Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics.

David Pardo

Supervisor: Leszek Demkowicz

October 31, 2003

Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin
OVERVIEW

1. Overview.
4. hp-Adaptivity.
10. Conclusions and Future Work.

The University of Texas at Austin
2. MOTIVATION

Radar Cross Section (RCS) Analysis

\[\text{RCS} = 4\pi \frac{\text{Power scattered to receiver per unit solid angle}}{\text{Incident power density}} = \lim_{r \to \infty} 4\pi r^2 \frac{|E^s|}{|E^i|}. \]

Goal: Determine the RCS of a plane.
2. MOTIVATION

Waveguide Design

Goal: Determine electric field intensity at the ports.

Supervisor: Leszek Demkowicz
2. MOTIVATION

Modeling of a Logging While Drilling (LWD) electromagnetic measuring device

Goal: Determine EM field at the receiver antennas.
2. MOTIVATION

Modeling of a Logging While Drilling (LWD) electromagnetic measuring device

Simplest case:
ONE COIL TRANSMITTER

Goal: Determine EM field at the receiver antennas.
3. MAXWELL’S EQUATIONS

Time Harmonic Maxwell’s Equations:

\[\nabla \times \mathbf{E} = -j\mu\omega \mathbf{H} \]
\[\nabla \times \mathbf{H} = j\omega\varepsilon \mathbf{E} + \sigma \mathbf{E} + \mathbf{J}^{imp} \]

Reduced Wave Equation:

\[\nabla \times \left(\frac{1}{\mu} \nabla \times \mathbf{E} \right) - (\omega^2\varepsilon - j\omega\sigma) \mathbf{E} = -j\omega \mathbf{J}^{imp}, \]

Boundary Conditions (BC):

- Dirichlet BC at a PEC surface:
 \[\mathbf{n} \times \mathbf{E}^s = -\mathbf{n} \times \mathbf{E}^{inc} \]
 \[\mathbf{n} \times \mathbf{E} = 0 \]

- Neumann continuity BC at a material interface:
 \[\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E}^s = -\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E}^{inc} \]
 \[\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E} = -j\omega \mathbf{J}^{imp}_S \]

- Silver Müller radiation condition at \(\infty \):
 \[\mathbf{e}_r \times (\nabla \times \mathbf{E}^s) - jk_0 \times \mathbf{E}^s = O(r^{-2}) \]
3. MAXWELL’S EQUATIONS

Variational formulation

The reduced wave equation in Ω,

$$\nabla \times \left(\frac{1}{\mu} \nabla \times E \right) - (\omega^2 \varepsilon - j \omega \sigma) E = -j \omega J_{\text{imp}} .$$

A variational formulation

Find $E \in H_D(\text{curl}; \Omega)$ such that

$$\int_{\Omega} \frac{1}{\mu} (\nabla \times E) \cdot (\nabla \times \bar{F}) dx - \int_{\Omega} (\omega^2 \varepsilon - j \omega \sigma) E \cdot \bar{F} dx =$$

$$-j \omega \left\{ \int_{\Omega} J_{\text{imp}} \cdot \bar{F} dx + \int_{\Gamma_2} J_{S_{\text{imp}}} \cdot \bar{F} dS \right\}$$

for all $F \in H_D(\text{curl}; \Omega)$.

A stabilized variational formulation (using a Lagrange multiplier):

Find $E \in H_D(\text{curl}; \Omega), p \in H_D^1(\Omega)$ such that

$$\int_{\Omega} \frac{1}{\mu} (\nabla \times E)(\nabla \times \bar{F}) dx - \int_{\Omega} (\omega^2 \varepsilon - j \omega \sigma) E \cdot \bar{F} dx - \int_{\Omega} (\omega^2 \varepsilon - j \omega \sigma) \nabla p \cdot \bar{F} dx =$$

$$-j \omega \left\{ \int_{\Omega} J_{\text{imp}} \cdot \bar{F} dx + \int_{\Gamma_2} J_{S_{\text{imp}}} \cdot \bar{F} dS \right\}$$

for all $F \in H_D(\text{curl}; \Omega)$.

