Classification of resonance Regge trajectories and a modified Mulholland formula

D. Sokolovski a, b, *, E. Akhmatskaya c, b

a Department of Chemical Physics, University of the Basque Country, Leioa, Spain
b IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
c Basque Center for Applied Mathematics (BCAM), Building 500, Bizkaia Technology Park, E-48160 Derio, Spain

ABSTRACT

We employ a simple potential model to analyze the effects which a Regge trajectory, correlating with a bound or a metastable state at zero angular momentum, has on an integral cross section. A straightforward modification of the Mulholland formula of Macek et al. (2004, 2009) [2] is proposed for more efficient separation of the resonance contribution.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

There has been recent interest in cold atomic and molecular collisions where scattering resonances may strongly influence observable cross section (see, for example, [1]). Earlier, Macek et al., who studied proton impact on neutral atoms [2], have shown that a resonance structure in the energy dependence of an integral cross section \(\sigma (E) \) is simply related to the properties of Regge trajectory(ies) [4] passing close to the real axis in the complex angular momentum (CAM) plane. The authors of [2] also employed a method, whose origin was traced back to the work of Mulholland [3], to separate the resonance (pole) contribution to \(\sigma (E) \) from its direct part. Regge trajectories studied in Refs. [2] and also in a potential model employed to describe low-energy electron–atom scattering (see, for example, [5]), correlate, at zero angular momentum, \(J = 0 \), with bound states trapped in an attractive well. At low energies, such trajectories tend to follow the real J-axis and then move into first quadrant of the CAM plane as \(E \) increases (see also [6–10]). The Mulholland formula of Refs. [2] was extended to the multichannel case in [11] and applied to atom–diatom reactive scattering, where Regge trajectories of a different (second) type were encountered [11,12]. Unlike their bound state counterparts, these trajectories typically approach the real positive J-axis from above as the energy increases. There has also been evidence [11,12] that the Mulholland formula of [2] may not account for all of the resonance contribution to \(\sigma (E) \), and ascribe a part of it to what is deemed to be the direct impact parameter-like term. The purpose of this Letter is to show that the trajectories of the second type are the ones which correlate with metastable rather than bound states of the original potential, as well as to explore their general behavior. We will also suggest a straightforward modification of the Mulholland formula in order to achieve a more efficient separation of \(\sigma (E) \) into a direct and resonance parts [13]. We will then test the modified formula on a simple potential model for which the direct and resonance scattering mechanisms are easily identified.

2. The model

Following [14] we consider potential scattering of a unit-mass particle with an energy \(E \) off a hard sphere surrounded by a rectangular well and a thin semi-transparent layer, so that the effective potential of the radial Schroedinger equation, shown in Fig. 1, takes the form (\(h = 1 \))

\[
U(r) = W(r) + \Omega \delta (r - R) + (\lambda^2 - 1)/2r^2, \quad \text{for } r < R - d,
\]

\[
W(r) = \begin{cases} \infty & \text{for } r \leq R - d, \\ -V = \text{const} & \text{for } R - d < r \leq R, \\ 0 & \text{for } r > R, \end{cases}
\]

Fig. 1. Effective potential \(U(r) \) (a.u.) vs. \(r \) for \(\lambda = 1/2 \) (solid), \(\lambda > 1/2 \) (dashed) and \(\lambda = |\lambda| \) (dot-dashed). Also shown by horizontal lines are a bound \((E_0 < 0)\) and a metastable \((E_0 > 0)\) states in the \(\lambda = 1/2 \) potential.
where \(\delta(z) \) is the Dirac delta and \(\lambda \) is related to the total angular momentum \(J \) as \(\lambda = J + 1/2 \). Outside the well, for \(r > R \), the wavefunction is given by

\[
\phi(r, E, \lambda) = (\pi kr/2)^{1/2} \left[H_\lambda^{(2)}(kr) + S(k, \lambda) H_\lambda^{(1)}(kr) \right],
\]

where \(S(k, \lambda) \) is the scattering matrix element, \(k = (2E)^{1/2} \) and \(H_\lambda^{(1)}(z) \) and \(H_\lambda^{(2)}(z) \) are the Hankel functions of the first and second kind, respectively. Inside the well, for \(R - d < r < R \), we have \(\phi(r) = A(k, \lambda) \psi_{\text{well}}(r) \).

