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Model Problem

Find a function u such that

−div (A∇u) = f in Ω (1)

u = u0 on ΓD (2)

nTA∇u = g on ΓN (3)

• We assume that aij ∈ L∞(Ω), f ∈ L2(Ω), g ∈ L2(ΓN ) and

u0 ∈ H1(Ω). Moreover let for a.a. x ∈ Ω one has aij(x) = aji(x)

and there exist constants C1, C2 > 0 such that

C1‖ξ‖
2 ≤ A(x)ξ · ξ ≤ C2‖ξ‖

2 ∀ξ ∈ Rd
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Weak Formulation

We introduce the space of test functions

V =
{

v ∈ H1(Ω) | v = 0 on ΓD

}

and define the bilinear and linear forms

a(v, w) =

∫

Ω

A∇w · ∇v dx, F (v) =

∫

Ω

fv dx+

∫

ΓN

gv ds.

Definition: Let Ω ∈ L and ΓD 6= ∅. A function u ∈ H1(Ω) is

called a weak (or generalized) solution of the problem (1)–(3) if

u− u0 ∈ V and a(v, u) = F (v) ∀v ∈ V

Theorem: Let Ω ∈ L and ΓD 6= ∅. Then there exists exactly one

weak solution u ∈ H1(Ω) of the problem (1)–(3)
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Equivalent Norms for Measuring Errors

• The solution u = u0 + u⋆, where u⋆ ∈ V . Let ū = u0 + ū⋆

(ū⋆ ∈ V ) be an approximation of u. We want to find (or estimate)

the following value ‖u− ū‖1,Ω

• First, for w ∈ H1(Ω) we have by definition

‖w‖21,Ω := ‖w‖20,Ω + ‖∇w‖20,Ω

• Also, the following Friederichs’ inequality holds for w ∈ V

‖w‖0,Ω ≤ CΩ,ΓD
‖∇w‖0,Ω (FI)

• The function u⋆ minimizes the energy functional over V

J(w) =
1

2
a(w,w)− F (w)
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Now, since u− ū ∈ V we observe that

‖u− ū‖21,Ω ≤
(

1+C2
Ω,ΓD

)

‖∇(u− ū)‖20,Ω ≤
1 + C2

Ω,ΓD

C1
a(u− ū, u− ū)

and, also, it holds

1

C2
a(u− ū, u− ū) ≤ ‖∇(u− ū)‖20,Ω ≤ ‖u− ū‖21,Ω

which altogether means that the estimation of the error in the

energy norm
√

a(·, ·) is equivalent to the error estimation in the

norm ‖ · ‖1,Ω with known equivalence constants

• Moreover, since a(u− ū, u− ū) = 2(J(ū⋆)− J(u⋆)), and J often

presents the total energy of the system under analysis, the

measurement of the error in terms of the energy norm is physically

more natural

• From above we also observe that estimation of ‖u− ū‖1,Ω is

equivalent to estimation of ‖∇(u− ū)‖20,Ω
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First Attempt of Error Control

• The first attempt of the error control was probably done in W.

Prager, J.L. Synge “Approximation in elasticity based on the

concept of functional spaces”, Quart. Appl. Math., 5 (1947)

• Their estimate has been obtained using geometrical arguments.

In terms of our model elliptic BVP in the simplest setting

−∆u = f in Ω & u = 0 on ∂Ω

i.e., A ≡ I, u0 ≡ 0, ΓN = ∅, it reads as follows

‖∇(u− ū)‖20,Ω + ‖∇u− τ‖20,Ω = ‖∇ū− τ‖20,Ω (PS)

where ū ∈ H1
0 (Ω) is an appoximation and τ satisfies div τ + f = 0

• RHS of the estimate (PS) is explicitly computable once we know

ū and τ , and we need not know anything about u
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The estimate (PS) can be proved as follows. First we notice that

div (∇u− τ) = 0 coming from the condition on τ and our equation.

Thus, the following orthogonality relation holds

0 =

∫

Ω

(u− ū)div (∇u− τ) dx =

∫

Ω

∇(u− ū) · (∇u− τ) dx

which, obviously, results then into

‖∇(u−ū)‖20,Ω+‖∇u−τ‖20,Ω = ‖∇(u−ū)−(∇u−τ)‖20,Ω = ‖∇ū−τ‖20,Ω

The estimate (PS) can be written also as

a(u− ū, u− ū) ≡ ‖∇(u− ū)‖20,Ω ≤ ‖∇ū− τ‖20,Ω (PS′)

• The drawback of the above estimates is that we do not know how

to construct τ satisfying the differential relation div τ + f = 0
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ERRORS and RESIDUALS

8



Case of System of Linear Algebraic Equations

• One natural way to check the quality of an approximate solution

is to substitute the approximation into the governing equation and

check how large the resulting residual is

First we demonstrate how this procedure works for the case of a

system of linear algebraic equations in Rd:

Au = f

Let ū be any vector from Rd, then we observe

A (u− ū) =: Ae = r := f −Aū

which gives the following residual type estimate

‖e‖ ≤ ‖A−1‖‖r‖
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Let us define quantities

λmin = minx∈Rd,x6=0

‖Ax‖

‖x‖
and λmax = maxx∈Rd,x6=0

‖Ax‖

‖x‖

Since Ae = r and Au = f we have

λmin ≤
‖Ae‖

‖e‖
=

‖r‖

‖e‖
≤ λmax and λmin ≤

‖Au‖

‖u‖
=

‖f‖

‖u‖
≤ λmax

or, in another form,

λ−1
max‖r‖ ≤ ‖e‖ ≤ λ−1

min‖r‖ and λ−1
max‖f‖ ≤ ‖u‖ ≤ λ−1

min‖f‖

Thus,

κ−1(A)
‖r‖

‖f‖
≤

‖e‖

‖u‖
≤ κ(A)

