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Abstract

Compressed sensing studies the question of capturing a signal with the fewest number

of measurements. This lecture will study discrete compressed sensing where the signal is

a vector x in R
N with N very large and we are allowed to query x by asking for its inner

product with any vectors y of our choosing. We want to keep the number of such querries

small but still capture x either exactly or with high accuracy. This subject has its origins

in the theory of Banach spaces in the late 1970’s but laid dormant for decades because it

was not clear how these results could be used in a practical setting. It has gotten renewed

interest in the last several years through the work of several researcher but most prominently

David Donoho, Emmanuel Candés, and Terrence Tao. We will give some of the main tracys

of this subject which remains very active.

1 Introduction

We have emphasized in the first lecture that the hope of recovering or accurately approximating

a function or signal in high dimensions requires new model classes for such functions. Indeed,

we have seen that the classical way of classifying a function just on the basis of smoothness

suffers from the ‘curse of dimensionality’. Several new models for functions in high dimension

have emerged to circumvent this curse. One of the most basic of these is the idea of sparsity

and the more general notion of compressibility. This was touched on briefly in the first lecture

in the context of n term approximation using a basis in a Hilbert space. We shall formulate

these ideas in a general setting of Banach spaces and then turn to a specific setting where the

Banach space is simply the Euclidean space R
N with N large.

1.1 Sparsity

In this section, we slightly generalize the approximation from a basis given in the first lecture to

approximation from a dictionary. Let X be a Banach space. By a dictionary D ⊂ X we mean

any set of norm one elements. We define Σk := Σk(D) as the set of all S ∈ X such that

S =
∑

g∈Λ
cgg, #(Λ) ≤ k. (1.1)
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We say the elements in Σk are k-sparse. Notice that Σk is generally not a linear space: Σk+Σk 6=
Σk.

In applications, we cannot generally expect our target function (image/signal/ solution to

PDE) to be sparse so we consider how well we can approximate it by k-sparse elements. This is

measured by

σk(u) := σk(u)X := inf
g∈Σk

‖u− g‖X , (1.2)

which is called the error of k term approximation in R. To measure how fast σk(f) tends to zero

we introduce the primary approximation spaces Ar = Ar(D,X), r > 0, which consists of all f

such that

‖u‖Ar := sup
k≥1

krσk(u) < ∞. (1.3)

Functions in Ar are said to be compressible and their rate of compressibility is r.

We recall the weak ℓq spaces introduced in the first lecture. We say a sequence (bj) is in

weak ℓq if

‖(bj)‖qwℓq
:= sup

ǫ>0
ǫq#{j : |bj | > ǫ} < ∞. (1.4)

An equivalent definition is that the sequence b∗j of rearrangements of the absolute values of the

bj into non-increasing order satisfies

b∗n ≤ Mn−1/q, n ≥ 1, (1.5)

with the smallest M being the norm in wℓq.

In the case that X = H is a Hilbert space and the dictionary is a basis, we have shown the

following theorem in the first lecture.

Theorem 1.1 A function f ∈ H is in Ar, r > 0, if and only if (aj(f)) ∈ wℓq with 1/q = r+1/2

with equivalent norms: there exists constants c1, c2 such that

c1‖f‖Ar ≤ ‖(aj(f))‖wℓq ≤ c2‖f‖Ar . (1.6)

When we want to measure approximation error in non-Hilbertian norms, we need further

properties of the basis relative to that norm. In classical settings such as for wavelets or Fourier

decompositions, this is provided by Littlewood-Paley theory and square functions. For our

purposes, it will be enough to consider the case where X is an ℓp(Γ) space where Γ is a finite or

countably infinite set. In this case, in going further, we take the dictionary D to be the canonical

coordinate basis.

If we fix the ℓp = ℓp(Γ) norm in which approximation error is to be measured, then for any

x ∈ ℓp(Γ), we have for q := (r + 1/p)−1,

c0‖x‖wℓq ≤ ‖x‖Ar ≤ c1r
−1/p‖x‖wℓq , x ∈ R

N , (1.7)

for two absolute constants c0, c1 > 0. This is proved in a similar manner to Theorem 1.1 where

the constants in these inequalities do not depend on N . Therefore, x ∈ Ar is equivalent to

x ∈ wℓq with equivalent norms.
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Since the ℓq norm is larger than the weak ℓq norm, we can replace the weak ℓq norm by the

ℓq norm in the right inequality of (1.7). However, the constant can be improved via a direct

argument. Namely, if 1/q = r + 1/p, then for any x ∈ ℓq, q < p,

σk(x)ℓp ≤ ‖x‖ℓqk−r, k = 1, 2, . . . . (1.8)

To prove this, take Λk as the set of indices corresponding to the k largest entries in x. If ǫ is

the size of the smallest entry in Λk, then ǫ ≤ ‖x‖wℓqk
−1/q ≤ ‖x‖ℓqk−1/q and therefore

σk(x)
p
ℓp

=
∑

i/∈Λk

|xi|p ≤ ǫp−q
∑

i/∈Λk

|xi|q ≤ k
− p−q

q ‖x‖p−q
ℓq

‖x‖qℓq , (1.9)

so that (1.8) follows.

From this, we see that if we consider the unit ball K = U(ℓNq ) in R
N , we have

σk(K)ℓp ≤ k−r, k ≥ 1 (1.10)

with r = 1/q − 1/p. On the other hand, taking x ∈ K such that xi = (2k)−1/q for 2k indices

and 0 otherwise, we find that

σk(x)ℓp = [k(2k)−p/q]1/p = 2−1/qk−r, (1.11)

so that σk(K)ℓp can be framed by

2−1/qk−r ≤ σk(K)ℓp ≤ k−r. (1.12)

2 Compressed sensing

The typical paradigm for obtaining a compressed version of a discrete signal represented by a

vector x ∈ R
N is to choose an appropriate basis, compute the coefficients of x in this basis,

and then retain only the k largest of these with k < N . If we are interested in a bit stream

representation, we also need in addition to quantize these k coefficients.