$$- \int_{\Omega} (\omega^2 \varepsilon - j \omega \sigma) E \cdot \nabla \bar{q} dx = -j \omega \left\{ \int_{\Omega} J_{\text{imp}} \cdot \nabla \bar{q} dx + \int_{\Gamma_2} J_{S_{\text{imp}}} \cdot \nabla \bar{q} dS \right\}$$

for all $q \in H_D^1(\Omega)$.
3. MAXWELL’S EQUATIONS

De Rham diagram

De Rham diagram is critical to the theory of FE discretizations of Maxwell’s equations.

\[
\begin{align*}
\mathbb{R} & \longrightarrow W \xrightarrow{\nabla} Q \xrightarrow{\nabla \times} V \xrightarrow{\nabla^O} L^2 \longrightarrow 0 \\
\downarrow id & \quad \downarrow \Pi & \downarrow \Pi^{\text{curl}} & \downarrow \Pi^{\text{div}} & \downarrow P \\
\mathbb{R} & \longrightarrow W^p \xrightarrow{\nabla} Q^p \xrightarrow{\nabla \times} V^p \xrightarrow{\nabla^O} W^{p-1} \longrightarrow 0.
\end{align*}
\]

This diagram relates two exact sequences of spaces, on both continuous and discrete levels, and corresponding interpolation operators.
4. **HP-ADAPTIVITY**

Different refinement strategies for finite elements:

- **Given initial grid**
- **h-refined grid**
- **p-refined grid**
- **hp-refined grid**
4. *HP-ADAPTIVITY*

Orthotropic heat conduction example

Equation: \(\nabla (K \nabla u) = f(k) \)

\[
K = K^{(k)} = \begin{bmatrix}
K_x^{(k)} & 0 \\
0 & K_y^{(k)}
\end{bmatrix}
\]

\[K_x^{(k)} = (25, 7, 5, 0.2, 0.05)\]

\[K_y^{(k)} = (25, 0.8, 0.0001, 0.2, 0.05)\]

Solution: unknown

Boundary Conditions:

\[K^{(i)} \nabla u \cdot n = g^{(i)} - \alpha^{(i)} u\]

Convergence history
(tolerance error = 0.1 %)

Final \(hp\) grid

Supervisor: Leszek Demkowicz

The University of Texas at Austin
4. **HP-ADAPTIVITY**

Convergence comparison

Orthotropic heat conduction example

![Graph showing error in the relative energy norm (%) vs. number of DOF for different adapivity methods.](image-url)
5. THE FULLY AUTOMATIC \(HP \)-ADAPTIVE STRATEGY

Fully automatic \(hp \)-adaptive strategy

Supervisor: Leszek Demkowicz
5. THE FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Automatic hp-adaptivity delivers exponential convergence and enables solution of challenging EM problems.

Coarse Grid \rightarrow \text{Fine Grid} \rightarrow \text{Next optimal coarse grid}

NEED FOR A TWO GRID SOLVER

Minimization of the projection based interpolation error

Supervisor: Leszek Demkowicz The University of Texas at Austin
6. A TWO GRID SOLVER FOR SPD PROBLEMS

We seek \(x \) such that \(Ax = b \). Consider the following iterative scheme:

\[
\begin{align*}
 r^{(n+1)} &= [I - \alpha^{(n)} AS]r^{(n)} \\
 x^{(n+1)} &= [I - \alpha^{(n)} S]r^{(n)}
\end{align*}
\]

where \(S \) is a matrix, and \(\alpha^{(n)} \) is a relaxation parameter. \(\alpha^{(n)} \) optimal if:

\[
\alpha^{(n)} = \arg \min_k \| x^{(n+1)} - x \|_A = \frac{(A^{-1}r^{(n)}, Sr^{(n)})_A}{(Sr^{(n)}, Sr^{(n)})_A}
\]

Then, we define our two grid solver as:

1 Iteration with \(S = S_F = \sum A_i^{-1} \) +
1 Iteration with \(S = S_C = PA_C^{-1} R \)
6. A TWO GRID SOLVER FOR SPD PROBLEMS

