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Complex networks

e Many examples
Biology (Genomics, protonomics)

Transportation (Communication networks, Internet, roads
and railroads)

Information systems (World Wide Web)

Social networks (Facebook, LinkedIn, etc)
Sociology (Friendship networks, sexual contacts)
Bibliometrics (Co-authorship networks, references)
Ecology (food webs)

Energy (Electricity distribution, smart grids)

e Larger context of “Network Science”
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Objectives

e Identify generic structures and properties of “networks
e Mathematical models and their analysis

e Understand how network structure and processes on networks

interact

What is new?

Very large data sets now easily available!

e Dynamics of networks vs. dynamics on networks
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LECTURE 1

10
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Basics of graph theory

11
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What are graphs?

With V a finite set, a graph G is an ordered pair (V, E') where
elements in V' are called vertices/nodes and F is the set of
edges/links:

ECVxxV

E(G)=F

Nodes ¢ and j are said to be adjacent, written ¢ ~ 7, if

e=(i,5) e FE, i,jeEV

12
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Multiple representations for G = (V, F)

Set-theoretic — Edge variables {&;;, i,j € V} with

2

1 if(s,5) e E
§ij =

0 if (i,5) ¢ E

\

Algebraic — Adjacency matrix A = (A;;) with

(

1 if(4,5) e B
Aij = 4

13
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Some terminology

Simple graphs vs. multigraphs

Directed vs. undirected

(1,j) € £ if and only if (j,i) € E

No self loops
(i,i) ¢ E, 1€V

Here: Simple, undirected graphs with no self loops!

14
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Types of graphs

The empty graph
Complete graphs
Trees /forests

A subgraph H = (W, F) of G = (V, E) is a graph with vertex
set W such that

WCV and F=EnN(W xW)

Cliques (Complete subgraphs)

15
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Labeled vs. unlabeled graphs

A graph automorphism of G = (V, E) is any one-to-one mapping
o :V — V that preserves the graph structure, namely

(0(i),0(j)) € E if and only if (i,j5) € E

Group Aut(G) of graph automorphisms of G
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Of interest

Connectivity and k-connectivity (with k& > 1)
Number and size of components
Isolated nodes

Degree of a node: degree distribution/average degree,

maximal /minimal degree

Distance between nodes (in terms of number of hops): Shortest

path, diameter, eccentricity, radius
Small graph containment (e.g., triangles, trees, cliques, etc.)
Clustering

Centrality: Degree, closeness, in-betweenness

17
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For 7,7 in V,

Shortest path length between
nodes ¢ and j in the graph G = (V, E)

Convention: ¢;; = oo if nodes ¢ and j belong to different

components and ¢;; = 0.

Average distance

1
s = TV 1) 2 2

eV eV

Diameter

d(G) — max (&j, 1,7 € V)

18
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Eccentricity

EC(Z) = max (Ez'j, VES V), 1eV

Radius

rad(G) = min (Ec(i), i € V)

gAvg < d(G)

rad(G) < d(G) < 2 rad(G)

19
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Centrality

(Q: How central is a node?

Closeness centrality

20
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Clustering

Clustering coefficient of node ¢

D iti. hti, ik SigCikShy

O(i) =

2 ji, keti, ok SigSik

Average clustering coeflicient

Cavs = > C(0)

eV

Number of fully connected triples

C=3

Number of triples

21
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Random graphs

22
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Random graphs?

Collection of all (simple free of self-loops undirected)

graphs with vertex set V.

Definition — Given a probability triple (2, F,P), a random
graph is simply a graph-valued rv G : Q2 — G(V).

Modeling — We need only specify the pmf
{PIG=G], Geg(V)}.

Many, many ways to do that!

23
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Equivalent representations for G

Set-theoretic — Link assignment rvs {¢;;, i,7 € V} with

i

1 if (4,5) € E(G)
Eij = X

L 0 if (4,5) € £(G)

Algebraic — Random adjacency matrix A = (A4;;) with

v

1 if (¢,5) € E(G)
Aij = 4

L 0 if (4,5) € £(G)

24
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Why random graphs?