Assuming, without loss of generality, that x already represents the coefficients of the signal

in the appropriate basis, this means that we pick an approximation to x from Σk. The best

performance that we can achieve by such an approximation process in some given norm ‖ · ‖X
of interest is described by σk(x)X .

The above compression scheme requires us to know all the entries in x. Compressed sensing

asks whether we can obtain the same performance with less information about x. To formulate

the problem, we are given a budget of n questions we can ask about x. These questions are

required to take the form of asking for the values λ1(x), . . . , λn(x) where the λj are fixed linear

functionals. The information we gather about x can therefore by described by

y = Φx, (2.1)

where Φ is an n×N matrix called the encoder and y ∈ R
n is the information vector. The rows

of Φ are representations of the linear functionals λj, j = 1, . . . , n.
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Since n < N , given y ∈ R
n, there will always be many vectors x such that Φx = y. We

denote the collection of all such vectors by F(y). In particular F(0) = N = N (Φ) is the null

space of Φ which is the set of all vectors mapped to 0 by Φ.

To extract the information that y holds about x, we use a decoder ∆ which is a mapping

from R
n → R

N . We emphasize that ∆ is not required to be linear. Thus, ∆(y) = ∆(Φx) is our

approximation to x from the information we have retained. We shall denote by An,N the set of

all encoder-decoder pairs (Φ,∆) with Φ an n×N matrix.

The most common way of evaluating the performance of an encoding-decoding pair (Φ,∆) ∈
An,N is to ask for the largest value of k such that the encoding-decoding is exact for all k-sparse

vectors, i.e.

x ∈ Σk ⇒ ∆(Φx) = x. (2.2)

This has an easy solution (see [10]). To describe this, for any set T of indices from {1, . . . , N}
we let ΦT denote the restriction of Φ to the vectors with indices in T ; this matrix is the section

of Φ formed by the columns with indices in T .

Lemma 2.1 If Φ is any n×N matrix and k is a positive integer, then the following are equiv-

alent:

(i) There is a decoder ∆ such that ∆(Φx) = x, for all x ∈ Σk,

(ii) Σ2k ∩ N = {0},
(iii) For any set T with #T = 2k, the matrix ΦT has rank 2k.

(iv) For any set T with #(T ) = 2k, the columns indexed by T are linearly independent.

(v) The symmetric non-negative matrix Φt
TΦT is invertible, i.e. positive definite.

Proof: The equivalence of (ii-v) is linear algebra.

(i)⇒(ii): Suppose (i) holds and x ∈ Σ2k ∩ N . We can write x = x0 − x1 where both

x0, x1 ∈ Σk. Since Φx0 = Φx1, we have, by (i), that x0 = x1 and hence x = x0 − x1 = 0.

(ii)⇒(i): Given any y ∈ R
n, we define ∆(y) to be any element in F(y) with smallest support.

Now, if x1, x2 ∈ Σk with Φu = Φd, then x1 − x2 ∈ N ∩Σ2k. From (ii), this means that x1 = x2.

Hence, if x ∈ Σk then ∆(Φx) = x as desired. The other equivalences follow from elementary

linear algebra. ✷

It is easy to construct examples of matrices of size n × N with n = 2k which satisfy

the requirements of the Lemma. For example, if 0 < x1 < · · · < xN = 1, then the matrix

Φ = (xji )0≤i≤n;1≤j≤N works. Thus 2k measurements suffice to recover every k sparse vectors.

However, as we shall see below, any decoder for such a matrix is necessarily unstable and so

such matrices are not useful in practice.

Another issue is that we want encoders and decoders that perform well not only for sparse

vectors but for any vector in ℓp. We discuss this issue next.

2.1 Instance optimality

We would like to measure the performance of a compressed sensing scheme (∆,Φ) in a more

robust way so that it includes all vectors x, not just sparse vectors. Accordingly, we given the
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following definition:

We say that (Φ,∆) is instance optimal in ‖ · ‖X of order k with constant C0 if

‖x−∆(Φx)‖X ≤ C0σk(x)X , (2.3)

holds for all x ∈ R
N .

Notice that if we have instance optimality of order k for some norm then any k sparse vector

x is captured exactly since σk(x)X = 0. We shall see that the range of k for which instance

optimality holds strongly depends on the norm X under consideration.

We have already seen in Lemma 2.1 that the performance of a matrix Φ in compressed

sensing is determined by the null space

N = N (Φ) := {x ∈ R
N : Φx = 0}. (2.4)

The importance of N is that if we observe y = Φx without any a-priori information on x, the

set of z such that Φz = y is given by the affine space

F(y) := x+N . (2.5)

The following result from [10] shows how the null space determines whether or not we have

instance optimality.

Theorem 2.2 Given an n × N matrix Φ, a norm ‖ · ‖X and a value of k, then a sufficient

condition that there exists a decoder ∆ such that (2.3) holds with constant C0 is that

‖η‖X ≤ C0

2
σ2k(η)X , η ∈ N . (2.6)

A necessary condition is that

‖η‖X ≤ C0σ2k(η)X , η ∈ N . (2.7)

Proof: We include the proof since it is elementary and instructive. To prove the sufficiency of

(2.6), we will define a decoder ∆ for Φ as follows. Given any y ∈ R
N , we consider the set F(y)

and choose

∆(y) := argmin
z∈F(y)

σk(z)X . (2.8)

We shall prove that for all x ∈ R
N

‖x−∆(Φx)‖X ≤ C0σk(x)X . (2.9)

Indeed, η := x−∆(Φx) is in N and hence by (2.6), we have

‖x−∆(Φx)‖X ≤ (C0/2)σ2k(x−∆(Φx))X

≤ (C0/2)(σk(x)X + σk(∆(Φx)X)

≤ C0σk(x)X ,

where the second inequality uses the fact that σ2k(x + z)X ≤ σk(x)X + σk(z)X and the last

inequality uses the fact that ∆(Φx) minimizes σk(z) over F(y).
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To prove the necessity of (2.7), let ∆ be any decoder for which (2.3) holds. Let η be any

element in N = N (Φ) and let η0 be the best 2k-term approximation of η in X. Let η0 = η1+ η2

be any splitting of η0 into two vectors of support size k, we can write

η = η1 + η2 + η3, (2.10)

with η3 = η− η0. Since −η1 ∈ Σk we have by (2.3) that −η1 = ∆(Φ(−η1)), but since η ∈ N , we

also have −Φη = Φ(η2 + η3) so that −η1 = ∆(Φ(η2 + η3)). Using again (2.3) we derive

