil (J_ϕ) for M_z
 \[\rightarrow \text{becoming a 2D source in } (\rho, \phi, z) \]

2. Delta Function for 3D source M_x or M_y
 \[f(\phi) = \delta(\phi - \phi_0) \]
 ϕ_0: the position of the center of the peak
 (0° for M_x; 90° for M_y)

M_x: Delta function

Gibb’s Phenomenon
3D Source and Receiver (Delta Functions)

Coupling between source and receiver: less Gibb’s phenomenon
Verification of 2.5D Simulation ($H_{xx} = H_{yy}$)

Real part of Hxx at 20 kHz

Imaginary part of Hxx at 20 kHz

Converged solutions with 3 Fourier modes

Verification of 2.5D Simulation ($H_{xy} = H_{yx}$)

![Graphs showing real and imaginary parts of H_{xy} at 20 kHz](image)

Converged solutions with 5 Fourier modes

M. J. Nam, D. Pardo, C. Torres-Verdín
Verification of 2.5D Simulation \((H_{xz} = H_{zx}) \)

The same solutions with 1 Fourier mode

M. J. Nam, D. Pardo, C. Torres-Verdín
Verification of 3D Simulation ($H_{xx} = H_{yy}$)

Real part of H_{xx} at 20 kHz

- **em1d**
- hp with 3 modes
- hp with 7 modes
- hp with 9 modes

Imaginary part of H_{xx} at 20 kHz

- **em1d**
- hp with 3 modes
- hp with 7 modes
- hp with 9 modes

Dip angle: 60 degrees

Converged solutions with 9 Fourier mode

M. J. Nam, D. Pardo, C. Torres-Verdín
Verification of 3D Simulation (\mathbf{H}_{zz})

Real part of Hzz at 20 kHz

- $\text{Re}(H_{zz})$ field (A/m)

Imaginary part of Hzz at 20 kHz

- $\text{Im}(H_{zz})$ field (A/m)

Dip angle: 60 degrees

Converged solutions with 5 Fourier mode

M. J. Nam, D. Pardo, C. Torres-Verdín
Description of the Tri-Axial Tool

Operating frequency: 20 kHz

Transmitters

Y

M_y^T

M_x^T

X

1.016 m (40 in.)

Receivers

y

H_y^R

H_x^R

H_z^R

Z

1.016 m (40 in.)

Resistive mandrel (RM):
10^6 ohm-m μ₀

Conductive mandrel (CM):
10^-6 ohm-m 100μ₀

Finite size antenna

1 m

0.8 cm

1 cm

0.4 cm

0.09 m

0.1 m

Y

Transmitter

1.016 m (40 in.)

X

Z

Receiver
Verification of 2.5D Simulation (H_{xx})

Relative errors of tri-axial induction solutions with respect to the solution with 9 Fourier modes

vertical well in a homogeneous formation

Relative Error (in %)

- real (without tool propt.)
- imaginary (without tool propt.)
Verification of 3D Simulation (H_{xx})

$\theta = 60$ degrees

Relative errors of tri-axial Induction solutions with respect to the solution for the vertical well

- Real (without tool propt.)
- Imaginary (without tool propt.)

Number of Fourier Modes

Relative Error (in %)

60 degree deviated well in a homogeneous formation
Model for Experiments (Deviated Well)

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Borehole: 0.1 m in radius
100 ohm-m in resistivity

$\theta = 0, 30$ and 60 degrees

Resistive mandrel $(10^6 \text{ ohm-m}, \mu_0)$

Invasion in the third and fourth layers

Anisotropy in the second and fourth layers
Convergence History of H_{xx} in Vertical Well

Real part of H_{xx} at 20 kHz

Imaginary part of H_{xx} at 20 kHz

Converged solutions with 5 Fourier modes

M. J. Nam, D. Pardo, C. Torres-Verdín
Convergence History of H_{xx} in Deviated Well

M. J. Nam, D. Pardo, C. Torres-Verdín

θ = 60 degrees

Converged solutions with 9 Fourier modes
Deviated Wells (0, 30 & 60 degrees)

Dip angle has larger effects on tri-axial tools

M. J. Nam, D. Pardo, C. Torres-Verdín
H_{zz} in Deviated Wells with Invasion (Im.)

Imaginary part of H_{zz} at 20 kHz

- **No invasion**
- **With invasion**

Vertical

- 100 ohm-m
- 0.05 ohm-m
- 10000 ohm-m
- 1 ohm-m
- 20 ohm-m

60 degrees

- 10000 ohm-m
- 1 ohm-m
- 20 ohm-m

Shallow invasion with $R = 0.1 \text{ m}$

Almost no effects of invasion regardless of the dip angle
H_{xx} in Deviated Wells with Invasion (Im.)