Error reduction and stopping criteria

Let $e^{(n)} = x^{(n)} - x$ the error at step n, $\tilde{e}^{(n)} = [I - S_C A]e^{(n)} = [I - P_C]e^{(n)}$. Then:

$$\frac{\| e^{(n+1)} \|^2_A}{\| e^{(n)} \|^2_A} = 1 - \frac{| (\tilde{e}^{(n)}, S_F A \tilde{e}^{(n)})_A |^2}{\| \tilde{e}^{(n)} \|^2_A \| S_F A \tilde{e}^{(n)} \|^2_A} = 1 - \frac{| (\tilde{e}^{(n)}, (P_C + S_F A) \tilde{e}^{(n)})_A |^2}{\| \tilde{e}^{(n)} \|^2_A \| S_F A \tilde{e}^{(n)} \|^2_A}$$

Then:

$$\frac{\| e^{(n+1)} \|^2_A}{\| e^{(n)} \|^2_A} \leq \sup_e [1 - \frac{| (e, (P_C + S_F A)e)_A |^2}{\| e \|^2_A \| S_F A e \|^2_A}] \leq C < 1 \quad \text{(Error Reduction)}$$

For our stopping criteria, we want: Iterative Solver Error \approx Discretization Error. That is:

$$\frac{\| e^{(n+1)} \|_A}{\| e^{(0)} \|_A} \leq 0.01 \quad \text{(Stopping Criteria)}$$
A TWO GRID SOLVER FOR ELECTROMAGNETICS

We seek x such that $Ax = b$. Consider the following iterative scheme:

\[
\begin{align*}
 r^{(n+1)} &= [I - \alpha^{(n)} AS]r^{(n)} \\
 x^{(n+1)} &= [I - \alpha^{(n)} S]r^{(n)}
\end{align*}
\]

where S is a matrix, and $\alpha^{(n)}$ is a relaxation parameter. $\alpha^{(n)}$ optimal if:

\[
\alpha^{(n)} = \arg \min_k \| x^{(n+1)} - x \|_B = \frac{\left(A^{-1} r^{(n)}, Sr^{(n)}\right)_B}{\left(S r^{(n)}, S r^{(n)}\right)_B} \quad \text{(NOT COMPUTABLE)}
\]

Then, we define our two grid solver for Electromagnetics as:

1 Iteration with $S = S_F = \sum A_i^{-1}$ +
1 Iteration with $S = S_G = \sum G_i^{-1}$ +
1 Iteration with $S = S_C = PA_C^{-1} R$
A TWO GRID SOLVER FOR ELECTROMAGNETICS

A two grid solver for discretization of Maxwell’s equations using \(hp \)-FE

Consider the following two problems:

Problem I: \(\nabla \times \nabla \times \mathbf{E} - k^2 \mathbf{E} = \mathbf{J} \)

Matrix form: \(A \mathbf{u} = \mathbf{v} \)

Two grid solver V-cycle:

\[
TG = (I - \alpha_1 S_FA)(I - \alpha_2 S_F\mathbf{A})(I - S_C A_C)
\]

Problem II: \(\nabla \times \nabla \times \mathbf{E} + \mathbf{E} = \mathbf{J} \)

Matrix form: \(\hat{A} \mathbf{u} = \mathbf{v} \)

Two grid solver V-cycle:

\[
\hat{T}G = (I - \alpha_1 \hat{S}_F\hat{A})(I - \alpha_2 \hat{S}_\nabla \hat{A})(I - \hat{S}_C \hat{A}_C)
\]

Theorem: If \(h \) is small enough, then:

\[
\| TGe^{(n)} \| \leq \| \hat{T}Ge^{(n)} \| + Ch
\]

Notice that \(C \) is independent of \(h \) and \(p \).
A TWO GRID SOLVER FOR ELECTROMAGNETICS

A two grid solver for discretization of Maxwell’s equations using \(hp \)-FE

Helmholtz decomposition:

\[
H_D(\text{curl}; \Omega) = (\text{Ker}(\text{curl})) \oplus (\text{Ker}(\text{curl}))^\perp
\]

We define the following subspaces (\(T = \text{grid}, K = \text{element}, v = \text{vertex}, e = \text{edge} \)):

\[
\begin{align*}
\Omega_k^{v,i} &= \text{int}(\bigcup \{ \bar{K} \in T_k : v_{k,i} \in \partial K \}) ; \\
\Omega_k^{e,i} &= \text{int}(\bigcup \{ \bar{K} \in T_k : e_{k,i} \in \partial K \}) ;
\end{align*}
\]

\[
\begin{align*}
M_{k,i}^{v} &= \{ u \in M_k : \text{supp}(u) \subset \Omega_k^{v,i} \} ; \\
M_{k,i}^{e} &= \{ u \in M_k : \text{supp}(u) \subset \Omega_k^{e,i} \} ; \\
W_{k,i}^{v} &= \{ u \in W_k : \text{supp}(u) \subset \Omega_k^{v,i} \} ; \\
W_{k,i}^{e} &= \{ u \in W_k : \text{supp}(u) \subset \Omega_k^{e,i} \} = \emptyset.
\end{align*}
\]