‖η‖X = ‖η2 + η3 −∆(Φ(η2 + η3))‖X ≤ C0σk(η2 + η3)

≤ C0‖η3‖X = C0σ2k(η),

which is (2.7). ✷

When X is an ℓp space, the best k term approximation is obtained by leaving the k largest

components of x unchanged and setting all the others to 0. Therefore the property

‖η‖X ≤ Cσk(η)X , (2.11)

can be reformulated by saying that

‖η‖X ≤ C‖ηT c‖X , (2.12)

holds for all T ⊂ {1, · · · , N} such that #T ≤ k, where T c is the complement set of T in

{1, · · · , N}. In going further, we shall say that Φ has the null space property in X of order k

with constant C if (2.12) holds for all η ∈ N and #T ≤ k. Thus, we have

Corollary 2.3 Suppose that X is an ℓNp space, k > 0 an integer and Φ an encoding matrix. If

Φ has the null space property (2.12) in X of order 2k with constant C0/2, then there exists a

decoder ∆ so that (Φ,∆) satisfies (2.3) with constant C0. Conversely, the validity of (2.3) for

some decoder ∆ implies that Φ has the null space property (2.12) in X of order 2k with constant

C0.

3 Gelfand widths: bounds for the range of k

Given a norm ‖ · ‖X in which we wish to measure error, we would like to know the largest range

of k for which we can obtain instance optimality and then understand which schemes (Φ,∆)

achieve this range. We shall bound k by considering the performance of compressed sensing

systems on compact sets K and showing this is related to certain well-known n widths.

Given K and X, we define

En(K)X := inf
(Φ,∆)∈An,N

sup
x∈K

‖x−∆(Φx)‖X , (3.1)

which is a measure of the performance of the best compressed sensing systems on the set K.

We shall show that En(K)X is equivalent to the following Gelfand width:

dn(K)X := inf
Y

sup{‖x‖X ; x ∈ K ∩ Y }, n = 1, 2, . . . , (3.2)

where the infimum is taken over all subspaces Y of X of codimension less or equal to n.

6



Lemma 3.1 Let K ⊂ R
N be any set for which K = −K and for which there is a C0 > 0 such

that K +K ⊂ C0K. If X ⊂ R
N is any normed space, then

dn(K)X ≤ En(K)X ≤ C0d
n(K)X , 1 ≤ n ≤ N. (3.3)

Proof: The proof will again bring out the role of the null space of Φ in the performance of Φ.

Indeed, this null space Y = N of Φ is of codimension less or equal to n. Conversely, given any

space Y ⊂ R
N of codimension n, we can associate its orthogonal complement Y ⊥ which is of

dimension n and the n×N matrix Φ whose rows are formed by any basis for Y ⊥. Through this

identification, we see that

dn(K)X = inf
Φ

sup{‖η‖X : η ∈ N (Φ) ∩K}, (3.4)

where the infimum is taken over all n×N matrices Φ.

Now, if (Φ,∆) is any encoder-decoder pair and z = ∆(0), then for any η ∈ N , we also have

−η ∈ N . It follows that either ‖η − z‖X ≥ ‖η‖X or ‖ − η − z‖X ≥ ‖η‖X . Since K = −K we

conclude that

dn(K)X ≤ sup
η∈N∩K

‖η −∆(Φη))‖X . (3.5)

Taking an infimum over all encoder-decoder pairs in An,N , we obtain the left inequality in (3.3).

To prove the right inequality, we choose an optimal Y for dn(K)X and use the matrix Φ

associated to Y (i.e., the rows of Φ are a basis for Y ⊥). We define a decoder ∆ for Φ as follows.

Given y in the range of Φ, we recall that F(y) is the set of x such that Φx = y. If F(y)∩K 6= ∅,
we take any x̄(y) ∈ F(y) ∩K and define ∆(y) := x̄(y). When F(y) ∩K = ∅, we define ∆(y) as

any element from F(y). This gives

En(K)X ≤ sup
x,x′∈F(y)∩K

‖x− x′‖X ≤ sup
η∈C0[K∩N ]

‖η‖X ≤ C0d
n(K)X , (3.6)

where we have used the fact that x− x′ ∈ N and x− x′ ∈ C0K by our assumptions on K. This

proves the right inequality in (3.3). ✷

The Gelfand widths of ℓq balls in ℓp are known up to multiplicative constants. Historically,

the most famous of these results is the following

c0 min

{

1,

√

log(N/n)

n

}

≤ dn(U(ℓN1 ))ℓN2
= En(U(ℓN1 )ℓN2

≤ c1 min

{

1,

√

log(N/n)

n

}

. (3.7)

The upper bound in (3.7) was first proved by Kashin [19] with a slightly worse power of the

logarithm. The above form was given by Gluskin and Garneev [16]. These results could be

thought of as the start of compressed sensing. We will have more to say on this in a moment.

For now let us mention another result (which can be proved using the techniques in Chapter 13

of [21]). For any 0 < q < 1,

c0

[

min

{

1,
log(N/n)

n

}

]1/q−1
≤ En(U(ℓNq )ℓN1

≤ c1

[

min

{

1,
log(N/n)

n

}

]1/q−1
. (3.8)
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A complete description of the Gelfand widths of the ℓp balls, for 0 < p ≤ 1 can be found in [15].

