Adventures in random graphs: Models, structures and algorithms

Armand M. Makowski

ECE & ISR/HyNet
University of Maryland at College Park
armand@isr.umd.edu

2

${\bf Complex\ networks}$

- Many examples
 - Biology (Genomics, protonomics)
 - Transportation (Communication networks, Internet, roads and railroads)
 - Information systems (World Wide Web)
 - Social networks (Facebook, LinkedIn, etc)
 - Sociology (Friendship networks, sexual contacts)
 - Bibliometrics (Co-authorship networks, references)
 - Ecology (food webs)
 - Energy (Electricity distribution, smart grids)
- Larger context of "Network Science"

3

Objectives

- Identify generic structures and properties of "networks
- Mathematical models and their analysis
- Understand how network structure and processes on networks interact

What is new?

Very large data sets now easily available!

• Dynamics of networks vs. dynamics on networks

4

Bibliography (I): Random graphs

- N. Alon and J.H. Spencer, *The Probabilistic Method* (Second Edition), Wiley-Science Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York (NY) 2000.
- A. D. Barbour, L. Holst and S. Janson, *Poisson Approximation*, Oxford Studies in Probability **2**, Oxford University Press, Oxford (UK), 1992.
- B. Bollobás, Random Graphs, Second Edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (UK), 2001.
- R. Durrett, Random Graph Dynamics, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge (UK), 2007.

5

• M. Draief and L. Massoulié, *Epidemics and Rumours in Complex Networks*, Cambridge University Press, Cambridge (UK), 2009.

- D. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized algorithms, Cambridge University Press, New York (NY), 2009.
- M. Franceschetti and R. Meester, Random Networks for Communication: From Statistical Physics to Information Systems, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge (UK), 2007.
- S. Janson, T. Łuczak and A. Ruciński, *Random Graphs*, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, 2000.
- R. Meester and R. Roy, Continuum Percolation, Cambridge University Press, Cambridge (UK), 1996.

• M.D. Penrose, Random Geometric Graphs, Oxford Studies in Probability 5, Oxford University Press, New York (NY), 2003.

6

BCAM January 2011

7

Bibliography (II): Survey papers

- R. Albert and A.-L. Barabási, "Statistical mechanics of complex networks," *Review of Modern Physics* **74** (2002), pp. 47-97.
- M.E.J. Newman, "The structure and function of complex networks," *SIAM Review* **45** (2003), pp. 167-256.

8

Bibliography (III): Complex networks

- A. Barrat, M. Barthelemy and A. Vespignani, *Dynamical Processes on Complex Networks*, Cambridge University Press, Cambridge (UK), 2008.
- R. Cohen and S. Havlin, Complex Networks Structure, Robustness and Function, Cambridge University Press, Cambridge (UK), 2010.
- D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, Cambridge (UK) (2010).
- M.O. Jackson, Social and Economic Networks, Princeton University Press, Princeton (NJ), 2008.

9

• M.E.J. Newman, A.-L. Barabási and D.J. Watts (Editors), The Structure and Dynamics of Networks, Princeton University Press, Princeton (NJ), 2006.

BCAM January 2011	10
	1
LECTURE 1	

BCAM January 2011	11
Basics of graph theory	

What are graphs?

With V a finite set, a graph G is an ordered pair (V, E) where elements in V are called **vertices/nodes** and E is the set of **edges/links**:

$$E \subseteq V \times V$$

$$\mathcal{E}(G) = E$$

Nodes i and j are said to be **adjacent**, written $i \sim j$, if

$$e = (i, j) \in E, \quad i, j \in V$$

Multiple representations for G = (V, E)

Set-theoretic – Edge variables $\{\xi_{ij}, i, j \in V\}$ with

$$\xi_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

Algebraic – **Adjacency matrix** $A = (A_{ij})$ with

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

Some terminology

Simple graphs vs. multigraphs

Directed vs. undirected

 $(i,j) \in E$ if and only if $(j,i) \in E$

No self loops

$$(i,i) \notin E, \quad i \in V$$

Here: Simple, undirected graphs with no self loops!

Types of graphs

- The empty graph
- Complete graphs
- Trees/forests
- A subgraph H = (W, F) of G = (V, E) is a graph with vertex set W such that

$$W \subseteq V$$
 and $F = E \cap (W \times W)$

• Cliques (Complete subgraphs)

Labeled vs. unlabeled graphs

A graph **automorphism** of G=(V,E) is any one-to-one mapping $\sigma:V\to V$ that preserves the graph structure, namely

$$(\sigma(i), \sigma(j)) \in E$$
 if and only if $(i, j) \in E$

Group Aut(G) of graph automorphisms of G

Of interest

- Connectivity and k-connectivity (with $k \ge 1$)
- Number and size of components
- Isolated nodes
- Degree of a node: degree distribution/average degree, maximal/minimal degree
- Distance between nodes (in terms of number of hops): Shortest path, diameter, eccentricity, radius
- Small graph containment (e.g., triangles, trees, cliques, etc.)
- Clustering
- Centrality: Degree, closeness, in-betweenness

For i, j in V,

$$\ell_{ij} = \begin{cases} \text{Shortest path length between} \\ \text{nodes } i \text{ and } j \text{ in the graph } G = (V, E) \end{cases}$$

Convention: $\ell_{ij} = \infty$ if nodes i and j belong to different components and $\ell_{ii} = 0$.