\[
\psi_{\text{well}}(r, E, \lambda) \equiv \left[H_\lambda^{(2)}(qR - d) - H_\lambda^{(1)}(qR - d) \right] H_\lambda^{(1)}(qr) / H_\lambda^{(1)}(qR - d).
\]

where \(q \equiv (k^2 + 2V)^{1/2} \). The values of \(A \) and \(S \) are determined by requiring that \(\phi(r) \) be continuous at \(r = R \), while its logarithmic derivative experiences a jump by \(2\Omega \). Thus, we have (prime denotes differentiation with respect to \(r \))

\[
S(k, \lambda) = \Delta^{(2)}(E, \lambda)/\Delta^{(1)}(E, \lambda) = \left[\ln \left| H_\lambda^{(2)}(R) \right| - \ln \left| \psi_{\text{well}}(r, k, \lambda) \right| - 2\Omega \right] / \left[\ln \left| H_\lambda^{(1)}(r) \right| - \ln \left| \psi_{\text{well}}(r, k, \lambda) \right| - 2\Omega \right].
\]

It is readily seen that \(S(E, \lambda) \) has a pole whenever \(H_\lambda^{(1)}(kr) \) alone matches onto \(\psi_{\text{well}}(r, \lambda) \) at \(r = R \), i.e., provided

\[
\Delta^{(1)}(E, \lambda) = 0.
\]

With both \(E \) and \(\lambda \) allowed to take complex values, Eq. (6) defines an analytical function \(\lambda(E) \), typically single valued on a multi-sheet Riemann surface, and also its inverse, \(\tilde{E}(\lambda) \). Varying \(E \) along the real \(E \)-axis on the Riemann sheet of interest and reading off the values \(\Re \tilde{E}(\lambda) \) and \(\Im \tilde{E}(\lambda) \) one obtains a Regge trajectory and, for each value of \(E \), a Regge state \(\phi(r, E, \lambda(E)) \). At the pole, the first term in (3) can be neglected and, since for \(kr \gg 1 \), \((\pi kr/2)^{1/2} H_\lambda^{(1)}(kr) \approx \exp(ikr) \), a Regge state contains only an outgoing wave where \(r \) is large. Similarly, varying \(\lambda \) along the real \(\lambda \)-axis yields a complex energy trajectory \(\Re \tilde{E}(\lambda) \), \(\Im \tilde{E}(\lambda) \) and defines for each value of the angular momentum parameter \(\lambda \) an outgoing wave solution (Siegert state) \(\phi(r, \tilde{E}(\lambda), \lambda) \).

3. Two types of Regge trajectories

The model (1) supports at least 1 two kinds of Regge trajectories responsible for different types of resonance structures occurring in the integral cross sections. The two types can be distinguished by examining the value \(\tilde{E}(1/2) \equiv E_0 - i\gamma \) the Siegert energy takes for \(\lambda = 1/2 \), when the centrifugal potential vanishes:

(I) Regge trajectory related to a bound state. If \(E_0 < 0 \) and \(\gamma = 0 \), \(\phi(r, \tilde{E}(1/2), 1/2) \) is one of the bound states supported by the potential \(W(r) + \delta(r) - \Omega(r) \) in Fig. 1. Since the bound state contains for \(r > R \) only the decaying wave corresponding to the second term in Eq. (3), it also coincides with the Regge state \(\phi(r, E_0, 1/2) \). For \(E_0 < 0 \) and \(\gamma = 0 \), Eq. (6) defines the value of \(\lambda \) required to shift the bound state so that its energy aligns with \(E \). For \(d \ll R \) the centrifugal potential in Eq. (1) lifts the bottom of the rectangular well and, with it, the energy of the state approximately by \((\lambda^2 - 1/4)/(2R(d - 2/2)^2) \). Equating the shift to the difference \(E - E_0 \) yields an estimate for \(\lambda(E) \),

\[
\lambda(E)^2 \approx 2(E - E_0)(R - d/2)^2 + 1/4.
\]

