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overview

1. Derivation of Variational Formulation in 1D:

• Model problem: Helmholtz equation.

• Derivation of the variational problem.

• Final variational formulation.

• Equivalence between strong and weak formulations.

2. Discretization and Discrete Finite Element Spaces:

• Finite element spaces.

• Linear algebraic problem.

• Example: piecewise linear finite element space.

• Additional remarks.



D. Pardo et. al. For more info, visit: www.bcamath.org/research/mip

model problem: helmholtz equation

Strong formulation of Helmoltz equation:























−∆u − k2u = f in Ω

u
∣

∣

∣

ΓD

= u0

∂u

∂n

∣

∣

∣

ΓN

= g

⇒















−u′′ − k2u = f in (0, 1)

u(0) = u0

u′(1) = g

Objective: to derive the equivalent weak or variational formula tion of the
problem in order to solve it via Finite Element Methods (FEM).
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derivation of the variational formulation ( I)

To derive the variational formulation, we follow the next steps:

1. We multiply Helmholtz equation by an arbitrary test function v:

−u′′v − k2uv = fv

2. We integrate over the computational domain:
∫ 1

0

−u′′v −

∫ 1

0

k2uv =

∫ 1

0

fv

3. We integrate by parts:
∫ 1

0

u′v′ − u′(1)v(1) + u′(0)v(0) −

∫ 1

0

k2uv =

∫ 1

0

fv

4. We select test functions that vanish at the Dirichlet Boundary. In this
case, we select v(0) = 0.
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derivation of the variational formulation ( II)

5. We apply the Neumann BC to obtain:
∫ 1

0

u′v′ −

∫ 1

0

k2uv =

∫ 1

0

fv + gv(1) Variational form of the equation

For variational equation to make sense, we need all integrals to be finite. A
sufficient condition is:

I. u′v′ ∈ L1(0, 1)

II. k2uv ∈ L1(0, 1)

III. fv ∈ L1(0, 1)

At this point, we introduce H ölder’s inequality, which will be helpful in order to
establish the boundness of the mentioned integrals.

||f · g||Lp ≤ ||f ||Lq||g||Lr such that
1

q
+

1

r
=

1

p
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sufficient requirements for u, u
′
, v, v

′

Hölder’s inequality assures us that if we select q, r = 2, then:

I. u′, v′ ∈ L2(0, 1) ⇒ u′v′ ∈ L1(0, 1)

II. k2 ∈ L∞(0, 1), u, v ∈ L2(0, 1) ⇒ k2uv ∈ L1(0, 1)

III. f, v ∈ L2(0, 1) ⇒ fv ∈ L1(0, 1)

In accordance to the above statements, we request:

• v ∈ V = H1
0(0, 1) = {v ∈ L2(0, 1), v′ ∈ L2(0, 1), v(0) = 0}

• u ∈ u0 + V

Thus, Sobolev spaces arise naturally as sufficient integrabili ty conditions.
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variational formulation of the problem

We are now in position to write the equivalent variational problem :











u ∈ u0 + V
∫ 1

0

u′v′ −

∫ 1

0

k2uv =

∫ 1

0

fv + gv(1) ∀v ∈ V

Abstract Variational Formulation:

{

u ∈ u0 + V

b(u, v) = l(v) ∀v ∈ V

Where b is a bilinear form and l is a linear form.
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equivalence between strong and weak problem ( I)

1. u ∈ u0 + V ⇒ u = u0 + v, v ∈ V . Since v(0) = 0, then u(0) = u0 .

2. Integrating the variational equation by parts:

−

∫ 1

0

u′′v + u′v
∣

∣

∣

1

0
−

∫ 1

0

k2uv =

∫ 1

0

fv + gv(1)

We consider the subspace for all v ∈ V such that v(1) = 0.

−

∫ 1

0

v(−u′′ − k2 − f) = 0 ∀v ∈ V : v(1) = 0

Now, we invoke Fourier’s lemma:

Let f be a continous function defined on (0, l) such that:
∫ l

0

f(x)v(x)dx = 0

for every continous test function v that vanishes at the endpoints,
v(0) = v(l) = 0. Then f must identically vanish, f = 0.

3.
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equivalence between strong and weak problem ( II)
2. Thus,

−u′′ − k2u − f = 0 in (0, 1)

3. Since

−

∫ 1

0

u′′v + u′v
∣

∣

∣

1

0
−

∫ 1

0

k2uv =

∫ 1

0

fv + gv(1)

and
−u′′ − k2 − f = 0

then

u′(1)v(1) = gv(1) ⇒ selecting v(1) 6= 0 we obtain u′(1) = g

At this point, we have totally recovered the problem in its original strong
formulation.

Conclusion: both formulations are equivalent.
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discretization of the variational problem ( I)

Let be the abstract variational formulation of the Helmholtz unidi mensional
equation:

{

u ∈ u0 + V

b(u, v) = l(v) ∀v ∈ V

V is an infinite dimensional space. Our objective is to aproximate this space
with a finite dimensional subspace Vhp ⊂ V .

• We denote the elements of Vhp by vhp ∈ Vhp

• We write our aproximate solution as uhp ∈ u0 + Vhp. For simplicity we
shall assume tha u0 = 0.

Then,
{

u ∈ V

b(uhp, vhp) = l(vhp) ∀vhp ∈ Vhp
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discretization of the variational problem ( II)

We have to solve the following aproximated problem:

{

u ∈ u0 + V

b(uhp, vhp) = l(vhp) ∀vhp ∈ Vhp

For simplicity, we consider u0 = 0. Then,

{

u ∈ V

b(uhp, vhp) = l(vhp) ∀vhp ∈ Vhp
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discretization of the variational problem ( III)

Let {ei}N
j=1 a basis of the N dimensional Vhp subspace.