Let us see how we can use this last result to give a bound on the optimal range of k for

which instance optimality can hold. Suppose that we have an n × N matrix which gives ℓN1
instance optimality for some C0 and k. For any vector in U(ℓNq ) we know from (1.12) that

σk(x)ℓ1 ≤ ‖x‖ℓNq k
−1/q+1. It follows that if we have instance optimality of order k for some

sensing system of size n×N , then En(U(ℓNq )ℓN1
≤ C0k

−1/q+1. Applying (3.8) gives

c0

[ log(N/n)

n

]1/q−1
≤ En(U(ℓNq )ℓN1

≤ C0k
−1/q+1. (3.9)

This means that k ≤ Cn
log(N/n) with C = (C0

c0
)1/q−1. Thus, this is the largest range of k for which

we can have ℓ1 instance optimality. Similar bounds can be established for instance optimality

in other spaces X = ℓNp and will be discussed shortly. For now we set out to see if we can find

matrices that give instance optimality for this range of k.

4 Constructing good matrices

Now that we know the largest range of k possible in various settings of compressed sensing, we

set out to see if we can construct matrices with this range of performance. All constructions of

CS matrices Φ with this optimal range of performance are probabilistic.

We shall limit ourselves to random matrices of the following form (other possibilities can also

be treated). We suppose that Φ = Φ(ω), ω ∈ Ω, is a family of random n × N matrices whose

entries are given by independent realizations of a fixed symmetric random variable µ defined on

a probability space (Ω, ρ) with expectation Eµ = 0 and variance Eµ2 = 1/n. The columns Φj,

j = 1, . . . , N , of Φ will be vectors in R
n with E‖Φj‖ℓn2 = 1.

We shall show that under rather mild conditions on µ, the matrices Φ(ω) will have optimal

performance with very high probability. This means that a random realization Φ(ω) will satisfy

the null space property for the largest range of k. Indeed, it will be enough to assume that

ν :=
√
nη is sub-Gaussian, i.e.

Pr{|ν| > δ} ≤ Coe
−c0δ2 , δ > 0. (4.1)

Two simple instances of random matrices which are often considered in compressed sensing are

(i) Gaussian matrices: Φi,j = N (0, 1
n) are i.i.d. Gaussian variables of variance 1/n.

(ii) Bernoulli matrices: Φi,j =
±1√
n
are i.i.d. Bernoulli variables of variance 1/n.

To understand the performance of the random matrices Φ(ω) generated by such a choice µ,

we first examine the mapping properties of Φ. From the sub-Gaussian property one deduces:

Concentration of Measure Property (CMP) : For any x ∈ R
N and any 0 < δ < 1,

there is a set Ω0(x, δ) with

ρ(Ω0(x, δ)
c) ≤ C0e

−nc0(δ), (4.2)

such that for each ω ∈ Ω0(x, δ) we have

(1− δ)‖x‖2
ℓN2

≤ ‖Φ(ω)x‖2ℓn2 ≤ (1 + δ)‖x‖2
ℓN2

. (4.3)
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Lemma 4.1 Let ν be a zero mean random variable that satisfies (4.1). Then, the n×N random

family Φ(ω), whose entries φi,j are independent realizations of µ = 1√
n
/nu satisfies the CMP

for all n and N .

Proof: For a not too difficult proof of this fact see [13]. ✷

For specific random variables such as Gaussian or Bernoulli random variables, there are

several proofs in the literature of CMP. For example, it is proved in [1] that CMP holds with

c0(δ) = δ2/4− δ3/6 and C0 = 2 for Bernoulli random variables.

There are several important consequences that can be drawn from the CMP. For us, the

most important example is the Restricted Isometry Property (RIP) as introduced by Candés,

Romberg, and Tao [5] which examines the mapping properties of Φ on Σk.

Restricted Isometry Property (RIP): An n×N matrix A is said to have RIP of order

k with constant δ if

(1− δ)‖z‖ℓN2 ≤ ‖Az‖ℓn2 ≤ (1 + δ)‖z‖ℓN2 , ∀z ∈ Σk. (4.4)

We shall now show that random matrices with CMP will satisfy RIP for the large range of

k.

Theorem 4.2 Any random family of n × N matrices which satisfies CMP will automatically

satisfy the RIP of order k and constant δ for any k ≤ c(δ)n/ log(N/n) with probability ≥ 1−e−c2n

where c and c2 depend only on δ.

For the proof of this theorem we follow [3]. For any index set T ⊂ {1, . . . , N}, let XT be the

linear space of all vectors in R
N which are supported on T .

Lemma 4.3 Let Φ(ω), ω ∈ Ω, satisfies CMP. Then, for any set T with #(T ) = k < n and

any 0 < δ < 1, we have

(1− δ)‖x‖ℓN2 ≤ ‖Φ(ω)x‖ℓn2 ≤ (1 + δ)‖x‖ℓN2 , for all x ∈ XT , (4.5)

with probability

≥ 1− 2(12/δ)k e−c0(δ/2)n. (4.6)

Proof: First note that it is enough to prove (4.5) in the case ‖x‖ℓN2 = 1, since Φ is linear.

Next, we choose a finite set of points QT such that QT ⊆ XT , ‖q‖ℓN2 ≤ 1 for all q ∈ QT , and for

all x ∈ XT with ‖x‖ℓN2 ≤ 1 we have

min
q∈QT

‖x− q‖ℓN2 ≤ δ/4. (4.7)

It is well known from covering numbers and easy to prove (see e.g. Chapter 13 of [21]) that we

can choose such a set QT with #(QT ) ≤ (12/δ)k . We next use CMP with δ/2, with the result

that, with probability exceeding the right side of (4.6), we have

(1− δ/2)‖q‖2
ℓN2

≤ ‖Φq‖2ℓn2 ≤ (1 + δ/2)‖q‖2
ℓN2

, for all q ∈ QT , (4.8)
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which trivially gives us

(1− δ/2)‖q‖ℓN2 ≤ ‖Φq‖ℓn2 ≤ (1 + δ/2)‖q‖ℓN2 , for all q ∈ QT . (4.9)

We now define A as the smallest number such that

‖Φx‖ℓn2 ≤ (1 +A)‖x‖ℓN2 , for all x ∈ XT , ‖x‖ℓN2 ≤ 1. (4.10)