For \(E > 0 \), in order to generate the outgoing flux, the centrifugal potential (and, therefore, \(\lambda \)) acquire a positive imaginary part. One, therefore, has \(\Im \lambda(E) > 0 \), which also increases with the energy. An example of such a behavior is given in Fig. 2. Regge trajectories of this type occur in collisions between protons and neutral atoms [2] and in modeling of low-energy electron–atom scattering [5].

(II) Regge trajectory related to a metastable state. If \(E_0 > 0 \) and \(\gamma > 0 \), \(\phi(r, \tilde{E}(1/2), 1/2) \) corresponds to a metastable state trapped between the hard sphere and the \(\delta \)-barrier (see Fig. 1). It no longer coincides with the Regge state \(\phi(r, E_0, \lambda(E_0)) \) but if the resonance is long-lived, both \(\gamma \) and \(\Im \lambda(E_0) \) are small. Then the behavior of the Regge trajectory for \(E \) close to \(E_0 \) can be rationalized by assuming the \(\delta \)-barrier impenetrable and considering the centrifugal potential required to align a positive-energy bound state with a given \(E > 0 \). For \(0 < E < E_0 \), the state must be lowered by making the well deeper and the centrifugal potential attractive, while for \(E > E_0 \) the state needs to be lifted by making the well shallower. Estimated with the help of Eq. (7), \(\lambda(E) \) is real for \(E > E_0 - (R - d/2)^2/8 \) and imaginary for \(E < E_0 - (R - d/2)^2/8 \) [cf. Fig. 3(a), dashed line]. Tunneling across the \(\delta \)-barrier modifies this simple picture as shown in Fig. 3(a). Note that as \(E \rightarrow 0 \), \(\Im \lambda(E) \) tends to a finite value, while \(\Re \lambda(E) \rightarrow 0 \), and then remains zero for \(E < 0 \), where the Regge state becomes a bound state in the (real valued) effective potential (1) with an attractive centrifugal term (cf. Fig. 1). Regge trajectories of this second type have been found in the analysis of reactive cross sections in atom–dimer scattering [11,12].

Two kinds of Regge trajectories approach the real \(\lambda \)-axis in two different manners and, therefore, affect the integral cross-sections differently, as shown in Figs. 4(a) and 5(a). A trajectory of type (I) typically produces in a TCS a low-energy pattern. At higher energies the trajectory moves deeper into the CAM plane and the TCS is no longer affected by a resonance. A trajectory of type (II) typically produces a pattern which starts at \(E \approx E_0 \), as the trajectory approached the real \(\lambda \)-axis from above. Initially the pattern varies slowly with \(E \), with more rapid oscillations added to it at higher energies.
by dashed lines is the Regge trajectory for the bound state arising as part contributions. The direct part corresponds to trajectories deflected 4. A modified Mulholland formula

\[\lambda(E) \]

\[\Omega = \infty \]

\[n = 0, 1, 2 \]

\[\sigma(E) = \sigma_1(E) + \sigma_{\text{res}}(E) + \sigma_2(E), \]

\[\sigma_{\text{res}}(E) = \sum_{n} \sigma_{\text{res}}^{(n)}(E) = -\frac{8\pi^2}{k^2} \lim_{\lambda \to \lambda(0)} \frac{\hat{\lambda} \rho}{1 + \exp(-2\pi i \lambda)}, \]

\[\sigma_2(E) = -\frac{8\pi^2}{k^2} \Re \int_{0}^{\infty} \frac{1 - [S(k, \lambda) + S(k, -\lambda)]/2}{1 + \exp(-2\pi i \lambda)} \lambda \, d\lambda, \]

where \(\rho(E) = \lim_{\lambda \to \lambda(0)} (\lambda - \hat{\lambda}) S(k, \lambda) \) is the S-matrix residue, and \(\sigma_{\text{res}}^{(n)}(E) = 8\pi^2 k^{-2} \lim[\lambda \rho \exp(i\pi(2\lambda + 1))] \). In Eq. (8), the first term is assumed to yield a smooth impact parameter-type contribution to \(\sigma(E) \), \(\sigma_{\text{res}}(E) \) is expected to contain the resonance effects, and \(\sigma_2(E) \), which results from deformation of the integration contours, to be negligible or, at least, a structureless function of energy [2].

