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Complex networks

• Many examples

– Biology (Genomics, protonomics)

– Transportation (Communication networks, Internet, roads
and railroads)

– Information systems (World Wide Web)

– Social networks (Facebook, LinkedIn, etc)

– Sociology (Friendship networks, sexual contacts)

– Bibliometrics (Co-authorship networks, references)

– Ecology (food webs)

– Energy (Electricity distribution, smart grids)

• Larger context of “Network Science”
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Objectives

• Identify generic structures and properties of “networks

• Mathematical models and their analysis

• Understand how network structure and processes on networks
interact

What is new?

Very large data sets now easily available!

• Dynamics of networks vs. dynamics on networks
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LECTURE 1
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Basics of graph theory
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What are graphs?

With V a finite set, a graph G is an ordered pair (V,E) where
elements in V are called vertices/nodes and E is the set of
edges/links:

E ⊆ V × V

E(G) = E

Nodes i and j are said to be adjacent, written i ∼ j, if

e = (i, j) ∈ E, i, j ∈ V
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Multiple representations for G = (V, E)

Set-theoretic – Edge variables {ξij , i, j ∈ V } with

ξij =


1 if (i, j) ∈ E

0 if (i, j) /∈ E

Algebraic – Adjacency matrix A = (Aij) with

Aij =


1 if (i, j) ∈ E

0 if (i, j) /∈ E
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Some terminology

Simple graphs vs. multigraphs

Directed vs. undirected

(i, j) ∈ E if and only if (j, i) ∈ E

No self loops
(i, i) /∈ E, i ∈ V

Here: Simple, undirected graphs with no self loops!
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Types of graphs

• The empty graph

• Complete graphs

• Trees/forests

• A subgraph H = (W,F ) of G = (V,E) is a graph with vertex
set W such that

W ⊆ V and F = E ∩ (W ×W )

• Cliques (Complete subgraphs)
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Labeled vs. unlabeled graphs

A graph automorphism of G = (V,E) is any one-to-one mapping
σ : V → V that preserves the graph structure, namely

(σ(i), σ(j)) ∈ E if and only if (i, j) ∈ E

Group Aut(G) of graph automorphisms of G
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Of interest

• Connectivity and k-connectivity (with k ≥ 1)

• Number and size of components

• Isolated nodes

• Degree of a node: degree distribution/average degree,
maximal/minimal degree

• Distance between nodes (in terms of number of hops): Shortest
path, diameter, eccentricity, radius

• Small graph containment (e.g., triangles, trees, cliques, etc.)

• Clustering

• Centrality: Degree, closeness, in-betweenness
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For i, j in V ,

`ij =
Shortest path length between

nodes i and j in the graph G = (V,E)

Convention: `ij =∞ if nodes i and j belong to different
components and `ii = 0.

Average distance

`Avg =
1

|V |(|V | − 1)

∑
i∈V

∑
j∈V

`ij

Diameter
d(G) = max (`ij , i, j ∈ V )
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Eccentricity

Ec(i) = max (`ij , j ∈ V ) , i ∈ V

Radius

rad(G) = min (Ec(i), i ∈ V )

`Avg ≤ d(G)

and
rad(G) ≤ d(G) ≤ 2 rad(G)
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Centrality

Q: How central is a node?

Closeness centrality

g(i) =
1∑

j∈V `ij
, i ∈ V

Betweenness centrality

b(i) =
∑

k 6=i, k 6=j,

σkj(i)
σkj

, i ∈ V
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Clustering

Clustering coefficient of node i

C(i) =

∑
j 6=i, k 6=i, j 6=k ξijξikξkj∑
j 6=i, k 6=i, j 6=k ξijξik

Average clustering coefficient

CAvg =
1
n

∑
i∈V

C(i)

C = 3 · Number of fully connected triples
Number of triples
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Random graphs
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Random graphs?

G(V ) ≡
Collection of all (simple free of self-loops undirected)

graphs with vertex set V .

Definition – Given a probability triple (Ω,F ,P), a random
graph is simply a graph-valued rv G : Ω→ G(V ).

Modeling – We need only specify the pmf

{P [G = G] , G ∈ G(V )}.

Many, many ways to do that!
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Equivalent representations for G

Set-theoretic – Link assignment rvs {ξij , i, j ∈ V } with

ξij =


1 if (i, j) ∈ E(G)

0 if (i, j) /∈ E(G)

Algebraic – Random adjacency matrix A = (Aij) with

Aij =


1 if (i, j) ∈ E(G)

0 if (i, j) /∈ E(G)
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Why random graphs?

