
A NOTE ON FRACTIONAL ORDER POINCARÉ’S INEQUALITIES
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Abstract. This note is devoted to the study of fractional order Poincaré’s inequalities on different manifolds. Unlike
compactness-uniqueness argument, by the spectrum theory and the frequency decomposition technique, we give the
precise Poincaré constants, which depend on the geometric structure of the manifolds and symbols of the fractional
order pseudodifferential operators.

Résumé. Cette note est consacrée à l’étude des inégalités de Poincaré généralisées d’ordre fractionnaire sur des
variétés différentes. Contrairement à l’argument de compacité-unicité, par la théorie du spectre et la technique de
la décomposition de fréquence, nous donnons des constantes de Poincaré précises, qui dépendent de la structure
géométrique des variétés et des symboles des opérateurs pseudodifférentiels fractionnaires.

1. Introduction

Pseudodifferential operators, especially fractional order operators (also called Riesz fractional derivatives) are very

important mathematical models which describe plenty of anomalous dynamic behaviors in our daily life, such as charge

carrier transport in amorphous semiconductors, nuclear magnetic resonance diffusometry in percolative and porous
media, transport on fractal geometries, diffusion of a scalar tracer in an array of convection rolls, dynamics of a bead

in a polymeric network, transport in viscoelastic materials, etc. More interesting industrial applications and modeling
process please refer to [8][9][10][14].

For u ∈ H1
0 (Ω), where Ω is a bounded Lipschitz domain in RN , classical Poincaré’s inequality establishes a relation-

ship between ‖u‖L2(Ω) and ‖∇u‖L2(Ω) by compactness-uniqueness argument. Due to this observation, in the bounded

domain case, homogeneous Sobolev space is equivalent to the nonhomogeneous one. This inequality shows us that the
L2 norm of u is bounded above by the L2 norm of its gradient. However, gradient operator is too restricted, what we are

interested in is the estimate for general pseudodifferential operators, especially for the fractional order pseudodifferential
operators on different manifolds. In Section 2, we introduce the precise definitions of pseudodifferential operators on dif-

ferent manifolds, namely, on RN , compact manifolds without boundary, for instance, torus TN and unit sphere SN , and

also smooth manifolds with boundary. Besides, we present several typical operators which are extensively investigated
by mathematicians. It is known that the classical Poincaré’s inequality is proved by compactness-uniqueness argument,

which ignores the geometric impact. Consequently, the structure of Poincaré constant is unclear. In Section 2.1-2.3, we

prove the fractional order Poincaré’s inequalities for abstract pseudodifferential operators on different manifolds. This
part generalizes the classical inequality extraordinarily and gives the precise Poincaré constants, which depend on the

symbols of the linear operators and geometric structure of the manifolds. In particular, the boundedness of domain can

be dismissed for certain pseudodifferential operators, for instance, the harmonic oscillating operator −∆ + |x|2 in [21].
In reality, these inequalities are very important in the analysis of domain decomposition, multilevel iterative methods

for elliptic problems, etc.

2. Fractional order Poincaré’s inequalities on different manifolds

Let M be a smooth manifold. A continuous linear operator P : C∞0 (M) → D ′(M) is a pseudodifferential operator

in OPSm(M) provided its Schwartz kernel K is C∞ off the diagonal in M × M , and there exists an open cover Ωj

of M , a subordinate partition of unity ψj , and diffeomorphisms Fj : Ωj → Oj ⊂ RN that transform the operators

ψkPψj : C∞(Ωj) → E ′(Ωk) into pseudodifferential operators in OPSm(RN ). If M is noncompact, it is often of interest

to place specific restrictions on K near infinity. For instance, since RN is noncompact, we insist that the kernel be

properly supported to avoid the negative consequence that pseudodifferential operators defined above cannot always be
composed. And under this assumption, P : C∞0 (RN ) → C∞0 (RN ). If M is compact, this problem does not arise. In the

following, we give the precise definitions of PDO on the compact smooth manifold with or without boundary and the
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whole space RN . On top of this, fractional order Poincaré’s inequalities with explicit Poincaré constants on different
manifolds are given.