Hiptmair proposed the following decomposition of \(M_k \):

\[
M_k = \sum_e M_{k,i}^{e} + \sum_v \nabla W_{k,i}^{v}
\]

Arnold et. al proposed the following decomposition of \(M_k \):

\[
M_k = \sum_v M_{k,i}^{v}
\]
8. PERFORMANCE OF THE TWO GRID SOLVER

Numerical Studies

2002

- Importance of the choice of shape functions.
- Importance of the relaxation parameter.
- Selection of patches for the block Jacobi smoother.
- Effect of averaging.
- Error estimation.
- Smoothing vs two grid solver.
- Guiding hp-adaptivity with a partially converged fine grid solution.

2003

- Guiding hp-adaptivity with a partially converged fine grid solution for EM problems.
- Efficiency of the two grid solver.
- Number of elements per wavelength required by the two grid solver to converge.
- Control of the dispersion error.
- Applications to real world problems.
8. PERFORMANCE OF THE TWO GRID SOLVER

Orthotropic heat conduction example

Equation: $\nabla (K \nabla u) = f^{(k)}$

$$K = K^{(k)} = \begin{bmatrix} K_x^{(k)} & 0 \\ 0 & K_y^{(k)} \end{bmatrix}$$

$K_x^{(k)} = (25, 7, 5, 0.2, 0.05)$

$K_y^{(k)} = (25, 0.8, 0.0001, 0.2, 0.05)$

Solution: unknown

Boundary Conditions:

$K^{(i)} \nabla u \cdot n = g^{(i)} - \alpha^{(i)} u$

Convergence history

(tolerance error = 0.1 %)

Final hp grid

Supervisor: Leszek Demkowicz

The University of Texas at Austin
8. PERFORMANCE OF THE TWO GRID SOLVER

Guiding automatic h_p-refinements

Orthotropic heat conduction. Guiding h_p-refinements with a partially converged solution.

Energy error estimate

Discretization error estimate

Number of iterations

Supervisor: Leszek Demkowicz

The University of Texas at Austin
8. PERFORMANCE OF THE TWO GRID SOLVER

Plane Wave incident into a screen (diffraction problem)

Geometry

Second component of electric field

Convergence history
(tolerance error = 0.1 %)

Final hp-grid

Supervisor: Leszek Demkowicz

The University of Texas at Austin
Numerical Results

Guiding automatic hp-refinements

Discretization error estimate

Number of iterations
8. PERFORMANCE OF THE TWO GRID SOLVER

Waveguide example

Module of Second Component of Magnetic Field

Convergence history
(tolerance error = 0.5 %)

Final hp-grid

Supervisor: Leszek Demkowicz
The University of Texas at Austin
8. PERFORMANCE OF THE TWO GRID SOLVER

Guiding automatic hp-refinements

Waveguide example. Guiding hp-refinements with a partially converged solution.

Discretization error estimate

Number of iterations

Supervisor: Leszek Demkowicz

The University of Texas at Austin
8. PERFORMANCE OF THE TWO GRID SOLVER

Efficiency of the two grid solver

We studied scalability of the solver with respect \(h \) and \(p \).

\[
\text{Speed} = \text{Coarse grid solve} + \mathcal{O}(p^9N)
\]

We implemented an efficient solver.