Useful models in many applications to capture binary relationships
between participating entities

Because

|Q(V)\ |V|(|‘2/|—1)

V|2
~ 272 A very large number!

there is a need to identify/discover typicality!

Scaling laws — Zero-one laws as |V'| becomes large, e.g.,

V=V,=A{1,...,n} (n— o0)

25
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Ménagerie of random graphs

Erdés-Renyi graphs G(n;m)

Erdés-Renyi graphs G(n;p)

Generalized Erd6s-Renyi graphs

Geometric random models/disk models

Intrinsic fitness and threshold random models
Random intersection graphs

Growth models: Preferential attachment, copying
Small worlds

Exponential random graphs

Etc

26
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Erdos-Renyi graphs G(n;m)

L <m< (Z) _ n(n2— 1),

the pmf on G(V,,) is specified by

( wlnym)~l if |E(G)| = 2m

if |E(G)| # 2m

27
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Uniform selection over the collection of all graphs on the vertex

set {1,...,n} with exactly m edges

28
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Erdés-Renyi graphs G(n;p)

With
0<p<1,

the link assignment rvs {x;;(p), 1 <i < j < n} are i.i.d.
{0, 1}-valued rvs with

Pxi(p) =1 =1-Px;(p) = 0] = p,

For every G in G(V),

|EG| n(n—1) |EG]

P|G(n;p)=Gl=p = -(1-p) = 2

29
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Related to, but easier to implement than G(n;m)

Similar behavior/results under the matching condition
E(G(n;m))| = E{|IE(G(n;p)I],

namely

n(n —1)
m = 5P

30
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Generalized Erdos-Renyi graphs

With

the link assignment rvs {x;;(p), 1 <i < j < n} are mutually
independent {0, 1}-valued rvs with

P[Xz‘j(l)z'j) =1]=1- P[Xij(pz'j) = 0] = Dij

An important case: With positive weights w1, ..., w,,

pij:w%’l}Uj with W =w;+...4+ w,
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Geometric random graphs (d > 1)

With random locations in R? at
X,..... X,
the link assignment rvs {x;;(p), 1 < < j < n} are given by
Xij(p) =1[|X; — X[ <p], 1<i<j<n

where p > 0.

32
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Usually, the rvs X+,..., X, are taken to be i.i.d. rvs uniformly

distributed over some compact subset I' C R¢

Even then, not so obvious to write
P|G(n;p) =G|, Geg(V).

since the rvs {x;;(p), 1 <i < j < n} are no more i.i.d. rvs

For d = 2, long history for modeling wireless networks (known as

the disk model) where p interpretated as transmission range
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Threshold random graphs

Given R, -valued i.i.d. rvs Wy, ..., W, with absolutely continuous

probability distribution function F',
i~g ifandonlyift W;+W; >0

for some 6 > 0

(Generalizations:

i ~j if and only if R(W;, W;) > 6

for some symmetric mapping R : R — R,

34
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Random intersection graphs

Given a finite set W = {1,..., W} of features, with random
subsets K,..., K, of W,

i~j ifandonlyif K;NK,;#0

Co-authorship networks, random key distribution schemes,
classification/clustering

35
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Growth models

with rules

and

e Preferential attachment

e Copying

Scale-free networks

36
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Small worlds

e Between randomness and order

e Shortcuts

e Short paths but high clustering

Milgram’s experiment and six degrees of separation

37
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Exponential random graphs

e Models favored by sociologists and statisticians

e Graph analog of exponential families often used in statistical

modeling

e Related to Markov random fields

38
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With I parameters
0= (0,...,07)

and a set of I observables (statistics)
u; 1 G(V) - Ry,

we postulate

e iz Oiui(G)
Z(6)

PG =G =

Geg(V)

with normalization constant

2(0)= D eXinfml@
Geg(V)

39
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e Many different ways to specify the pmf on G(V)

— Local description vs. global representation
— Static vs. dynamic

— Application-dependent mechanisms
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