2.1. Discussion on the compact smooth manifold without boundary. In this section we mainly consider the

pseudodifferential operators (PDO) defined on the torus TN , which is a typical compact smooth manifold without
boundary. The discussion can be applied to general Laplace-Beltrami operators successfully, such as on the sphere SN ,

etc. First and foremost, we give the precise definition of PDO on the torus.

Definition 2.1. On the torus TN , let u ∈ C∞(TN ), then the sequence of Fourier series {û(m)}m∈ZN defined by

(1) û(m) , (2π)−N

Z

TN
u(x) exp(−i〈m, x〉)dx,

is a rapidly decreasing sequence.([15]) By duality, we may produce an extension to the periodic distributions:

F : D ′(TN ) → S ′(ZN ), F−1 : S ′(ZN ) → D ′(TN ).

With the Fourier transform, we define a generalized linear pseudodifferential operator

F (
√−∆) : D(F (

√−∆)) ⊂ L2(TN ) → L2(TN )

as

(2) F (
√−∆)u(x) ,

X

m∈ZN

F (|m|)Fu(m) exp(i〈m, x〉).

The sequence {F (|m|) : m ∈ ZN} is referred to as the torus symbol of F (
√−∆), which is also a polynomially bounded

sequence.

Theorem 2.2. The RHS of (2) converges in the distributional sense. Moreover, when F is a real-valued functional,

then the operator F (
√−∆) in Definition 2.1 is a self-adjoint operator. We assume that the average of u ∈ L2(TN ) on

the torus TN satifies

(3)

Z

TN
u(x)dx = 0.

And let F be a continuous, increasing and polynomially bounded real-valued functional on [0,∞), in particular, F (x) > 0

for x > 0. Then we have the following fractional order Poincaré’s inequality,

‖u‖L2(TN ) ≤ F−1(1)‖F (
√−∆)u‖L2(TN ).

Proof. (I) Actually, in Definition 2.1, F
“√−∆

”
is defined in the distributional sense. Indeed, for ∀η ∈ D(TN ), since

−∆(D(TN )) = D(TN ), then there exists a unique ηk ∈ D(TN ) such that −∆ · · · −∆| {z }
k

η = ηk for each k ∈ N. As a result,

“
exp(i〈m, x〉), ηk

”
L2(TN )

=
“

exp(i〈m, x〉),−∆ · · · −∆| {z }
k

η
”

L2(TN )

=
“
−∆exp(i〈m, x〉),−∆ · · · −∆| {z }

k−1

η
”

L2(TN )

= |m|2
“

exp(i〈m, x〉),−∆ · · · −∆| {z }
k−1

η
”

L2(TN )

= |m|2k
“

exp(i〈m, x〉), η
”

L2(TN )
.

Hölder’s inequality tells that

|(exp(i〈m, x〉), ηk)L2(TN )| ≤ ‖ exp(i〈m, x〉)‖L2(TN )‖ηk‖L2 =

sZ

TN
1dx‖ηk‖L2(TN ).

As a result, {|(exp(i〈m, x〉), η)L2(TN )|}m is a rapidly decreasing sequence w. r. p. to m. On the other hand, {û(m)}m

is a polynomially bounded sequence w. r. p. to m. Since F is also a polynomially bounded function, consequently, the
series on the RHS converges. i.e.

X

m∈ZN

F (|m|)Fu(m)(exp(i〈m, x〉), η)L2(TN ) < ∞.
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(II) Let u, v ∈ D(F (
√−∆)), then apply Definition 2.1, and one has

(F (
√−∆)u, v)L2(TN ) =

“ X

m∈ZN

F (|m|)Fu(m) exp(i〈m, x〉),
X

n∈ZN

Fv(n) exp(i〈n, x〉)
”

L2(TN )

=
X

m∈ZN

“
F (|m|)Fu(m) exp(i〈m, x〉),Fv(m) exp(i〈m, x〉)

”
L2(TN )

=
“ X

m∈ZN

Fu(m) exp(i〈m, x〉),
X

n∈ZN

F (|n|)Fv(n) exp(i〈n, x〉)
”

L2(TN )

= (u, F (
√−∆)v)L2(TN ).