Our goal is to show that A ≤ δ. For this, we recall that for any x ∈ XT with ‖x‖ℓN2 ≤ 1, we can

pick a q ∈ QT such that ‖x− q‖ℓN2 ≤ δ/4. In this case we have

‖Φx‖ℓn2 ≤ ‖Φq‖ℓn2 + ‖Φ(x− q)‖ℓn2 ≤ 1 + δ/2 + (1 +A)δ/4. (4.11)

Since by definition A is the smallest number for which (4.10) holds, we obtain A ≤ δ/2 + (1 +

A)δ/4. Therefore A ≤ 3δ/4
1−δ/4 ≤ δ, as desired. We have proved the upper inequality in (4.5). The

lower inequality follows from this since

‖Φx‖ℓn2 ≥ ‖Φq‖ℓn2 − ‖Φ(x− q)‖ℓn2 ≥ 1− δ/2 − (1 + δ)δ/4 ≥ 1− δ, (4.12)

which completes the proof. ✷

Proof of Theorem 4.2: We know that for each of the k dimensional spaces XT , the matrix

Φ(ω) will fail to satisfy (4.5) with probability

≤ 2(12/δ)ke−c0(δ/2)n. (4.13)

There are
(N
k

)

≤ (eN/k)k such subspaces. Hence, the RIP will fail to hold with probability

≤ 2(eN/k)k(12/δ)ke−c0(δ/2)n = e−c0(δ/2)n+k[log(eN/k)+log(12/δ)]+log(2). (4.14)

Thus, for a fixed c1 > 0, whenever k ≤ c1n/ log(N/k), we will have that the exponent in

the exponential on the right side of (4.14) is ≤ −c2n provided that c2 > c0(δ/2) − c1[1 +

(1 + log(12/δ))/ log(N/k)]. Hence, we can always choose c1 > 0 sufficiently small to ensure

that c2 > 0. This proves the theorem. From the validity of the theorem for the range of

k ≤ c1n/ log(N/k), one can easily deduce its validity for k ≤ c′1n/[log(N/n) + 1] for c′1 > 0

depending only on c1. ✷

Remarks: The above theorem holds for any random family satisfying CMP not necessarily

generated by draws of a single random variable µ. For the matrices generate by a single random

variable, we have shown that if ν :=
√
nµ is sub Gaussian then it has the CMP. Therefore,

SG→CMP → RIP. Much more is known about RIP. Two papers to look at are Rudelson and

Vershynin [23] which treats RIP for Fourier matrices where there are still fundamental open

questions and Adamczak, Litvak, Pajor, Tomczack-Jaegermann [2] which shows that weaker

assumptions than SG suffice for RIP

5 Verifying instance optimality

We have claimed that matrices which satisfy CMP are good matrices for compressed sensing.

To illustrate this fact, we shall now show that they satisfy instance optimality in ℓN1 for the

largest range of k. The following lemma is proved using the method of Candés and Tao[6].
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Lemma 5.1 Let a = ℓ/k, b = ℓ′/k with ℓ, ℓ′ ≥ k integers. If Φ is any matrix which satisfies

the RIP of order (a+ b)k with δ = δ(a+b)k < 1. Then Φ satisfies the null space property in ℓ1 of

order ak with constant C0 = 1 +
√
a(1+δ)√
b(1−δ)

.

Proof: It is enough to prove (2.12) in the case when T is the set of indices of the largest ak

entries of η. Let T0 = T , T1 denote the set of indices of the next bk largest entries of η, T2 the

next bk largest, and so on. The last set Ts defined this way may have less than bk elements.

We define η0 := ηT0 + ηT1 . Since η ∈ N , we have Φη0 = −Φ(ηT2 + . . .+ ηTs), so that

‖ηT ‖ℓ2 ≤ ‖η0‖ℓ2 ≤ (1− δ)−1‖Φη0‖ℓ2 = (1− δ)−1‖Φ(ηT2 + . . . + ηTs)‖ℓ2

≤ (1− δ)−1
s

∑

j=2

‖ΦηTj‖ℓ2 ≤ (1 + δ)(1 − δ)−1
s

∑

j=2

‖ηTj‖ℓ2 ,

where we have used the RIP repeatedly. Now for any i ∈ Tj+1 and i′ ∈ Tj, we have |ηi| ≤ |ηi′ |
so that |ηi| ≤ (bk)−1‖ηTj‖ℓ1 . It follows that

‖ηTj+1‖ℓ2 ≤ (bk)−1/2‖ηTj‖ℓ1 , j = 1, 2, . . . , s− 1, (5.1)

so that

‖ηT ‖ℓ2 ≤ (1 + δ)(1 − δ)−1(bk)−1/2
s−1
∑

j=1

‖ηTj‖ℓ1 ≤ (1 + δ)(1 − δ)−1(bk)−1/2‖ηT c‖ℓ1 . (5.2)

By the Cauchy-Schwartz inequality ‖ηT ‖ℓ1 ≤ (ak)1/2‖ηT ‖ℓ2 , and we therefore obtain

‖η‖ℓ1 = ‖ηT ‖ℓ1 + ‖ηT c‖ℓ1 ≤ (1 +

√
a(1 + δ)√
b(1− δ)

)‖ηT c‖ℓ1 (5.3)

which verifies the null space property with the constant C0. ✷

Since we know the null space property is sufficient for instance optimality, we have proved the

following.

Theorem 5.2 Let Φ be any matrix which satisfies the RIP of order 3k. Define the decoder ∆

for Φ as in (8.18) for X = ℓ1. Then (2.3) holds in X = ℓ1 with constant C0 = 2(1 +
√
21+δ
1−δ ).

Remarks: Candés [4] has shown that 3k can be replaced by 2k in the above theorem. There

are also many papers trying to understand the weakest assumption on δ.

Let us also note that the same arguments as given above give the following mixed norm

instance optimality

‖x−∆(Φx)‖ℓ2 ≤ Ck−1/2σk(f)ℓN1
, (5.4)

which holds for any matrix satisfying RIP of order 3k and an appropriate decoder ∆.
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6 Instance optimality in ℓ2

The reader may be curious as to why we concentrated on instance optimality in ℓN1 and not in

the space ℓN2 which is more frequently used in signal processing. The reason is that instance

optimality fails miserably in ℓN2 . The reason for this is that any properly normalized n × N

compressed sensing matrix Φ with n << N will necessarily have large norm on ℓN2 . Here is one

particular way to fetter this out [10].