Shallow invasion with $R = 0.1$ m

Small effects of invasion

vertical

60 degrees
H_{yy} in Deviated Wells with Invasion (Im.)

Imaginary part of H_{yy} at 20 kHz

- No invasion
- With invasion

100 ohm-m

0.05 ohm-m

10000 ohm-m (500 ohm-m)

1 ohm-m (10 ohm-m)

20 ohm-m

Depth (m)

Im(Hyy) field (A/m)

Shallow invasion with $R = 0.1$ m

Small effects of invasion

vertical

60 degrees
H_{zz} in Deviated Wells with Anisotropy (Im.)

Effects of anisotropy increase with increasing dip angle

vertical 30 degrees 60 degrees
\(H_{xx}\) in Deviated Wells with Anisotropy (Im.)

Effects of anisotropy decrease with increasing dip angle

vertical

30 degrees

60 degrees
H_{yy} in Deviated Wells with Anisotropy (Im.)

Effects of anisotropy decrease with increasing dip angle

- **vertical**
- **30 degrees**
- **60 degrees**

M. J. Nam, D. Pardo, C. Torres-Verdín
H_{xx} at 20 KHz and 2 MHz in Vertical Well

Larger variations at 2 MHz than at 20 kHz
Model for Experiments (Eccentered Tool)

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Radius of borehole: 0.1 m
Model for Experiments (Eccentered Tool)

Five layers: 100, 0.05, 10000, 1 and 20 ohm-m from top to bottom

Radius of borehole: 0.1 m

Conductive borehole (CB): 1 ohm-m
Resistive borehole (RB): 1000 ohm-m

Conductive mandrel (CM): \(10^{-6}\) ohm-m, \(100\mu_0\)
Resistive mandrel (RM): \(10^6\) ohm-m, \(\mu_0\)

Eccentered distance \(\rho_0\): 0, 0.45, 2.25, 3.15 cm
$H_{zz} (\rho_0: 0, 0.45, 2.25, 3.15 \text{ cm})$

CM: Conductive Mandrel (10^{-6} ohm-m, $100 \mu_0$)
RM: Resistive Mandrel (10^6 ohm-m)
CB: Conductive Borehole (1 ohm-m)
RB: Resistive Borehole (10^3 ohm-m)

No big difference between results with RM and CM
Slight deviations in results with RM
H_{zz} (ρ_0: 0, 0.45, 2.25, 3.15 cm)

CM: Conductive Mandrel (10^{-6} ohm-m, $100\mu_0$)
RM: Resistive Mandrel (10^6 ohm-m)
CB: Conductive Borehole (1 ohm-m)
RB: Resistive Borehole (10^3 ohm-m)

No big difference between results with RM and CM
Slight deviations in results with RM
H_{xx} (ρ_0: 0, 0.45, 2.25, 3.15 cm)

- **CM**: Conductive Mandrel (10^{-6} ohm-m, $100\mu_0$)
- **RM**: Resistive Mandrel (10^6 ohm-m)
- **CB**: Conductive Borehole (1 ohm-m)
- **RB**: Resistive Borehole (10^3 ohm-m)

Different results between RM and CM

More deviations in results with RM
H_{xx} (ρ_0: 0, 0.45, 2.25, 3.15 cm)

- **CM**: Conductive Mandrel (10^{-6} ohm-m, $100\mu_0$)
- **RM**: Resistive Mandrel (10^6 ohm-m)
- **CB**: Conductive Borehole (1 ohm-m)
- **RB**: Resistive Borehole (10^3 ohm-m)

Different results between RM and CM

More deviations in results with RM
Conclusions

• We successfully simulated 3D tri-axial induction measurements by combining the use of a Fourier series expansion in a non-orthogonal system of coordinates with a 2D high-order, self-adaptive hp finite-element method.

• Dip angle effects on tri-axial tools are larger than on more traditional induction logging instruments.

• Anisotropy effects on H_{xx} and H_{yy} decrease with increasing dip angle, while those on H_{zz} increase.

• H_{xx} at 20 kHz exhibits smaller variations than at 2 MHz.

• Differences in stability between conductive and resistive mandrels in the presence of tool eccentricity.
Acknowledgements

Sponsors of UT Austin’s consortium on Formation Evaluation:

- Anadarko Petroleum Corporation
- Aramco Saudi Aramco
- Baker Hughes Baker Atlas
- bhpbilliton
- bp
- Chevron
- ConocoPhillips
- Eni
- ExxonMobil
- Halliburton
- INI
- Marathon Oil Corporation
- Petrobras
- Schlumberger
- Shell
- StatoilHydro
- Total
- Weatherford