We have:

uhp(x) =
N

∑

1

ujej(x)

With the above definition, we have to solve this problem:

(1) =

{

Find uhp such that

b(uhp, vhp) = l(vhp) ∀vhp ∈ Vhp

The above problem is equivalent to

(2) =











Find uj such that
∑

j

b(ej(x), ei)uj = l(ei) i = 1, . . . , N

• (1) ⇒ (2): Let uhp =
∑

j ujej and ei ∈ Vhp. Then,
∑

j

b(ej, ei)uj = l(ei) i = 1, . . . , N
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discretization of the variational problem ( IV)

• (2) ⇒ (1):

1. Let vhp ∈ Vhp. Then vhp

∑

i

viei. Thus,

b(uhp, vhp) = b(uhp,
∑

i

viei)

=
∑

i

∑

j

viujb(ej, ei)

(2) ⇒ =
∑

i

vil(ei)

= l
(

∑

i

viei

)

= l(vhp)

Thus, the two approaches are equivalent and we have to solve

∑

j

b(ej, ei)uj = l(ei) i = 1, . . . , N
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establishment of the algebraic linear problem

Defining:

bij = b(ej, ei) i, j = 1, . . . , N, u =









u1

...

uN









, l =









l(e1)
...

l(eN)









The problem reduces to:

Bd = l

Where B is the so called stiffness matrix , l is the load vector are data that we
have to compute and u is the unkown solution of the problem.
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example: piecewise linear finite element space I

In the case of one dimensional Helmholtz equation we proceed par titioning the
interval (0, 1) into N subintervals:

0 = x0 < x1 < · · · < xK < xK+1 < · · · < xN = 1

Each of the subintervals (xK, xK+1), will be called finite element , and it will
have two parameters associated with it: element length hK = xk+1 − xK, and
element local polynomial order of approximation pK (pK = 1 if we restricted
ourselfs to the piecewise linear space).

The basis functions are defined as follows:

eK(x) =















x−xK−1

xK−xK−1
if xK−1 < x < xK

xK+1−x

xK+1−xK−1
if xK < x < xK+1

0 otherwise
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example: piecewise linear finite element space II

Figure 1: One-dimensional finite element space element mesh and piecewise linear hat function.
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example: piecewise linear finite element space III

The basis functions eK are zero outside the neighborhood of node K. As
a result, most of the entries of B are zero since b(u, v) contains integrals
involving products of uv and u′v′.
Thus, B is sparse

B =























B11 B12 0 . . . 0

B21 B22 B23
. . . ...

0 B32 B33 B34
. . .

0 . . . 0
... Bn−1,n−1 Bn−1,n−1 Bn−1,n

0 Bn,n−1 Bnn






















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mesh refinements: h-adaptivity

Figure 2: One-dimensional finite element space element mesh and piecewise linear hat function.

1. Convergence limited by the polynomial degree, and large mate rial
contrasts.

2. Optimal h-grids do NOT converge exponentially in real applications.

3. They may “lock” (100 % error).
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mesh refinements: p-adaptivity

Figure 3: Polynomial order of the basis functions is increased in order to achieve more accurate results.

1. Exponential convergence feasible for analytical (“nice”) s olutions.

2. Optimal p-grids do NOT converge exponentially in real applications.

3. If initial h-grid is not adequate, the p-method will fail miserably.
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mesh refinements: k-adaptivity

Figure 4: This refinement technique makes use of smooth Ck functions.

1. Makes use of Ck functions that generally offer faster convergence for
smooth solutions.

2. Support of basis functions becomes larger as we increase k.

3. The method is still under intensive research.
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mesh refinements: r-adaptivity

Figure 5: Node relocation strategies.

1. Makes use of remeshing strategies, that is, mesh-node relocati on, which
enables us to calculate the new ‘optimal’ node position from the
estimated error.

2. The method is difficult to implement.
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some remarks about the method I

• The method described above is called (Bubnov-) Galerkin method
because we use the same space to approximate the solution and the
test function. Otherwise, if we use different spaces the method is ca lled
Petrov-Galerkin.

• The use of piecewise polynomial basis functions simplifies the e valuation
of integrals. However, it is possible to consider non-polynomi al basis
functions.

• Selecting a basis with small support leads to a sparse linear alg ebraic
system.
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some remarks about the method II

• Let X be a Hilbert space with norm || · ||, V ⊂ X and let b(u, v) denote
a bilinear form defined on X × X, which is continous,i.e., there exists
M > 0 such that

|b(u, v)| ≤ M ||u||||v||, ∀u, v ∈ X

and it is V -coercive, i.e., there exists α > 0 such that

α||v||2 ≤ b(v, v), ∀v ∈ V

Let l(v) be an arbitrary linear and continous functional defined on V , i.e.,

|l(v)| ≤ C||v||, ∀v ∈ V
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some remarks about the method III

• Consider the problem of finding an element u in V such that

b(u, v) = l(v), ∀v ∈ V

Consider the same problem on a finite-dimensional subspace Vhp of V ,
so, uhp in Vhp satisfies

b(uhp, vhp) = l(vhp), ∀v ∈ V

By the Lax-Milgram theorem, each of these problems has exactly one
solution. C éa’s lemma states that

||u − uhp|| ≤
M

α
inf

v∈Vhp

||u − v||

That is to say, the subspace solution uhp is “the best” approximation of u

in Vhp up to the constant M/α.
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