Theorem 6.1 Any n×N matrix Φ of which satisfies instance optimality with k = 1 necessarily

has N ≤ C2
0n.

Proof: We know that a necessary and sufficient condition for instance optimality is the null

space property. So for any vector η in the null space of Φ, we have

‖η‖2ℓ2 ≤ C2
0‖ηT c‖2ℓ2 , #T ≤ 1, (6.1)

or equivalently for all j ∈ {1, · · · , N},
N
∑

i=1

|ηi|2 ≤ C2
0

∑

i 6=j

|ηi|2. (6.2)

From this, we derive that for all j ∈ {1, · · · , N},

|ηj |2 ≤ (C2
0 − 1)

∑

i 6=j

|ηi|2 = (C2
0 − 1)(‖η‖2ℓ2 − |ηj |2), (6.3)

and therefore

|ηj |2 ≤ A‖η‖2ℓ2 , (6.4)

with A = 1− 1
C2

0
.

Let (ej)j=1,···,N be the canonical basis of RN so that ηj = 〈η, ej〉 and let v1, . . . , vN−n be an

orthonormal basis for N . Denoting by P = PN the orthognal projection onto N , we apply (6.4)

to η := P (ej) ∈ N and find that for any j ∈ {1, . . . , N}

|〈P (ej), ej〉|2 ≤ A. (6.5)

This means
N−n
∑

i=1

|〈ej , vi〉|2 ≤ A, j = 1, . . . , N. (6.6)

We sum (6.6) over j ∈ {1, . . . , N} and find

N − n =

N−n
∑

i=1

‖vi‖2ℓ2 ≤ AN. (6.7)

It follows that (1−A)N ≤ n. That is, N ≤ nC2
0 as desired. ✷
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7 Instance optimality in probability

While it is disturbing that instance optimality does not hold in ℓN2 , the situation is not so bleak

if we rethink what we are doing. To obtain instance optimality for the large range of k for ℓ1,

we need to use probabilistic constructions since there are no known deterministic constructions.

Moreover, even if we had one of the favorable random matrices we would not be able to verify

it since the RIP property cannot be checked in any reasonable computational time. Hence

ultimately we are in a situation where we draw a matrix at random and know only that it will

work with high probability. Then why not evaluate performance in this probabilistic setting as

well?

So let us embed ourselves into the following setting. We let Ω be a probability space with

probability measure ρ and let Φ = Φ(ω), ω ∈ Ω be an n ×N random matrix. To keep matters

simple, let us assume that the entries of Φ are generated by independent draws of a random

variable as we have previously considered. We seek results of the following type:

Instance Optimality in Probability: for any x ∈ R
N , if we draw Φ at random with

respect to ρ, then

‖x−∆(Φx)‖ℓ2 ≤ C0σk(x)ℓ2 (7.1)

holds for this particular x with high probability for some decoder ∆ (dependent on the draw Φ).

It should be understood that Φ is drawn independently for each x in contrast to building a Φ

such that (7.1) holds simultaneously for all x ∈ R
N which was our original definition of instance

optimality.

We now describe our process for decoding y = Φx, when Φ = Φ(ω) is our given realization of

the random matrix. (This method is numerically impractical but will be sufficient for theoretical

results. Later we shall turn to more practical decoders.) Let T ⊂ {1, . . . , N} be any subset of

column indices with #(T ) = k and let XT be the linear subspace of RN which consists of all

vectors supported on T . For this T , we define

x∗T := argmin
z∈XT

‖Φz − y‖ℓ2 . (7.2)

In other words, x∗T is chosen as the least squares minimizer of the residual in approximation by

elements of XT . Notice that x∗T is supported on T . If Φ satisfies RIP of order k then the matrix

Φt
TΦT is nonsingular and the nonzero entries of x∗T are given by

(Φt
TΦT )

−1Φt
T y. (7.3)

To decode y, we search over all subsets T of cardinality k and choose

T ∗ := argmin
#(T )=k

‖y − Φx∗T‖ℓn2 . (7.4)

Our decoding of y is now given by

x∗ = ∆(y) := x∗T ∗ . (7.5)
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Theorem 7.1 [10] Assume that Φ is a random matrix which satisfies RIP of order 2k and also

satisfies CMP each with probability 1− ǫ. Then, for each x ∈ R
N , the estimate (7.1) holds with

C0 = 1 + 2C
1−δ and probability 1− 2ǫ.

Proof: Let x ∈ R
N be arbitrary and let Φ = Φ(ω) be the draw of the matrix Φ from the random

ensemble. We denote by T the set of indices corresponding to the k largest entries of x. Thus

‖x− xT ‖ℓ2 = σk(x)ℓ2 . (7.6)

Then,

‖x− x∗‖ℓ2 ≤ ‖x− xT ‖ℓ2 + ‖xT − x∗‖ℓ2 ≤ σk(x)ℓ2 + ‖xT − x∗‖ℓ2 . (7.7)

We bound the second term by

‖xT − x∗‖ℓNT ≤ (1− δ)−1‖Φ(xT − x∗)‖ℓ2
≤ (1− δ)−1(‖Φ(x− xT )‖ℓ2 + ‖Φ(x− x∗)‖ℓ2)
= (1− δ)−1(‖y − ΦxT ‖ℓ2 + ‖y − Φx∗‖ℓ2)
≤ 2(1− δ)−1‖y − ΦxTT‖ℓ2 = 2(1− δ)−1‖Φ(x− xT )‖ℓ2
≤ 2C(1− δ)−1‖x− xT ‖ℓ2 = 2C(1− δ)−1σk(x)ℓ2 .

where the first inequality uses the RIP and the fact that xT −x∗ is a vector with support of size

less than 2k, the third inequality uses the minimality of T ∗ and the fourth inequality uses the

boundedness property in probability for x− xT . ✷

8 Decoding

Up to this point we have completely ignored the practicality of the decoders used in our com-

pressed sensing results. We shall now remedy this situation. The two most common decoders

are constructed by ℓ1 minimization and greedy algorithms. Both of these are reasonable to

implement numerically. We shall only have time to discuss ℓ1 minimization but there are now

nice results for greedy decoders (see [22], [9]). We concentrate on how this decoder performs in

terms of instance optimality in ℓN1 and instance optimality with high probability in ℓN2 ?