(III) According to Plancherel Theorem,

‖u‖2
L2(TN )

= ‖
X

m∈ZN

Fu(m) exp(i〈m, x〉)‖2
L2(TN )

=
X

m∈ZN

|Fu(m)|2 =
X

m∈ZN /0

|Fu(m)|2

≤ F−2(1)
X

m∈ZN /0

F 2(|m|)|Fu(m)|2

= F−2(1)‖
X

m∈ZN /0

F (|m|)Fu(m) exp(i〈m, x〉)‖2
L2(TN )

= F−2(1)‖F (
√−∆)u‖2

L2(TN )
.

Q. E. D. ¤
Remark 2.3. As a matter of fact, the spectrum of Laplace-Beltrami operator ∆T on the torus TN is {0,−12,−22,−32, · · · }.
And the associated orthonormal basis for L2(TN ) is

n“Z

TN
1dx
”− 1

2
exp(i〈m, x〉) : |m| = 0, 1, 2, 3, · · ·

o
.

And the spectrum of Laplace-Beltrami operator ∆S on the unit sphere SN is

{λk = −k(k + N − 1), k = 0, 1, 2, · · · }.
The pseudodifferential operators on SN will be given in Section 2.2.

Remark 2.4. We show an important application in the fractional order pseudodifferential problems. Let u(x) =

exp(inx), x ∈ [0, 2π], n ∈ N+, then by applying Definition 2.1, for each σ ∈ [0,∞), one has

(− ∂2

∂x2
)σu(x) = n2σu(x).

This property is essential in the construction of counter-examples for regularity discussions [9][10][11] when the finite

propagation speed fails.

Remark 2.5. Assumption (3) is important since it assures that û(0) = 0. For instance, in the one dimensional case,

when u =

nX

k=1

exp(ikx), then u satisfies (3). Keep in mind the fact

(− ∂2

∂x2
)σu(x) =

nX

k=1

k2σ exp(ikx).

Therefore, there is a uniform Poincaré constant 1 for such kind of finite combinations u, which means, the estimate is

independent of n. Actually, when F (0) > 0, then assumption (3) can be dismissed and the Poincaré constant can be

F−1(0). A typical example for this case is the positive operator F (
√−∆) = 1−∆.

2.2. Discussion on a compact smooth manifold with boundary. In the following we turn to the spectral theory
in [16][17]. Assume that Ω is a compact smooth manifold. Let the linear differentiable operator A be self-adjoint,

positive definite and with compact resolvent, then its spectrum Λ(Ω) = {λi}i∈N+ is discrete with finite multiplicity and

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞.

Moreover, there exists an orthonormal and complete system of eigenfunctions {φλ(x)}λ∈Λ(Ω) in L2(Ω), namely, for each

λ ∈ Λ(Ω),

‖φλ‖L2(Ω) = 1.
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Actually, when the first eigenvalue is equal to 0, the following topics can be considered similarly. For instance, the
Laplacian with Neumann boundary condition, Laplace-Beltrami operators defined on the torus TN and unit sphere SN ,

which will be given in the form of corollaries. In this section, we mainly focus on the case with positive eigenvalues.

Definition 2.6. With the above notations, one can define the generalized Fourier transform and Fourier series as

follows:

Ff(λ) = (f, φλ)L2(Ω),

f(x) =
X

λ∈Λ(Ω)

Ff(λ)φλ(x).

At the moment, we are ready to introduce the pseudodifferential operators on the smooth manifold Ω with boundary.

Definition 2.7. On the smooth manifold Ω, we define a generalized linear pseudodifferential operator as follows:

F (
√

A) : D(F (
√

A)) ⊂ L2(Ω) → D ′(Ω),

(4) F (
√

A)u(x) ,
X

λ∈Λ(Ω)

F (
√

λ)Fu(λ)φλ(x).