The difference \(\sigma(E) - \sigma_{\text{res}}(E) \) for the Regge trajectory in Fig. 3 is shown in Fig. 4(a) by a dashed line. Although some of the oscillatory pattern has been removed, \(\sigma(E) - \sigma_{\text{res}}(E) \), still retains a broad structure associated with the resonance. The reason becomes clear as one notes that in Eq. (10) each \(\sigma_{\text{res}}^{(n)}(E) \) contains a damping factor of \(\exp(-2\pi n \Im \hat{\lambda}) \) and, therefore, represents a contribution to a creeping wave makes to the forward scattering am-

Fig. 3. (Color online.) Regge trajectory related to the lowest metastable state for \(\hbar^2 V = 165, \hbar^2 R = 32.5 \) and \(d/R = 0.29 \): (a) \(\Re \lambda \) and \(\Im \lambda \) vs. \(E \). Also shown by dashed lines is the Regge trajectory for the bound state arising as \(\Omega R \to \infty \); (b) \(\Im \lambda \) vs. \(\Re \lambda \).

Fig. 4. (Color online.) (a) Full integral cross section \(\sigma(E) \) (thick solid) and its direct part \(\sigma(E) - \sigma_{\text{res}}(E) \) (solid) for the Regge trajectory in Fig. 3. Also shown are \(\sigma(E) - \sigma_{\text{res}}(E) \) as given by Eq. (8) (dashed) and \(\sigma(E) \) for \(\Omega = \infty \) (dot-dashed). Narrow peaks correspond to a Regge trajectory related to a different bound state in the well. (b) Mulholland contributions for \(n = 0, 1, 2 \) rotations of the creeping wave around the hard-sphere core.

Fig. 5. (Color online.) (a) Full integral cross section \(\sigma(E) \) (thick solid) and its direct part \(\sigma(E) - \sigma_{\text{res}}(E) \) (solid) for the Regge trajectory in Fig. 2. Also shown are \(\sigma(E) - \sigma_{\text{res}}(E) \) as given by Eq. (8) (dashed) and \(\sigma(E) \) for \(\Omega = \infty \) (dot-dashed). Narrow peaks correspond to a Regge trajectory related to a different bound state in the well. (b) Mulholland contributions for \(n = 0, 1, 2 \) rotations of the creeping wave around the hard-sphere core.

4. A modified Mulholland formula

For a model (1), the scattering amplitude contains two main contributions. The direct part corresponds to trajectories deflected off the outer layer represented by the \(\delta \)-barrier. The resonance part corresponds to a ‘creeping wave’ trapped between the hard core and the outer layer. The wave, initiated by partial waves with \(\lambda \approx \hat{\lambda}(E) \) which can penetrate the \(\delta \)-barrier, orbits the hard core and decays as the particle tunnels back into continuum. The purpose of the CAM analysis is to decompose the integral cross-section \(\sigma(E) \) into direct and resonance parts corresponding to the two scattering mechanisms [2]. This can be achieved, for example, by using the optical theorem \(\sigma(E) = (4\pi/\hbar^2) \Im f(0) \) and applying the Poisson sum formula to the partial wave expansion of the forward scattering amplitude, \(f(0) = (2\pi k)^{-1} \sum_{J, l=0}^{\infty} (2J+1) S(k, J) [\delta(k, J) + 1/2 - 1] \) [5]. Deforming the contours of integration, one obtains the Mulholland formula [2,5]

\[\sigma(E) = \sigma_1(E) + \sigma_{\text{res}}(E) + \sigma_2(E), \]