The decoder for ℓ1 minimization is

∆(y) := argmin
Φz=y

‖z‖ℓ1 , y ∈ R
n. (8.1)

It can be implemented numerically with linear programming using the simplex algorithm or

interior point methods. The fact that ℓ1-minimization is a good decoder was one of the main

contributions of Donoho [14] and Candés, Romberg, and Tao [5, 7] and their results were the

beginning of the subject of compressed sensing as it is now called. The following theorem is

contained in [10] but can also be derived from the techniques in [5].
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Theorem 8.1 Let Φ be any matrix which satisfies the RIP of order 3k with δ3k ≤ δ < (
√
2 −

1)2/3. Define the decoder ∆ for Φ as in (8.2). Then, (Φ,∆) satisfies (2.3) in X = ℓ1 with

C0 =
2
√
2+2−(2

√
2−2)δ√

2−1−(
√
2+1)δ

.

Remark: Again, Candés [4] shows that 3k can be replaced by 2k with a somewhat more involved

argument.

Proof: We apply Lemma 5.1 with a = 1, b = 2 to see that Φ satisfies the null space property

in ℓ1 of order k with constant C = 1+ 1+δ√
2(1−δ)

< 2. This means that for any η ∈ N and T such

that #T ≤ k, we have

‖η‖ℓ1 ≤ C‖ηT c‖ℓ1 , (8.2)

and therefore

‖ηT ‖ℓ1 ≤ (C − 1)‖ηT c‖ℓ1 . (8.3)

Let x∗ = ∆(Φx) be the solution of (8.1) so that η = x∗ − x ∈ N and

‖x∗‖ℓ1 ≤ ‖x‖ℓ1 . (8.4)

Denoting by T the set of indices of the largest k coefficients of x, we can write

‖x∗T ‖ℓ1 + ‖x∗T c‖ℓ1 ≤ ‖xT ‖ℓ1 + ‖xT c‖ℓ1 . (8.5)

It follows that

‖xT ‖ℓ1 − ‖ηT ‖ℓ1 + ‖ηT c‖ℓ1 − ‖xT c‖ℓ1 ≤ ‖xT ‖ℓ1 + ‖xT c‖ℓ1 , (8.6)

and therefore

‖ηT c‖ℓ1 ≤ ‖ηT ‖ℓ1 + 2‖xT c‖ℓ1 = ‖ηT ‖ℓ1 + 2σk(x)ℓ1 . (8.7)

Using (8.3) and the fact that C < 2 we thus obtain

‖ηT c‖ℓ1 ≤ 2

2− C
σk(x)ℓ1 . (8.8)

We finally use again (8.2) to conclude that

‖x− x∗‖ℓ1 ≤ 2C

2− C
σk(x)ℓ1 , (8.9)

which is the announced result. ✷

Our next goal is to show that the ℓ1 minimization decoder can be used together with general

random matrices to give instance optimality in probability for the large range of k. To establish

this fact we need another mapping property of random matrices.

Lemma 8.2 Let Φ(ω) be an n×N random matrix which satisfies CMP. For each x ∈ R
N there

is a set Ω1(x) with

ρ(Ω1(x)
c) ≤ Ce

−n
2L (8.10)

such that for all ω ∈ Ω1(x),

‖Φx‖ℓn
∞

≤ 1√
L
‖x‖ℓN2 , where L := logN/n. (8.11)
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Proof: We shall prove this lemma in the case that η = 1√
n
r where r is the Bernoulli random

variable taking values ±1. In the general SG case, one has to analyze moments (see [13].

Without loss of generality we can assume that ‖x‖ℓN2 = 1. Fix such an x. We note that each

entry yi of y is of the form

yi =
1√
n

N
∑

j=1

xjri,j , (8.12)

where the ri,j are independent random variables and x = (x1, . . . , xN ). We shall use Hoeffding’s

inequality (see page 596 of [17]) which says that for independent mean zero random variables ǫj

taking values in [aj , bj ], j = 1, . . . , N , we have

Pr



|
N
∑

j=1

ǫj | ≥ δ



 ≤ 2e
−2δ2

∑N
j=1

(bj−aj)
2
. (8.13)

We apply this to the random variables ǫj := 1√
n
xjri,j, j = 1, . . . , N , which take values in

1√
n
[−xj , xj ]. Since

∑N
j=1(2xj)

2 = 4, we deduce that

Pr (|yi| ≥ δ) ≤ 2e
−nδ2

2 . (8.14)

Applying a union bound, we get

Pr
(

‖y‖ℓn
∞

≥ δ
)

≤ 2ne
−nδ2

2 . (8.15)

If we now take δ = 1/
√
L we arrive at the lemma. ✷

There is one additional mapping property of random matrices which is instrumental in show-

ing that ℓ1 minimization can be used as a decoder and attain instance optimality in probability.

Clipped Ball Mapping Property (CBMP): Let Φ(ω) be a random family of n × N

matrices whose entries are given by random draws of the random variable η = 1√
n
r with r a SG

random variable. Let L := log(N/n) as before. Then, with probability ≥ 1 − Ce−c
√
nN on the

draw of Φ the following holds: for each vector y ∈ R
n with ‖y‖ℓn2 , L−1/2‖y‖ℓn

∞
≤ 1, there is a

z ∈ R
N such that Φ(z) = y and ‖z‖ℓN1 ≤ C ′√ n

L . In other words, with high probability the unit

ball in ℓN1 is mapped onto a clipped ball in R
n.

Remark: Using arguments similar to the proof of ℓ1 instance optimality we can also require

that the vector z in CBMP satisfies ‖z‖ℓN2 ≤ C‖y‖ℓn2
This mapping property was proved by A. Litvak, A. Pajor, M. Rudelson, N. Tomczak-

Jaegermann [20] and reproved in [13]. We now use this mapping property to prove ℓ2 instance

optimality in probability.