- Fast integration rules.
- Fast matrix vector multiplication.
- Fast assembling.
- Fast patch inversion.
- Fast construction of prolongation/restriction operator.
8. PERFORMANCE OF THE TWO GRID SOLVER

3D shock like solution example

Equation: \(-\Delta u = f\)
Geometry: unit cube

Solution: \(u = \text{atan}(20 \sqrt{r} - \sqrt{3})\)
\(r = (x - .25)^2 + (y - .25)^2 + (z - .25)^2\)
Dirichlet Boundary Conditions

Convergence history
(tolerance error = 1%)

Final \(hp\) grid

Supervisor: Leszek Demkowicz

The University of Texas at Austin
8. PERFORMANCE OF THE TWO GRID SOLVER

Performance of the two grid solver

3D shock like solution example

In core computations, AMD Athlon 1 Ghz processor.
8. PERFORMANCE OF THE TWO GRID SOLVER

Performance of the two grid solver
3D shock like solution problem

<table>
<thead>
<tr>
<th>Grid</th>
<th>Nrdofs</th>
<th>Total time</th>
<th>Memory*</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.15M</td>
<td>8 minutes</td>
<td>1.0 Gb</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.27M</td>
<td>10 minutes</td>
<td>2.0 Gb</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2.15M</td>
<td>50 minutes</td>
<td>3.5 Gb</td>
<td>4</td>
</tr>
</tbody>
</table>

*Memory = memory used by nonzero entries of stiffness matrix
In core computations, IBM Power4 1.3 Ghz processor.
8. PERFORMANCE OF THE TWO GRID SOLVER

Convergence history

3D shock like solution example.
Scales: ERROR VS TIME.
9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example (Baker-Hughes): Electrostatics

Dirichlet Boundary Conditions
\[u(\text{boundary}) = -\ln r, \quad r = \sqrt{x^2 + y^2} \]
9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: final hp-grid, Zoom = 1
9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: final hp-grid, Zoom = 10^{13}
9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at distances 0.01-1 from the singularity
9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at distances 0.0001-0.01 from the singularity
9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at distances 0.000001-0.0001 from the singularity
9. ELECTROMAGNETIC APPLICATIONS

Time Harmonic Maxwell’s Equations

\[\nabla \times \mathbf{E} = -j\mu\omega \mathbf{H} \]
\[\nabla \times \mathbf{H} = j\omega \epsilon \mathbf{E} + \sigma \mathbf{E} \]

Reduced Wave Equation:

\[\nabla \times \left(\frac{1}{\mu} \nabla \times \mathbf{E} \right) - (\omega^2 \epsilon - j\omega \sigma) \mathbf{E} = -j\omega J_{imp} \]

Boundary Conditions (BC):

Dirichlet BC at a PEC surface:

\[\mathbf{n} \times \mathbf{E} = 0 \text{ on } \Gamma_2 \cup \Gamma_4 \]

Neumann BC’s:

\[\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E} = -j\omega \text{ on } \Gamma_1 \]
\[\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E} = 0 \text{ on } \Gamma_3 \]
9. ELECTROMAGNETIC APPLICATIONS

Battery example: Convergence history

2Dhp90: A Fully automatic hp-adaptive Finite Element code

SCALES: nrdof^0.33, log(error)
9. ELECTROMAGNETIC APPLICATIONS

Battery example: final \textit{hp}-grid, Zoom = 1
9. ELECTROMAGNETIC APPLICATIONS

Why the optimal grid is so bad?

Optimization is based on minimization of the ENERGY NORM of the error, given by:

$$\| \text{error} \|^2 = \int | \text{error} |^2 + \int | \nabla \times \text{error} |^2$$

Interpretation of results:

- The grid is optimal for the selected refinement criteria,
- but our refinement criteria is inadequate for our purposes.
9. ELECTROMAGNETIC APPLICATIONS

Waveguide example with five iris

Geometry of a cross section of the rectangular waveguide

H-plane five resonant iris filter.

Dominant mode (source): TE_{10}—mode.

Dimensions $\approx 20 \times 2 \times 1$ cm.

Operating Frequency $\approx 8.8 - 9.6$ Ghz

Cutoff frequency ≈ 6.56 Ghz
9. ELECTROMAGNETIC APPLICATIONS

FEM solution for frequency \(= 8.72 \text{ Ghz} \)

\[
|H_x|, |H_y|, \sqrt{|H_x|^2 + |H_y|^2}
\]

\[
|S_{11}|, \text{ Frequency (GHz)}
\]
9. ELECTROMAGNETIC APPLICATIONS

FEM solution for frequency = 8.82 GHz

\[|H_x| \]

\[|H_y| \]

\[\sqrt{|H_x|^2 + |H_y|^2} \]