The sequence {F (
√

λ) : λ ∈ Λ(Ω)} is referred to as the symbol of F (
√

A), which is a polynomially bounded sequence w.

r. p. to
√

λ.

In some literature, fractional Sobolev spaces are also called Gagliardo or Slobodeckij spaces. When we fix the
fractional exponent s ∈ (0, 1),one can give another definition as follows,

Hs(Ω) , {u ∈ L2 :
|u(x)− u(y)|
|x− y|N2 +s

∈ L2(Ω× Ω)},

which is endowed with the natural norm

‖u‖Hs ,
“Z

Ω
|u|2dx +

Z

Ω

Z

Ω

|u(x)− u(y)|2
|x− y|N+2s

dxdy
” 1

2
.

In particular,

[u]Ḣs ,
“Z

Ω

Z

Ω

|u(x)− u(y)|2
|x− y|N+2s

dxdy
” 1

2
,

is called Gagliardo(semi) norm.

Theorem 2.8. The RHS of (4) converges in the distributional sense. Moreover, when F is a real-valued functional,

then the operator F (
√

A) in Definition 2.7 is a self-adjoint operator. Let F be a continuous, increasing and polynomially

bounded real-valued functional on [0,∞), in particular, F (x) > 0 for x > 0. Then we have the following fractional

order Poincaré’s inequality,

‖u‖L2 ≤ F−1(
p

λ1)‖F (
√

A)u‖L2 .

Proof. (I) In (4), F
“√

A
”

is defined in the distributional sense. Indeed, for ∀η ∈ D(Ω), since A(D(Ω)) = D(Ω), then

there exists a unique ηk ∈ D(Ω) such that A · · ·A| {z }
k

η = ηk for each k ∈ N. As a result,

(φλ, ηk)L2 = (φλ, A · · ·A| {z }
k

η)L2

= (Aφλ, A · · ·A| {z }
k−1

η)L2

= λ(φλ, A · · ·A| {z }
k−1

η)L2

= λk(φλ, η)L2 .

Hölder’s inequality tells that |(φλ, ηk)L2 | ≤ ‖φλ‖L2‖ηk‖L2 = ‖ηk‖L2 . As a result, {|(φλ, η)L2 |}λ is a rapidly decreasing

sequence w. r. p. to λ. On the other hand, by applying Hölder’s inequality once more and one has

|Fu(λ)| = |(u, φλ)L2 | ≤ ‖φλ‖L2‖u‖L2 = ‖u‖L2 .

This indicates, {|Fu(λ)|}λ is a polynomially bounded sequence w. r. p. to λ. Since F is also a polynomially bounded
functional, consequently, the series on the RHS of (4) converges. i.e.

D
F
“√

A
”
u(x), η

E
D′,D

=
X

λ∈Λ
H 2

A

F (
√

λ)Fu(λ)(φλ, η)L2 < ∞.
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Hereafter, we consider u ∈ L2 with F (
√

A)u ∈ L2.

(II) Let u, v ∈ D(F (
√

A)), then apply Definition 2.7, and we have

(F (
√

A)u, v)L2 =
“ X

λ∈Λ(Ω)

F (
√

λ)Fu(λ)φλ(x),
X

η∈Λ(Ω)

Fv(η)φη(x)
”

L2

=
X

λ∈Λ(Ω)

“
Fu(λ)φλ(x), F (

√
λ)Fv(λ)φλ(x)

”
L2

=
“ X

λ∈Λ(Ω)

Fu(λ)φλ(x),
X

η∈Λ(Ω)

F (
√

η)Fv(η)φη(x)
”

L2

= (u, F (
√

A)v)L2 .

(III) In fact, since {φλ(x)}λ∈Λ(Ω) is an orthonormal basis in L2(Ω), one can easily prove a similar result as Plancherel

Theorem.

Lemma 2.9. F , A are defined above, and u ∈ L2(Ω), then one has

‖F (
√

A)u‖2
L2 =

X

λ∈Λ(Ω)

F 2(
√

λ)|Fu(λ)|2.