Average distance

$$\ell_{\text{Avg}} = \frac{1}{|V|(|V|-1)} \sum_{i \in V} \sum_{j \in V} \ell_{ij}$$

Diameter

$$d(G) = \max(\ell_{ij}, i, j \in V)$$

Eccentricity

$$\mathrm{Ec}(i) = \max(\ell_{ij}, j \in V), \quad i \in V$$

Radius

$$rad(G) = min(Ec(i), i \in V)$$

$$\ell_{\text{Avg}} \le d(G)$$

and

$$\operatorname{rad}(G) \le d(G) \le 2 \operatorname{rad}(G)$$

Centrality

20

Q: How central is a node?

Closeness centrality

$$g(i) = \frac{1}{\sum_{j \in V} \ell_{ij}}, \quad i \in V$$

Betweenness centrality

$$b(i) = \sum_{k \neq i, k \neq j, \sigma_{kj}} \frac{\sigma_{kj}(i)}{\sigma_{kj}}, \quad i \in V$$

Clustering

Clustering coefficient of node i

$$C(i) = \frac{\sum_{j \neq i, k \neq i, j \neq k} \xi_{ij} \xi_{ik} \xi_{kj}}{\sum_{j \neq i, k \neq i, j \neq k} \xi_{ij} \xi_{ik}}$$

Average clustering coefficient

$$C_{\text{Avg}} = \frac{1}{n} \sum_{i \in V} C(i)$$

$$C = 3 \cdot \frac{\text{Number of fully connected triples}}{\text{Number of triples}}$$

BCAM January 2011	22
Random graphs	

Random graphs?

 $\mathcal{G}(V) \equiv \begin{array}{c} \text{Collection of all (simple free of self-loops undirected)} \\ \text{graphs with vertex set } V. \end{array}$

Definition – Given a probability triple $(\Omega, \mathcal{F}, \mathbb{P})$, a **random graph** is simply a graph-valued rv $\mathbb{G} : \Omega \to \mathcal{G}(V)$.

Modeling – We need only specify the **pmf**

$$\{\mathbb{P}\left[\mathbb{G}=G\right],\quad G\in\mathcal{G}(V)\}.$$

Many, many ways to do that!

Equivalent representations for \mathbb{G}

Set-theoretic – Link assignment rvs $\{\xi_{ij}, i, j \in V\}$ with

$$\xi_{ij} = \begin{cases} 1 & \text{if } (i,j) \in \mathcal{E}(\mathbb{G}) \\ 0 & \text{if } (i,j) \notin \mathcal{E}(\mathbb{G}) \end{cases}$$

Algebraic – Random **adjacency matrix** $A = (A_{ij})$ with

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in \mathcal{E}(\mathbb{G}) \\ 0 & \text{if } (i,j) \notin \mathcal{E}(\mathbb{G}) \end{cases}$$

Why random graphs?

Useful models in many applications to capture binary relationships between participating entities

Because

$$|\mathcal{G}(V)| = 2^{\frac{|V|(|V|-1)}{2}}$$

$$\simeq 2^{\frac{|V|^2}{2}} \text{ A very large number!}$$

there is a need to identify/discover typicality!

Scaling laws – Zero-one laws as |V| becomes large, e.g.,

$$V \equiv V_n = \{1, \dots, n\} \quad (n \to \infty)$$

Ménagerie of random graphs

- \bullet Erdős-Renyi graphs $\mathbb{G}(n;m)$
- \bullet Erdős-Renyi graphs $\mathbb{G}(n;p)$
- Generalized Erdős-Renyi graphs
- Geometric random models/disk models
- Intrinsic fitness and threshold random models
- Random intersection graphs
- Growth models: Preferential attachment, copying
- Small worlds
- Exponential random graphs
- Etc

Erdős-Renyi graphs $\mathbb{G}(n;m)$

With

$$1 \le m \le \binom{n}{2} = \frac{n(n-1)}{2},$$

the pmf on $\mathcal{G}(V_n)$ is specified by

$$\mathbb{P}\left[\mathbb{G}(n;m) = G\right] = \begin{cases} u(n;m)^{-1} & \text{if } |\mathcal{E}(G)| = 2m\\ 0 & \text{if } |\mathcal{E}(G)| \neq 2m \end{cases}$$

where

$$u(n;m) = \binom{\frac{n(n-1)}{2}}{m}$$

Uniform selection over the collection of all graphs on the vertex

Conform selection over the collection of all graphs on the vertex set $\{1,\ldots,n\}$ with exactly m edges