Useful models in many applications to capture binary relationships
between participating entities

Because

|G(V )| = 2
|V |(|V |−1)

2

' 2
|V |2

2 A very large number!

there is a need to identify/discover typicality!

Scaling laws – Zero-one laws as |V | becomes large, e.g.,

V ≡ Vn = {1, . . . , n} (n→∞)
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Ménagerie of random graphs

• Erdős-Renyi graphs G(n;m)

• Erdős-Renyi graphs G(n; p)

• Generalized Erdős-Renyi graphs

• Geometric random models/disk models

• Intrinsic fitness and threshold random models

• Random intersection graphs

• Growth models: Preferential attachment, copying

• Small worlds

• Exponential random graphs

• Etc
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Erdős-Renyi graphs G(n; m)

With

1 ≤ m ≤
(
n

2

)
=
n(n− 1)

2
,

the pmf on G(Vn) is specified by

P [G(n;m) = G] =


u(n;m)−1 if |E(G)| = 2m

0 if |E(G)| 6= 2m

where

u(n;m) =
(n(n−1)

2

m

)
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Uniform selection over the collection of all graphs on the vertex
set {1, . . . , n} with exactly m edges
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Erdős-Renyi graphs G(n; p)

With
0 ≤ p ≤ 1,

the link assignment rvs {χij(p), 1 ≤ i < j ≤ n} are i.i.d.
{0, 1}-valued rvs with

P [χij(p) = 1] = 1− P [χij(p) = 0] = p, 1 ≤ i < j ≤ n

For every G in G(V ),

P [G(n; p) = G] = p
|EG|

2 · (1− p)
n(n−1)

2 − |EG|
2
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Related to, but easier to implement than G(n;m)

Similar behavior/results under the matching condition

|E(G(n;m))| = E [|E(G(n; p))|] ,

namely

m =
n(n− 1)

2
p
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Generalized Erdős-Renyi graphs

With
0 ≤ pij ≤ 1, 1 ≤ i < j ≤ n

the link assignment rvs {χij(p), 1 ≤ i < j ≤ n} are mutually
independent {0, 1}-valued rvs with

P [χij(pij) = 1] = 1− P [χij(pij) = 0] = pij , 1 ≤ i < j ≤ n

An important case: With positive weights w1, . . . , wn,

pij =
wiwj
W

with W = w1 + . . .+ wn
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Geometric random graphs (d ≥ 1)

With random locations in Rd at

X1, . . . ,Xn,

the link assignment rvs {χij(ρ), 1 ≤ i < j ≤ n} are given by

χij(ρ) = 1 [ ‖Xi −Xj‖ ≤ ρ ] , 1 ≤ i < j ≤ n

where ρ > 0.
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Usually, the rvs X1, . . . ,Xn are taken to be i.i.d. rvs uniformly
distributed over some compact subset Γ ⊆ Rd

Even then, not so obvious to write

P [G(n; ρ) = G] , G ∈ G(V ).

since the rvs {χij(ρ), 1 ≤ i < j ≤ n} are no more i.i.d. rvs

For d = 2, long history for modeling wireless networks (known as
the disk model) where ρ interpretated as transmission range
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Threshold random graphs

Given R+-valued i.i.d. rvs W1, . . . ,Wn with absolutely continuous
probability distribution function F ,

i ∼ j if and only if Wi +Wj > θ

for some θ > 0

Generalizations:

i ∼ j if and only if R(Wi,Wj) > θ

for some symmetric mapping R : R2
+ → R+.
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Random intersection graphs

Given a finite set W ≡ {1, . . . ,W} of features, with random
subsets K1, . . . ,Kn of W,

i ∼ j if and only if Ki ∩Kj 6= ∅

Co-authorship networks, random key distribution schemes,
classification/clustering
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Growth models

{Gt, t = 0, 1, . . .}

with rules
Vt+1 ← Vt

and
Gt+1 ← (Gt, Vt+1)

• Preferential attachment

• Copying

Scale-free networks
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Small worlds

• Between randomness and order

• Shortcuts

• Short paths but high clustering

Milgram’s experiment and six degrees of separation
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Exponential random graphs

• Models favored by sociologists and statisticians

• Graph analog of exponential families often used in statistical
modeling

• Related to Markov random fields
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With I parameters
θ = (θ1, . . . , θI)

and a set of I observables (statistics)

ui : G(V )→ R+,

we postulate

P [G = G] =
e

PI
i=1 θiui(G)

Z(θ)
, G ∈ G(V )

with normalization constant

Z(θ) =
∑

G∈G(V )

e
PI

i=1 θiui(G)
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In sum

• Many different ways to specify the pmf on G(V )

– Local description vs. global representation

– Static vs. dynamic

– Application-dependent mechanisms


