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Abstract

We analyze the problem of averaged observability and control of wave equations.
This topic is motivated by the control of parameter-dependent systems of wave equations. We look for controls

ensuring the controllability of the averages of the states with respect to the parameter. This turns out to be
equivalent to the problem of averaged observation in which one aims at recovering the energy of the initial data
of the adjoint system by measurements done on its averages, under the assumption that the initial data of all the
components of the adjoint system coincide.

The problem under consideration is weaker than the classical notion of simultaneous observation and control.
The method of proof uses propagation arguments based on H-measures or microlocal defect measures that

reduce the problem to non-standard unique-continuation issues.
Using transmutation techniques we also derive some results on the averaged observation and control of parame-

ter-dependent heat equations.
To cite this article: M. Lazar, E. Zuazua, C. R. Acad. Sci. Paris, Ser.

Résumé

Contrôle et observation en moyenne d’équations des ondes dépendant de paramètres.
On étudie le problème de l’observation et contrôle en moyenne d’équations des ondes.
Le sujet est motivé par le contrôle d’équations des ondes dépendant de paramètres. On s’intéresse à la contrôlabi-

lité des moyennes des états par rapport aux paramètres. Ceci équivaut au problème de l’observation des états
adjoints dépendant des paramètres mais tous avec les mêmes données initiales et ceci à partir de l’observation des
moyennes.

Le problème en considération est plus faible que celui de la contrôlabilité ou observabilité simultanée étudié
auparavant.

La méthode de preuves utilise des arguments de propagation qui emploient les H-mesures ou mesures de défaut
microlocales, et qui réduisent le problème à des questions nouvelles de continuation unique.
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En utilisant des arguments de transmutation nous obtenons aussi quelques résultats pour le contrôle et l’obser-
vation en moyenne des équations paraboliques dépendant de paramètres.

Pour citer cet article : M. Lazar, E. Zuazua, C. R. Acad. Sci. Paris, Ser.

1. Introduction

We analyze the problem of controlling the averaged value of a system of parameter-depending wave
equations by a single control. The problem is relevant in applications in which the control has to be
chosen independently of the parameter value, in a robust manner.

This notion was previously introduced in [12] both in the context of finite-dimensional linear and PDE
systems.

The problem is equivalent to that of averaged observability in which we try to determine the energy
of an initial datum for the parameter-dependent wave equations, by means of simply observing their
averages with respect to the parameter.

These notions are weaker than those of simultaneous control and observation ([6] and [1]). In simulta-
neous control all the wave equations, regardless of the value of the parameter, need to be controlled by
the same control. In simultaneous observation the initial data of the solutions whose average is observed
are supposed to depend arbitrarily on the parameter and not all to be the same as when dealing with
averaged observation.

Our main results of averaged observation and, by duality, of averaged control, employ tools of microlocal
analysis, and, more precisely, propagation arguments based on the use of microlocal defect measures or
H-measures introduced independently by P. Gérard [9] and L. Tartar [11]. 1 We refer the reader to the
mentioned articles for the properties of these measures (localization, propagation, etc.) used in this Note.
Our methods are strongly inspired in those developed in earlier works for the observation and control of
hyperbolic equations [3,4] and [6], among others.

In the next section we discuss the simplest case of a system of two distinct wave equations. Results
on simultaneous observability, together with the appropriate assumptions and relations to the existing
results are given in Section 3. Using transmutation techniques the results obtained for wave equations are
then transferred to systems of heat equations (Section 4). We close the paper by pointing towards some
open problems and future directions of research.

2. Averaged observability

As mentioned above, we consider the case where the system under consideration only involves two
modes, depending on the velocity of propagation of solutions, denoted respectively by c1, c2 and u1, u2:

∂ttui − div (ci(x)∇ui) = 0, (t,x) ∈ R+ × Ω

ui(0, ·) = u0 ∈ L2(Ω)

∂tui(0, ·) = ũ0 ∈ H−1(Ω), i = 1, 2 ,

(1)
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1. In the sequel, for simplicity, we shall use the terminology of H-measures.
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where the space domain Ω is assumed to be a compact manifold without boundary. As for the coefficients
entering the system, we assume they are bounded from below by a positive constant. Furthermore, if not
stated otherwise, it is assumed that c1 is of class C1,1, thus ensuring well posedness of the bicharacteristic
flow of the corresponding wave operator, while c2 is merely continuous.

We investigate the conditions under which one can recover the energy of the initial data, which are
the same for both components, by observing the average of solutions, θu1 + (1− θ)u2, with a parameter
θ ∈ 〈0, 1].