Supervisor: Leszek Demkowicz

The University of Texas at Austin
9. ELECTROMAGNETIC APPLICATIONS

FEM solution for frequency $= 9.58$ Ghz

$|H_x|$

$|H_y|$

$\sqrt{|H_x|^2 + |H_y|^2}$

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>S_τ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>-35</td>
</tr>
<tr>
<td>8.9</td>
<td>-35</td>
</tr>
<tr>
<td>9</td>
<td>-35</td>
</tr>
<tr>
<td>9.1</td>
<td>-35</td>
</tr>
<tr>
<td>9.2</td>
<td>-35</td>
</tr>
<tr>
<td>9.3</td>
<td>-35</td>
</tr>
<tr>
<td>9.4</td>
<td>-35</td>
</tr>
<tr>
<td>9.5</td>
<td>-35</td>
</tr>
<tr>
<td>9.6</td>
<td>-35</td>
</tr>
</tbody>
</table>
9. ELECTROMAGNETIC APPLICATIONS

FEM solution for frequency $= 9.71$ Ghz

$|H_x|$

$|H_y|$

$\sqrt{|H_x|^2 + |H_y|^2}$

$|S_{11}|$ (dB)

Supervisor: Leszek Demkowicz
The University of Texas at Austin
9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Our refinement technology incorporates:

- An hp-adaptive algorithm
 - Low dispersion error
 - Small h is not enough
 - Large p required
 - Waveguide example: $p \approx 3$

- A two grid solver
 - Convergence of iterative solver
 - Insensitive to p-enrichment ($1 \leq p \leq 4$)
 - Coarse grid sufficiently fine
 - Waveguide example: $\lambda/h \approx 9$

Limitations of the hp-strategy for wave propagation problems:

We need large p and small h.

Supervisor: Leszek Demkowicz

The University of Texas at Austin
9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Does convergence (or not) of the two grid solver depends upon h and/or p? How?

<table>
<thead>
<tr>
<th>Convergence of two grid solver</th>
<th>$p = 1$</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
<th>$p = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr. of elements per $\lambda = 7, 13$</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Nr. of elements per $\lambda = 7, 11$</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Nr. of elements per $\lambda = 6, 13$</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Convergence (or not) of the two grid solver is (almost) insensitive to p-enrichment.
9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Conclusion: We need to control the dispersion error.
9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Convergence history for different initial grids

Conclusion: Do we need to control the dispersion error?

Supervisor: Leszek Demkowicz

The University of Texas at Austin
10. CONCLUSIONS AND FUTURE WORK

- **Exponential convergence** is achieved for real world problems by using a fully automatic hp-adaptive strategy.
- **Multigrid** for highly nonuniform hp-adaptive grids is an efficient iterative solver.
- It is possible to guide hp-adaptivity with partially converged solutions.
- There is a compromise between large p and small h on the design of the initial grid.
- This numerical method can be applied to a variety of real world EM problems.
10. CONCLUSIONS AND FUTURE WORK

Completed tasks

- Designed and implemented a 2D and 3D version of the two grid solver for elliptic problems.
- Studied numerically the 2D and 3D versions of the two grid solver.
- Designed, studied and implemented a two grid solver for 2D Maxwell’s equations.
- Studied and designed an error estimator for a two grid solver for Maxwell’s equations.
- Studied performance of different smoothers (in context of the two grid solver) for Maxwell’s equations.
- Designed, studied, and implemented a flexible CG/GMRES method that is suitable to accelerate the two grid solver for Maxwell’s equations.
- Developed a convergence theory for all algorithms mentioned above.
- Applied the h_p-adaptive strategy combined with the two grid solver in order to solve a number of problems related to waveguide filters design, and modeling of LWD electromagnetic measuring devices.

Future Tasks

<table>
<thead>
<tr>
<th>Future Tasks</th>
<th>Completion date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve the 3D Fickera problem using h_p-adaptivity and the two grid solver.</td>
<td>NOV 2003</td>
</tr>
<tr>
<td>Implement and study a two grid solver for 3D Maxwell’s equations.</td>
<td>DEC 2003</td>
</tr>
<tr>
<td>Utilize this technology to solve a 3D model problem related to Radar Cross Section (RCS) analysis.</td>
<td>JAN 2004</td>
</tr>
<tr>
<td>Write and defend dissertation.</td>
<td>MAR 2004</td>
</tr>
</tbody>
</table>