Applying the above lemma, one has

‖u‖2
L2 = ‖

X

λ∈Λ(Ω)

Fu(λ)φλ(x)‖2
L2

=
X

λ∈Λ(Ω)

|Fu(λ)|2

≤ F−2(
√

λ1)
X

λ∈Λ(Ω)

F 2(
√

λ)|Fu(λ)|2

= F−2(
√

λ1)‖
X

λ∈Λ(Ω)

F (
√

λ)Fu(λ)φλ(x)‖2
L2

= F−2(
√

λ1)‖F (
√

A)u‖2
L2 .

Q. E. D. ¤
Remark 2.10. When Ω = (0, π), we consider the Dirichlet Laplacian −∆ : L2(Ω) → L2(Ω). With simple calculations,

one is able to check that, {1, 22, 32, · · · , n2, · · · } is the set of eigenvalues which are bounded away from 0. And the

associated orthonormal basis for L2(Ω) which consists of eigenfunctions of the Dirichlet Laplacian is

(5)
nr 2

π
sin(x),

r
2

π
sin(2x),

r
2

π
sin(3x), · · · ,

r
2

π
sin(nx), · · ·

o
.

Actually, in a general sense, in any bounded Lipschitz domains Ω ∈ RN , there is a countable orthonormal basis

in L2(Ω) which consists of eigenfunctions of the Dirichlet Laplacian. The eigenfunctions belong to L2(Ω) and the
associated eigenvalues are all positive and bounded away from zero. Please refer to [5] for specific proof. The case of

Dirichlet Laplacian −∆ : H1
0 (Ω) → L2(Ω) please refer to [11].

Remark 2.11. When Ω = (0, π), we consider the Dirichlet operator 1−∆ : L2(Ω) → L2(Ω). In this case, {1 + 1, 1 +

22, 1 + 32, · · · , 1 + n2, · · · } is the set of eigenvalues which are bounded away from 0. And the associated orthonormal
basis in L2(Ω) which consists of eigenfunctions of the Dirichlet operator is also (5).

Remark 2.12. When Ω = (0, π), we consider the biharmonic operator ∆2 : H4(Ω)
T

H1
0 (Ω) → L2(Ω) with the

boundary condition u = ∆u = 0. In this case, {1, 24, 34, · · · , n4, · · · } is the set of eigenvalues which are bounded away

from 0. And the associated orthonormal basis for L2(Ω) which consists of eigenfunctions of the biharmonic operator
is also (5).

Remark 2.13. Let Ω = (0, π), for the Dirichlet magnetic operator [11]

(i
∂

∂x
− 1)2 : L2(Ω) → L2(Ω),

it is easy to calculate that {1, 22, 32, · · · , N2, · · · } is the set of eigenvalues which are bounded away from 0. And the
associated orthonormal basis (in the sense of L2-norm) is

nr 2

π
sin(x)e−ix,

r
2

π
sin(2x)e−ix,

r
2

π
sin(3x)e−ix, · · · ,

r
2

π
sin(Nx)e−ix, · · ·

o
.
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Remark 2.14. Assume that there exists a constant C(Ω) > 0 such that the inverse inequality holds, namely,

‖F (
√

A)u‖L2 ≤ C(Ω)‖u‖L2 .

Furthermore, if D(I + F (
√

A)) is compactly embedded in L2, then there exists a constant m ∈ N, such that Fu(λ) ≡ 0
for ∀λ ≥ m according to Riesz Lemma.

Now we turn to the unit sphere SN , N ≥ 2, which is a compact smooth manifold without boundary. One mainly
considers the operator

A , −∆S +
(N − 1)2

4
: D(−∆S) ⊂ L2(SN ) → L2(SN ),

where ∆S is the Laplace-Beltrami operator on SN . In this case, the eigenvalues of A are
n

νk =
“N − 1

2
+ k
”2

: k = 0, 1, 2, · · ·
o

.

The eigenspace Vk of A with eigenvalue νk is the space of harmonic polynomials, homogeneous of degree k, restriction
to SN ⊂ RN+1. Furthermore,

dim Vk =

„
k + N − 2

k − 1

«
+

„
k + N − 1

k

«
.