\[\sigma_1(E) = 4\pi k^{-2} \int_{0}^{\infty} \Re[1 - S(k, \lambda)] \lambda \, d\lambda, \]

\[\sigma_{\text{res}}(E) = \sum_{n} \sigma_{\text{res}}^{(n)}(E) = -\frac{8\pi^2}{k^2} \lim_{\lambda \to \lambda(0)} \frac{\hat{\lambda} \rho}{1 + \exp(-2\pi i \lambda)}. \]

\[\sigma_2(E) = -\frac{8\pi^2}{k^2} \Re \int_{0}^{\infty} \frac{1 - [S(k, \lambda) + S(k, -\lambda)]/2}{1 + \exp(-2\pi i \lambda)} \lambda \, d\lambda, \]

Please cite this article in press as: D. Sokolowski, E. Akhmatskaya, Physics Letters A (2011), doi:10.1016/j.physleta.2011.06.027
platitude after completing \(n \) rotations around the core. With only \(n > 0 \) terms contributing to \(\sigma_{\text{res}}(E) \), the Mulholland decomposition (8) misplaces the first \((n = 0) \) contribution by including it in the direct term \(\sigma_1 \). This can be remedied by subtracting \(\sigma_{\text{res}}^{(0)}(E) \) shown in Fig. 4(b) from \(\sigma_1 \) and adding it to \(\sigma_{\text{res}} \) so that the modified Mulholland formula reads \(\sigma = \sigma_1 + \sigma_{\text{res}} + \sigma_2 \) with

\[
\sigma_1(E) = 4\pi k^{-2} \int_{\Gamma} \text{Re} \left[1 - S(k, \lambda) \right] \lambda \, d\lambda,
\]

\[
\sigma_{\text{res}}'(E) = \sum_{n=0}^{\infty} \sigma_{\text{res}}^{(n)}(E) = \frac{8\pi^2}{k^2} \text{Im} \frac{\lambda \rho}{1 + \exp(2\pi i \lambda)}, \quad \lambda \in \mathbb{R}.
\]

where contour \(\Gamma \) starts at the origin, ends at \(+\infty \) and passes above the Regge pole at \(\lambda \) in the first quadrant of the complex \(\lambda \)-plane. The difference \(\sigma(E) - \sigma_{\text{res}}'(E) \) shown in Fig. 4(a) (solid) contains no resonance structure and closely resembles the integral cross section produced by the direct trajectories reflected off an impenetrable sphere of radius \(R \) (dot-dashed).

Results of the same analysis for the bound state Regge trajectory in Fig. 2 are shown in Fig. 5. In a similar way, the modified Mulholland decomposition (12) allows to separate effects of resonance capture from direct scattering off the outer layer, while the original formula (8) underestimates the resonance contribution. Fig. 5(b) shows partial resonance cross sections \(\sigma_{\text{res}}^{(n)}(E) \) for \(n = 0, 1, 2 \). Note that in Figs. 4(b) and 5(b) \(\sigma_{\text{res}}^{(n)}(E) \) with \(n > 0 \) are concentrated in the regions where a Regge trajectory passes close to real \(\lambda \) axis and produces sharp features in \(\sigma(E) \).

5. Conclusions

In summary, the types of behavior shown in Figs. 2 and 3 are typical of Regge trajectories which correlate with a bound and a metastable state in the original \((J = 0) \) potential, respectively. Both can be understood in terms of a centrifugal potential required to align a resonance state with a given energy \(E \). Trajectory of each type produces a distinct resonance pattern in an integral cross section. In both cases, a straightforward modification of the Mulholland formula allows for a more efficient separation of the resonance and the direct contributions. Although a simple model was used for illustrational purposes, we expect these conclusions to be valid also for more realistic potentials. Extension to inelastic and reactive scattering will be considered elsewhere.

Acknowledgements

This work was supported by the Basque Government grant IT472 and MICINN (Ministerio de Ciencia e Innovacion) grant FIS2009-12773-C02-01.

References