Theorem 8.3 Let Φ(ω) be a random family of n × N matrices whose entries are given by

random draws of the random variable η = 1√
n
r with r a SG random variable and let ∆ be

the ℓ1-minimization decoder. Let L := log(N/n) as before. For each x ∈ R
N and each k ≤

ãn/ log(N/n), N ≥ [ln 6]2n, there is a set Ω(x, k) with

ρ(Ω(x, k)c) ≤ C[e−c̃1n + e−
√
Nn + e−n/24 + ne

−n
2 log(N/n) ], (8.16)
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such that for each ω ∈ Ω(x, k), we have

‖x−∆(Φx)‖ℓN2 ≤ C ′σk(x)ℓN2 , (8.17)

where C and C ′ are absolute constants.

Proof: We will prove the theorem for the largest k satisfying k ≤ ãn/L. The theorem follows

for all other k from the monotonicity of σk. Let xk be a best approximation to x from Σk, so

‖x− xk‖ℓN2 = σk(x)ℓN2
=: σk(x), and let y′ = Φ(x− xk). From CMP and Lemma 8.2, we have

with high probability

‖y′‖ℓn2 ≤
√

3

2
‖x− xk‖ℓN2 =

√

3

2
σk(x),

and

‖y′‖ℓn
∞

≤ 1√
L
‖x− xk‖ℓN2 =

1√
L
σk(x).

The CBMP and the Remark following its definition says that there is a vector z′ ∈ R
N , such

that Φ(x− xk) = y′ = Φz′ and

‖z′‖ℓN2 ≤ Cσk(x), and ‖z′‖ℓN1 ≤ C

√

n

L
σk(x). (8.18)

Note that σk(xk + z′)ℓN1 ≤ ‖z′‖ℓN1 , and therefore using (8.18) it follows that

σk(xk + z′)ℓN1 ≤ C

√

n

L
σk(x). (8.19)

Since Φx = Φ(xk + z′), we have that x̄ := ∆(Φ(xk + z′)) = ∆(Φx). We know that with high

probability Φ satisfies RIP of order 2k and hence the mixed-norm instance optimality (5.4).

This means that

‖xk + z′ − x̄‖ℓN2 ≤ C√
k
σk(xk + z′)ℓN1 ≤ C ′σk(x).

where the last inequality uses the definition of k. Therefore, it follows from (8.18) that

‖x− x̄‖ℓN2 ≤ ‖x− xk − z′‖ℓN2 + ‖xk + z′ − x̄‖ℓN2
≤ ‖x− xk‖ℓN2 + ‖z′‖ℓN2 + ‖xk + z′ − x̄‖ℓN2
≤ Cσk(x), (8.20)

which proves the theorem. ✷

9 Deterministic constructions of compressed sensing matrices

We have seen that matrices that satisfy theRIP for the largest range of k (i.e. k ≤ Cn/ log(N/n))

are guaranteed to be best for compressed sensing in the sense that they recover the largest range

of sparse vectors and also give the optimal results known for instance optimality. All construc-

tions for this largest range are given by probabilistic methods. This brings up the interesting

question of what can we achieve with deterministic constructions. We first point out that we

can achieve a more restricted range using some simple constructions from finite fields [12].
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For simplicity of this exposition, we shall consider only the case that F has prime order and

hence is the field of integers modulo p. The results we prove can be established for other finite

fields as well. Given F , we consider the set F ×F of ordered pairs. Note that this set has n := p2

elements. Given any integer 0 < r < p, we let Pr denote the set of polynomials of degree ≤ r

on F . There are N := pr+1 such polynomials. Any polynomial Q ∈ Pr can be represented

as Q(x) = a0 + a1x + · · · + arx
r where the coefficients a0, . . . , ar are in F . If we consider this

polynomial as a mapping of F to F then its graph G(Q) is the set of ordered pairs (x,Q(x)),

x ∈ F . This graph is a subset of F × F .

We order the elements of F × F lexicographically as (0, 0), (0, 1), . . . , (p− 1, p − 1). For any

Q ∈ Pr, we denote by vQ the vector indexed on F ×F which takes the value one at any ordered

pair from the graph of Q and takes the value zero otherwise. Note that there are exactly p ones

in vQ; one in the first p entries, one in the next p entries, and so on.

Theorem 9.1 Let Φ0 be the n×N matrix with columns vQ, Q ∈ Pr with these columns ordered

lexicographically with respect to the coefficients of the polynomials. Then, the matrix Φ := 1√
pΦ0

satisfies the RIP with δ = (k − 1)r/p for any k < p/r + 1.

Proof: Let T be any subset of column indices with #(T ) = k and let ΦT be the matrix created

from Φ by selecting these columns. The Grammian matrix AT := Φt
TΦT has entries vQ ·vR with

Q,R ∈ Pr. The diagonal entries of AT are all one. For any Q,R ∈ Pr with Q 6= R, there are

at most r values of x ∈ F such that Q(x) = R(x). So any off diagonal entry of AT is ≤ r/p. It

follows that the off diagonal entries in any row or column of AT have sum ≤ (k− 1)r/p = δ < 1

whenever k < p/r + 1. Hence we can write

AT = I +BT , (9.1)

where ‖BT ‖ ≤ δ where the norm is taken on either of ℓ1 or ℓ∞. By interpolation of operators,

the norm of BT is ≤ δ as an operator from ℓ2 to ℓ2. It follows that the spectral norm of AT is

≤ 1 + δ and that of its inverse is ≤ (1− δ)−1. This verifies (4.4) and proves the lemma. ✷

Notice that since n = p2 and N = pr+1, log(N/n) = (r− 1) log p = (r− 1) log(n)/2, we have

constructed matrices that satisfy RIP for the range k − 1 < p/r <
√
n log n/(2 log(N/n)).

There have been several other deterministic constructions of CS matrices well documented

on the web site https://sites.google.com/site/igorcarron2/deterministiccs.
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