When N = 1, this is the torus T. One can easily check that, for each eigenvalue νk 6= 0, the associated eigenspace is of 2

dimensions, namely,
q

1
2π

exp(ikx) and
q

1
2π

exp(−ikx) form an orthonormal basis in this eigenspace. From Theorem

2.8, we have the following result on the unit sphere SN , N ≥ 2.

Corollary 2.15. On the unit sphere SN , N ≥ 2, let A , −∆S +
(N−1)2

4
, F be a continuous, increasing and

polynomially bounded real-valued functional on [0,∞), in particular, F (x) > 0 for x > 0. Then we have the following
fractional order Poincaré’s inequality,

‖u‖L2 ≤ F−1(
N − 1

2
)‖F (

√−∆)u‖L2 .

Recall Remark 2.3, we consider the case A = −∆S . Combining Theorem 2.2 and Theorem 2.8, one has

Corollary 2.16. On the unit sphere SN , N ≥ 2, let A , −∆S , F be a continuous, increasing and polynomially

bounded real-valued functional on [0,∞), in particular, F (x) > 0 for x > 0.If (u, φ0)L2(SN ) = 0, then one has the

following fractional order Poincaré’s inequality,

‖u‖L2 ≤ F−1(
√

N)‖F (
√−∆)u‖L2 .

In the case of unbounded domains, for instance, we consider the harmonic oscillator −∆+ |x|2 : L2(RN ) → L2(RN ).
The eigenvalues are all positive, namely,

{2k + N : k = 0, 1, 2, · · · }.
And an orthomormal basis of eigenvalue 2k + N is given by

ck1 · · · ckN
Hk1 (x1) · · ·HkN

(xN ), k1 + · · ·+ kN = k,

where ki ∈ {0, · · · , k}, the Hki
(xi) are the Hermite polynomials given by

Hk(x) = (−1)k exp(x2)(
d

dx
)k exp(−x2),

and cki
are given by

ck =
1p√

π2k(k!)
.

In particular, the dimension of this eigenspace is the same as the dimension of the space of homogeneous polynomials

of degree k in N variables. Please refer to [17][21] for more detailed discussion.

Corollary 2.17. Let A be the harmonic oscillator −∆ + |x|2 : L2(RN ) → L2(RN ). And let F be a continuous,

increasing and polynomially bounded real-valued functional on [0,∞), in particular, F (x) > 0 for x > 0. Then we have

the following fractional order Poincaré’s inequality,

‖u‖L2 ≤ F−1(
√

N)‖F (
√

A)u‖L2 .

Assume that Ω ∈ RN (N ≥ 2) is a bounded domain with smooth boundary Γ. Denote by ν the outward unit normal
to Γ. Now we consider the problem with Neumann boundary condition

(6)

 −∆u = λu in Ω
∂u
∂ν

= 0 on Γ

Classical theory of eigenvalue problems assures that problem (6) has a sequence of non-negative eigenvalues which tends
to infinity and a sequence of corresponding eigenfunctions which define a Hilbert basis in L2. Furthermore, the first

eigenvalue is λ = 0, which is isolated and simple. As a consequence, one has the following result.



A NOTE ON FRACTIONAL ORDER POINCARÉ’S INEQUALITIES 7

Corollary 2.18. For the Laplacian with Neumann boundary condition (6), assume that

(u, φ0)L2 = 0.

Let F be a continuous, increasing and polynomially bounded real-valued functional on [0,∞), in particular, F (x) > 0
for x > 0. Then we have the following fractional order Poincaré’s inequality,

‖u‖L2 ≤ F−1(
p

λ1)‖F (
√−∆)u‖L2 .

2.3. A refined fractional order Poincaré’s inequality. For the Dirichlet-Laplacian, from a variational point of
view, the lowest eigenvalue λ1 can be characterized as the minimum of the Reyleigh quotient that is,

λ1 = inf
u∈H1

0 (Ω)/{0}

R
Ω |∇u|2dxR
Ω |u|2dx

.