The main result of this Note is as follows:

Theorem 2.1 Suppose the equations’ coefficients satisfy

c1(x)− c2(x) 6= 0, x ∈ ω , (2)

where ω is an open subset of Ω and T is a time such that 〈0, T 〉 × ω satisfies the Geometric Control
Condition (GCC, [5]) for the first equation.

Then, for any θ ∈ 〈0, 1] there exists a constant Cθ such that the following estimate holds

E(0) := ‖u0‖2L2 + ‖ũ0‖2H−1 ≤ Cθ
∫ T

0

∫
ω

|θu1 + (1− θ)u2|2dxdt . (3)

Remark 1 Several remarks are in order.
– The case θ = 1 holds trivially, as it coincides with the observability problem for a single equation,

and corresponds to the well known result of [5].
– The theorem also holds, as well as its proof, if the system (1) is considered on a bounded, smooth do-

main Ω with Dirichlet boundary conditions. Indeed, the localization property for H-measures used in
the proof holds within any open subdomain and is not affected by boundaries. Moreover, the propaga-
tion property of these measures also holds true in this case thanks to the results of [3]. The reflection
law of measures is simpler to achieve and is more intuitive when the reflection is hyperbolic. In other
words, a measure that vanishes along a bicharacteristic ray when getting to the boundary transver-
sally is reflected as being null along the reflected broken bicharacteristic. This allows fully extending
our results to the case of convex domains. For general domains one needs to consider glancing and
diffractive situations as well.
Of course, all these technical difficulties disappear if the control acts on a neighborhood of the domain
boundary.

– Note that this averaged observability result holds under, essentially, the condition that GCC is satisfied
for the first equation. No assumption is done on the velocity of propagation of the second equation
(other than being merely continuous and not coinciding with the first one in ω).

– The assumption (2) requires the coefficients to be distinct everywhere in the observation subset.
This assumption is not optimal since, for instance, the averaged observability inequality holds when
c1 ≡ c2 everywhere because, then, both solutions u1 and u2 coincide with its average. Obtaining sharp
conditions on the coefficients for (3) to hold is an interesting open problem.

– The constant Cθ can be taken to be uniform for θ ≥ θ∗ and θ∗ > 0.
– The result can be easily generalized to a system with any finite number of modes, all starting from

the same data. In that case the property (2) takes the form

c1(x)− ci(x) 6= 0, x ∈ ω , i 6= 1,

where ω satisfies the GCC in some time T > 0 for the i = 1. The coefficients are assumed to be
continuous, except the leading one, c1, which is assumed to be of class C1,1. Then for any averaging
set of numbers θi ∈ [0, 1], i = 1, ..., N such that

∑
i θi = 1 and θ1 > 0 there exists a constant Cθ such

that
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E(0) ≤ Cθ
∫ T

0

∫
ω

|
N∑
i=1

θi∇ui|2dxdt.

Proof: We now present the sketch of the proof that uses compactness-uniqueness arguments, similar
as in [3,6]. We proceed in several steps.
Step 1. We first prove the following relaxed observability inequality with a compact reminder term:

Proposition 2.2 Under the assumptions of Theorem 2.1, for a suitable Cθ, it holds:

E(0) ≤ Cθ

(∫ T

0

∫
ω

|θu1 + (1− θ)u2|2dxdt+ ‖u0‖2H−1 + ‖ũ0‖2H−2

)
. (4)

Proof: We argue by contradiction. Assuming the contrary, there exist sequences of initial conditions
(u0n), (ũ0n), such that the corresponding solutions un1 , u

n
2 satisfy

En(0) > n

(∫ T

0

∫
ω

|θun1 + (1− θ)un2 |2dxdt+ ‖u0n‖2H−1 + ‖ũ0n‖2H−2

)
. (5)

Without loosing generality we can assume that En(0) = 1.

Thus (5) implies that ‖u0n‖2H−1 + ‖ũ0n‖2H−2 → 0, resulting in weak convergence of (u0n, ũ0n) −⇀ (0, 0)
in L2(Ω) × H−1(Ω). Therefore the solutions (un1 , u

n
2 ) converge weakly to zero in L2(〈0, T 〉 × Ω) as well.

In order to obtain a contradiction, we have to show that the last convergence is strong, at least for one
component,un1 or un2 , since this will imply the strong convergence to zero of the initial data, which is
incompatible with the fact that En(0) = 1.