Erdős-Renyi graphs $\mathbb{G}(n;p)$

With

$$0 \le p \le 1$$
,

the link assignment rvs $\{\chi_{ij}(p), 1 \leq i < j \leq n\}$ are **i.i.d.** $\{0,1\}$ -valued rvs with

$$\mathbb{P}\left[\chi_{ij}(p) = 1\right] = 1 - \mathbb{P}\left[\chi_{ij}(p) = 0\right] = p, \qquad 1 \le i < j \le n$$

For every G in $\mathcal{G}(V)$,

$$\mathbb{P}\left[\mathbb{G}(n;p) = G\right] = p^{\frac{|\mathcal{E}G|}{2}} \cdot (1-p)^{\frac{n(n-1)}{2} - \frac{|\mathcal{E}G|}{2}}$$

Related to, but easier to implement than $\mathbb{G}(n;m)$

Similar behavior/results under the matching condition

$$|\mathcal{E}(\mathbb{G}(n;m))| = \mathbb{E}[|\mathcal{E}(\mathbb{G}(n;p))|],$$

namely

$$m = \frac{n(n-1)}{2}p$$

Generalized Erdős-Renyi graphs

With

$$0 \le p_{ij} \le 1, \quad 1 \le i < j \le n$$

the link assignment rvs $\{\chi_{ij}(p), 1 \leq i < j \leq n\}$ are **mutually** independent $\{0,1\}$ -valued rvs with

$$\mathbb{P}\left[\chi_{ij}(p_{ij}) = 1\right] = 1 - \mathbb{P}\left[\chi_{ij}(p_{ij}) = 0\right] = p_{ij}, \quad 1 \le i < j \le n$$

An important case: With positive weights w_1, \ldots, w_n ,

$$p_{ij} = \frac{w_i w_j}{W}$$
 with $W = w_1 + \ldots + w_n$

Geometric random graphs $(d \ge 1)$

With **random** locations in \mathbb{R}^d at

$$\boldsymbol{X}_1, \dots, \boldsymbol{X}_n,$$

the link assignment rvs $\{\chi_{ij}(\rho), 1 \leq i < j \leq n\}$ are given by

$$\chi_{ij}(\rho) = \mathbf{1} [\| \boldsymbol{X}_i - \boldsymbol{X}_j \| \le \rho], \qquad 1 \le i < j \le n$$

where $\rho > 0$.

Usually, the rvs X_1, \ldots, X_n are taken to be **i.i.d.** rvs **uniformly** distributed over some compact subset $\Gamma \subseteq \mathbb{R}^d$

Even then, not so obvious to write

$$\mathbb{P}\left[\mathbb{G}(n;\rho)=G\right], \quad G\in\mathcal{G}(V).$$

since the rvs $\{\chi_{ij}(\rho), 1 \leq i < j \leq n\}$ are no more i.i.d. rvs

For d=2, long history for modeling wireless networks (known as the **disk model**) where ρ interpretated as transmission range

Threshold random graphs

Given \mathbb{R}_+ -valued **i.i.d.** rvs W_1, \ldots, W_n with absolutely continuous probability distribution function F,

$$i \sim j$$
 if and only if $W_i + W_j > \theta$

for some $\theta > 0$

Generalizations:

$$i \sim j$$
 if and only if $R(W_i, W_j) > \theta$

for some symmetric mapping $R: \mathbb{R}^2_+ \to \mathbb{R}_+$.

Random intersection graphs

Given a **finite** set $W \equiv \{1, ..., W\}$ of features, with **random** subsets $K_1, ..., K_n$ of W,

 $i \sim j$ if and only if $K_i \cap K_j \neq \emptyset$

Co-authorship networks, random key distribution schemes, classification/clustering

36

${\bf Growth\ models}$

$$\{\mathbb{G}_t, \ t=0,1,\ldots\}$$

with rules

$$V_{t+1} \leftarrow V_t$$

and

$$\mathbb{G}_{t+1} \leftarrow (\mathbb{G}_t, V_{t+1})$$

- Preferential attachment
- Copying

Scale-free networks

Small worlds

- Between randomness and order
- Shortcuts
- Short paths but high clustering

Milgram's experiment and six degrees of separation

Exponential random graphs

- Models favored by sociologists and statisticians
- Graph analog of **exponential** families often used in statistical modeling
- Related to Markov random fields

With I parameters

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_I)$$

and a set of I observables (statistics)

$$u_i: \mathcal{G}(V) \to \mathbb{R}_+,$$

we postulate

$$\mathbb{P}\left[\mathbb{G} = G\right] = \frac{e^{\sum_{i=1}^{I} \theta_i u_i(G)}}{Z(\boldsymbol{\theta})}, \quad G \in \mathcal{G}(V)$$

with normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{G \in \mathcal{G}(V)} e^{\sum_{i=1}^{I} \theta_i u_i(G)}$$

In sum

- Many different ways to specify the pmf on $\mathcal{G}(V)$
 - Local description vs. global representation
 - Static vs. dynamic
 - Application-dependent mechanisms