From [2], we know that the geometry of a Riemannian manifold completely determines the spectrum. Actually, let

(M, g) be a closed Riemannian manifold of dimension N ≥ 2, if the Ricci tensor field Ric(X, X) ≥ (N − 1)k ≥ 0

for some nonnegative constant k and for all X ∈ T (M), then the first nonzero eigenvalue has a lower bound, λ1 ≥
(N−1)k

4
+ π2

D2(M)
, where D(M) is the diameter of M . As to the upper bound, if the Ricci curvature is greater or equal

to (N − 1)(−k), k > 0, then λ1 ≤ (N−1)2k
4

+ cN
D2(M)

, where cN is a positive constant depending only on N . In Section

2, we describe the Poincaré constant in an abstract manner by virtue of the first nonzero eigenvalue. In this section,
with the frequency decomposition method from microlocal analysis, we give an explicit form of the Poincaré constant,

which unveils the profound geometric impact. First and foremost, we recall the classical definition of pseudodifferential

operators in [18] defined on RN .

Definition 2.19. F (Dx) : D(F (Dx)) ⊂ S′(RN ) → S′(RN ) is a generalized linear pseudodifferential operator defined

by

F (Dx)u = F−1(F (ξ)F(u)).

And F (ξ) is referred to as the symbol of F (Dx). Moreover, when D(F (Dx)) ⊂ S(RN ), one has the explicit expression

F (Dx)u(x) , (2π)−N

Z

RN

Z

RN
exp(i〈x− y, ξ〉)F (ξ)u(y)dydξ.

Remark 2.20. Since S is dense in L2, so F (
√−∆) is also a self-adjoint operator in the sense of L2-norm. In the

distributional sense, F((2π)−N ) = δ(ξ). Therefore, once g ≡ 1, then

F (
√−∆)g = (2π)NF−1(F (|ξ|)δ(ξ)) = F (0).

More theories concerned with symbol calculus, pseudo-local property, wave front set, etc., please refer to [18].

Remark 2.21. Assume that u ∈ C∞0 (Ω). Let

ū ,


u(x) x ∈ Ω;

0 x ∈ RN/Ω.

Since u ∈ L2(Ω), according to Section 2.2, u =
X

λ∈Λ(Ω)

Fu(λ)φλ(x). Consequently, ‖u‖2
L2(Ω)

=
X

λ∈Λ(Ω)

|Fu(λ)|2.

Actually, when the Sobolev index is a nonnegative integer, Definition 2.7 can be deduced from Definition 2.19. Indeed,
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one has
(−∆)m

x ū = (2π)−N
R
RN exp(i〈x, ξ〉)|ξ|2m

R
RN exp(−i〈y, ξ〉)ū(y)dydξ

= (2π)−N
R
RN exp(i〈x, ξ〉)|ξ|2m

R
Ω exp(−i〈y, ξ〉)u(y)dydξ

= (2π)−N
R
RN exp(i〈x, ξ〉) RΩ(−∆)m

y exp(−i〈y, ξ〉)u(y)dydξ

= (2π)−N
R
RN exp(i〈x, ξ〉) RΩ exp(−i〈y, ξ〉)(−∆)m

y u(y)dydξ

= (2π)−N
R
RN exp(i〈x, ξ〉) RΩ exp(−i〈y, ξ〉)(−∆)m

y

X

λ∈Λ(Ω)

Fu(λ)φλ(y)dydξ

=
X

λ∈Λ(Ω)

Fu(λ)(2π)−N

Z

RN
exp(i〈x, ξ〉)

Z

Ω
exp(−i〈y, ξ〉)(−∆)m

y φλ(y)dydξ

=
X

λ∈Λ(Ω)

Fu(λ)(2π)−N

Z

RN
exp(i〈x, ξ〉)

Z

Ω
exp(−i〈y, ξ〉)λmφλ(y)dydξ

=
X

λ∈Λ(Ω)

λmFu(λ)φλ(x)

= (−∆)m
x u.