From the contradictory assumption (5) we have that the H-measure ν associated to a subsequence of
(θun1 + (1− θ)un2 ) vanishes on 〈0, T 〉 × ω. Furthermore, it is of the form

ν = θ2µ1 + (1− θ)2µ2 + θ(1− θ)2<µ12

where, on the right hand side, the elements of the matrix measure associated to the vector subsequence
of (un1 , u

n
2 ) are listed, with µ12 denoting the off-diagonal element.

The continuity of coefficients enables an application of the localization property for H-measures (e.g.
[9, Corollary 2.2]), which gives that each µj is supported within the corresponding characteristic set
{τ2 − cj(x)ξ2 = 0}, j = 1, 2. Due to the separation of velocities (2), it follows that their supports are
disjoint on the observability region. On the other hand, because of the positive semi-definiteness of matrix
H-measures, off-diagonal entries are dominated by the corresponding diagonal elements. More precisely,
it holds that suppµ12 ⊆ suppµ1 ∩ suppµ2, implying that µ12 = 0 on the observability region.

Thus we get that
ν = θ2µ1 + (1− θ)2µ2 = 0 on 〈0, T 〉 × ω .

As µ1 and µ2 are positive measures and θ > 0, it follows that µ1 vanishes on 〈0, T 〉 × ω as well. Using
the regularity assumption on c1 and taking into account that 〈0, T 〉×ω satisfies the GCC for the problem
(1) with i = 1, the propagation property for H-measures (e.g. [11, Theorem 3.12]) gives that µ1 vanishes
everywhere, implying strong convergence (to zero) of solutions un1 in L2((0, T )× Ω). The last convergence
implies strong convergence to zero of initial data in L2(Ω)×H−1(Ω), and thus we get a contradiction to
the assumption of the constant, non-zero initial energy.

2

Step 2. Here we follow a classical compactness-uniqueness procedure of reducing the observability for
low frequencies to an elliptic unique continuation result [5].

Let N(T ) be a subspace of L2(Ω)×H−1(Ω), consisting of initial data for which the average of solutions
to (1) vanishes on the observability region

N(T ) := {(u0, ũ0) ∈ L2(Ω)×H−1(Ω) | θu1 + (1− θ)u2 = 0, on 〈0, T 〉 × ω}.
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Based on the relaxed observability inequality (4) it follows that N(T ) is a finite dimensional space.
Furthermore, the following characterization holds.
Lemma 2.3 N(T ) = {0}.
Proof: Using that N(T ) is of finite dimension and the fact that the coefficients in the equations under
consideration are time-independent, one gets that N(T ) contains a vector (u0,−λu0), where u0 is an
eigenfunction of both Laplace operators −div (ci∇), i = 1, 2, under consideration, associated to a same
eigenvalue λ.

By the definition of N(T ) it follows θu1(0) + (1 − θ)u2(0) = u0 = 0 on ω. Being an eigenfunction of
the elliptic operator with C1,1 coefficient c1, classical unique continuation results (e.g. [10, Theorem 3])
imply u0 = 0 everywhere.

2

Step 3. Combining the two previous results, and using the contradiction argument in the same manner
as in the proof of Proposition 2.2, one easily obtains the strong observability inequality (3). 2

The observability inequality (3) above is equivalent to a property of averaged control for a linear
combination of solutions of the same wave system in the presence of a single control acting on all the
components of the system simultaneously (see [12]):

∂ttvi − div (ci∇vi) = χ〈0,T 〉×ωf, (t,x) ∈ R+ × Ω

vi(0, ·) = v0i ∈ H1(Ω)

∂tvi(0, ·) = ṽ0i ∈ L2(Ω), i = 1, 2 ,

(6)

with f ∈ L2(R+ × Ω). More precisely, the following result holds.
Theorem 2.4 For any choice of initial data of the system (6), any positive constants α and β, and any
final target (vT , ṽT ) ∈ H1(Ω)× L2(Ω) there exists a control f such that

(αv1 + βv2)(T, ·) = vT , ∂t(αv1 + βv2)(T, ·) = ṽT .

Note that unlike the system (1), the initial data for two components in (6) are not correlated.
Remark 2
Proposition 2.2 also holds, under the same conditions of the coefficients c1 and c2 if, instead of the same
initial data for the two equations entering in the system (1), one assumes that they are related by a bounded
linear operator. However, in order to deduce the strong observability inequality (3), one has to adjust the
proof of Lemma 2.3, which requires the unique continuation result to hold for an average of eigenfunctions
associated to different elliptic operators. Such generalization can be obtained in two settings: either it
is additionally assumed that coefficients ci are analytic and separated on the whole domain Ω, or the
linear operator linking the data of both solutions is such that whenever ((θu1(0) + (1− θ)u2(0))|ω = 0)
then

(
u1(0)|ω = u2(0)||ω = 0

)
. In addition, in the latter case, we have to require C1,1 regularity on all

coefficients, to ensure the unique continuation for each elliptic equation.
By duality, this corresponds to controlling a suitable linear combination of both solutions.

