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Description:
The goal of this course is to give an overview on entropy methods measuring the return to equilibrium of solu-

tions of linear and nonlinear partial differential equations, or the convergence towards intermediate asymptotics.

1. In simple examples like the heat equation, the Poincaré inequality with Gaussian weight or the logarthmic
Sobolev inequality can be used to describe the large time asymptotics of the solutions in various functional
spaces. The entropy/entropy production method, or Bakry-Emery method, [1] and spectral approaches based
on Beckner’s work [2] will be presented.

2. The asymptotics of porous medium and fast diffusion equations will then be tackled, by the entropy/entropy
production method [4], using functional inequalities of Gagliardo-Nirenberg type [5], gradient flow tech-
niques based on mass transport [6, 12] and linearization of the entropy [3], which allow to give optimal
asymptotic rates of convergence without restriction on the the exponent of the nonlinearity.

3. Some applications of entropy method to two-dimensional Navier-Stokes equations [10] or diffusive models
like the Keller-Segel system will be briefly sketched [9]. Only preliminary results are available, as this topic
is an active area of research.

4. All equations considered above are of diffusive type. Several of them can be achieved as diffusive limits
of kinetic equations with various collision terms [7], which suggest how to establish hypocoercivity esti-
mates [13, 14]. A special attention will be devoted to the case of time relaxation kernel [8, 11] for which
hypocoercivity definitely differs from hypo-elliptic techniques.
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[14] C. Villani. Hypocoercivity. To appear in Memoirs Amer. Math. Soc., 2009.