Theorem 2.22. When F is a real-valued functional, then the operator F (
√−∆) : D(F (

√−∆)) ⊂ S(RN ) → S(RN )

is a self-adjoint operator. Assume that u ∈ C∞0 (RN ), suppu ∈ Ω, where Ω is a bounded Lipschitz domain. Let F be a
continuous, increasing and polynomially bounded real-valued functional on [0,∞), in particular, F (x) > 0 for x > 0.

Then we have the following fractional order Poincaré’s inequality,

‖u‖L2 ≤
s

1

β
F−1

“
N

s
1− β

ω(1)Vol(Ω)

”
‖F (

√−∆)u‖L2 , ∀β ∈ (0, 1).

Proof. (I) Let u, v ∈ D(F (
√−∆)), then by applying Definition 2.17, we have

〈F (
√−∆)u, v〉S(RN ) = (2π)−N

R
RN v(x)

R
RN

R
RN exp(i〈x− y, ξ〉)F (|ξ|)u(y)dydξdx

= (2π)−N
R
RN u(y)

R
RN

R
RN exp(i〈y − x, ξ〉)F (|ξ|)v(x)dxdξdy

= 〈u, F (
√−∆)v〉S(RN ).

In fact, we can also deduce this from the asymptotic expansions of symbols of F (
√−∆) and F ∗(

√−∆):

σF∗ ∼
X
α

1

α!
∂α

ξ Dα
x σF (t, x, ξ) =

X
α

1

α!
∂α

ξ Dα
x σF (t, x, ξ) ∼ σF (t, x, ξ).

(II) Dividing the frequency into two parts and applying Hölder’s inequality, one has

‖u‖2
L2 =

R
|ξ|≤ε |û(ξ)|2dξ +

R
|ξ|≥ε |û(ξ)|2dξ

=
R
|ξ|≤ε |û(ξ)|2dξ +

R
|ξ|≥ε

F2(|ξ|)|û(ξ)|2
F2(|ξ|) dξ

=
R
|ξ|≤ε |

R
Ω u(x) exp(−ix · ξ)dx|2dξ +

R
|ξ|≥ε

F2(|ξ|)|û(ξ)|2
F2(|ξ|) dξ

≤ ‖u‖2
L2ω(1)Vol(Ω)εN + F−2(ε)‖F (

√−∆)u‖2
L2

where ω(1) is the volume of a unit ball. Let us choose

ε = N

s
1− β

ω(1)Vol(Ω)
, β ∈ (0, 1),

then we have

‖u‖2
L2 ≤

1

β
F−2

“
N

s
1− β

ω(1)Vol(Ω)

”
‖F (

√−∆)u‖2
L2 .

Q. E. D. ¤
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Remark 2.23. For fractional order pseudodifferential operators, namely, F (
√−∆) = (

√−∆)γ , γ ∈ [0,∞), choose

β = 1
2

and one has

‖u‖2
L2 ≤ 2

“
2ω(1)Vol(Ω)

” 2γ
N ‖(√−∆)γu‖2

L2 .

Particularly, when γ = 1, this corresponds to the classical Poincaré’s inequality since ‖√−∆u‖L2 = ‖∇u‖L2 .

Remark 2.24. In the proof, one can discover that, the Poincaré’s inequality holds since Supp û does not concentrate

around 0 in the frequency space. And
q

1
β

F−1
“

N
q

1−β
ω(1)Vol(Ω)

”
is a Poincaré constant. Next we show a typical example

in the non-compact case. Given ρ > 0, let χρ(ξ) be the cut-off function which equals to 1 when |ξj | ≤ ρj , j = 1, · · · , N ,

and equals to zero elsewhere. A function u ∈ L2(RN ) satisfies û(ξ) = 0 for a.e. |ξj | < ρj , j = 1, · · · , N if and only if

u = v −Hρ ∗ v a.e. for some v ∈ L2(RN ), where the high frequency filter is defined as

Hρ(x) =

NY

j=1

Hρj (xj) = π−N
NY

j=1

sin(ρjxj)

xj
.

This statement is quickly checked by noting the fact that F(Hρ ∗ u) = χρû. Obviously, in this case, the Poincaré’s
inequality also holds.
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