3. Simultaneous observability

We reconsider the system (1) but with initial data depending on the parameter:

∂ttui − div
(
ci(x)∇ui

)
= 0, (t,x) ∈ R+ × Ω

ui(0, ·) = u0i ∈ L2(Ω)

∂tui(0, ·) = ũ0i ∈ H−1(Ω), i = 1, 2 .

(7)

Proceeding similarly as above, one obtains the following result.
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Theorem 3.1 Suppose the coefficients of (7) are analytic and satisfy c1(x) − c2(x) 6= 0, x ∈ Ω . Let ω
be an open subset of Ω that satisfies the GCC in some time T > 0 for both problems in (1). Then, for
any θ ∈ 〈0, 1〉 there exists a constant Cθ such that the following estimate holds

E1(0) + E2(0) ≤ Cθ
∫ T

0

∫
ω

|θu1 + (1− θ)u2|2dxdt.

As already stated in Remark 1, stronger assumptions on coefficients stated above are related to the unique
continuation problem for an average θu01 + (1− θ)u02 of eigenfunctions associated to the elliptic operators
considered in (7).

This result of simultaneous observability requires the GCC condition to be satisfied by both systems
and not only by one of them as in the previous section. The corresponding dual problem consists of
controlling each individual component of the system (6) by means of the same control. These results are
closely related to those in [1,6].

4. The heat equation

By using transmutation techniques as developed in [7] the results above can be employed to derive null
controllability and observability properties for parameter-dependent parabolic equations as well:

∂tzi − div
(
ci(x)∇zi

)
= 0, (t,x) ∈ R+ × Ω

zi(0, ·) = z0i ∈ L2(Ω), i = 1, 2 .
(8)

Using transmutations out of the solutions of the heat equations above we can define,

ui(s,x) =

∫
R+

k(t, s)zi(t,x)dt,

where the kernel k is given by

k(t, s) =
1√
4πt

sin
(sS

4t

)
e

s2−S2

4t ,

and S > 0 is arbitrary, to get solutions ui of the wave equations with the same coefficients.
Applying the above results on simultaneous observation one gets the following:

Corollary 4.1 Assume the assumptions of Theorem 3.1 are satisfied. Then, for any T̃ > 0 and θ ∈ 〈0, 1〉
there exists a constant Cθ,T̃ such that the following estimate holds

∑
i

∫ ∞
0

e−
S2

2t ‖zi(t, ·)‖2L2dt ≤ Cθ,T̃
∫ T̃

0

∫
ω

∣∣∣(θz1 + (1− θ)z2
)

(t,x)
∣∣∣2dxdt . (9)

This corollary enables one to estimate the energy of the system (8) at an arbitrary strictly positive
time, namely, ‖z1(T̃ , ·)‖L2 + ‖z2(T̃ , ·)‖L2 . However, its initial energy at time t = 0 can not be recovered
from (9) because of the time-irreversibility of the heat equations under consideration.

The assumption on the set ω to satisfy the GCC could seem to be unnatural, since for scalar heat
equations no geometric conditions are needed for observability/controllability to hold. But this is the first
result in this direction and it does not fit in the existing literature of simultaneous control of heat like
equations where, most often, the principal part of the differential equations entering in the heat equations
of the system are assumed to be the same (see [2]).
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5. Conclusion

The results presented above can also be generalized to the case where the system under consideration
involves an infinite number of equations depending on a parameter, either discrete, or even continuous.
Such generalizations are not straightforward and one has to pay special attention to the arguments based
on the localization property for H-measures. In particular, when averaging an infinite number of sequences,
the measure associated to the average does not have necessarily to be supported within the set containing
the supports of all H-measures associated to each particular sequence, which disables the arguments used
in the proof of Proposition 2.2. Similarly, the condition on the separation of velocities requires more
detailed analysis. This issue will be analyzed in a forthcoming work.

The results we have presented on parabolic equations are the first ones of that type. It would be
interesting to see if Carleman inequalities, which is the tool that is most efficiently used to analyze
observability problems for parabolic equations (see [8]), can be directly applied to address these issues.
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