‖r‖

‖f‖

where κ(A) = λmax

λmin

is a condition number of A

• It means that the error (relative error) is directly controlled via

the value (relative value) of the residual

10



Case of Boundary Value Problems

• The above agruments can obviously be used for a wider class of

linear problems, where now

A : V → U

is a coercive linear operator from Banach space V to Banach space

U and f is a given element from U

• If A is related to some BVP we must define what the spaces V

and U are then, and find a meaningful analogue of the estimate

constructed just before for the case of a system of algebraic

equations
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• Let A : V → U be a linear elliptic operator. Consider the

following BVP

Au = f in Ω & u = 0 on ∂Ω

• Assume that ū ∈ V is an approximation of u. We should

obviously measure the error in the space V and the residual – in

the space U

• That is the principial form of the desired estimate is as follows

‖u− ū‖V ≤ C‖f −Aū‖U (DE)

where the constant C is independent of ū

• Then the main question is – which spaces V and U do we choose

for a concrete BVP
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Model Problem: First Trial

• Consider first our model elliptic BVP

−div(A∇u) = f in Ω & u = 0 on ∂Ω

with standard conditions on matrix of coefficients (see Lecture 1)

• The generalized solution of BVP u ∈ H1
0 (Ω) and f ∈ L2(Ω)

• The question now is if it is suitable to take spaces as follows

V = H1
0 (Ω) and U = L2(Ω) ?
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Idea to Get Relevant Estimate: Solution u ∈ H1
0 (Ω) satisfies

the integral identity
∫

Ω

A∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈ H1
0 (Ω) (II)

which implies (taking w = u) the so-called energy estimate

‖∇u‖0,Ω ≤
CΩ,ΓD

C1
‖f‖0,Ω (EE)

where CΩ,ΓD
is a constant in the Friedrichs’ inequality (FI)

• This estimate is a particular case of (DE) with ū = 0. We can

try to get similarly an estimate involving also the approximation ū
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• Let ū be such that div (A∇ū) ∈ L2(Ω). Then, similarly to (II)
∫

Ω

A∇(u− ū) · ∇w dx =

∫

Ω

(f + div (A∇ū))w dx ∀w ∈ H1
0 (Ω)

which now implies (with w = u− ū) another estimate

‖∇(u− ū)‖0,Ω ≤
CΩ,ΓD

C1
‖f + div (A∇ū)‖0,Ω

whose RHS is, as desired, the L2-norm of the residual

• However, normally a sequence of approximations uh converges to

the exact solution u only in the norm ‖ · ‖1,Ω, i.e., the sequence

‖f + div (A∇uh)‖0,Ω need not tend to zero as h → 0. Thus, very

important property of consistency for the above estimate is lost

• It follows from the above analysis that another norm of the

residuals should be taken
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Sobolev Spaces with Negative Indices

• In order to explain the next approach we need extra

mathematical tools related to the idea of the so-called “negative

norms”. First, we recall several definitions for distributions

Definition: Linear continuous functionals defined on the space

C∞
0 (Ω) are called distributions

Denotation: The space of distrubitions is traditionally denoted by

D′(Ω). The value of a distribution g on a function ϕ ∈ C∞
0 (Ω) is

denoted by < g, ϕ >

Definition: We say that distributions g1 and g2 are equal in Ω if

< g1, ϕ >=< g2, ϕ > ∀ϕ ∈ C∞
0 (Ω)
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Definition: We say that the distribution g is a sum of

distributions g1 and g2 if

< g, ϕ >=< (g1 + g2), ϕ > ∀ϕ ∈ C∞
0 (Ω)

Definition: If a distribution g can be identified with a locally

integrable function ḡ, then it is called regular. In this case, the

action of g is given by the Lebesgue integral

< g, ϕ >=

∫

Ω

ḡϕ dx

The other distributions are called singular

• Distributions possess a very important property – they have

derivatives of any order if the differentiation is understood in a

special (generalized) sense
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Definition: Let g be a distribution. Its generalized derivative Dmg

is a linear continuous functional defined for any ϕ ∈ C∞
0 (Ω) as

follows

< Dmg, ϕ >:= (−1)|m| < g,Dmϕ >

• Any function from Lp(Ω) always defines a certain distribution

and, therefore, has generalized derivatives (in the sense of

distributions) of any order

Definition: Sobolev space W−k
p (Ω) is the space of distributions

g ∈ D′(Ω) such that

g =
∑

|m|≤k

Dmgm

where gm ∈ Lp(Ω)
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• Let g ∈ L2(Ω). Then the functional

<
∂g

∂xi
, ϕ >:= −

∫

Ω

g
∂ϕ

∂xi
dx

is l. c. not only for functions from C∞
0 (Ω) but also for functions

from H1
0 (Ω). This follows from the density of smooth functions in

H1
0 (Ω) and known theorem on the continuation of l. c. functionals.

Hence, the first generalized derivatives of g lie in the space dual to

H1
0 (Ω), usually denoted by H−1(Ω)

• For g ∈ H−1(Ω) we can introduce a “negative norm”

‖g‖−1,Ω := supw∈H1
0
(Ω),w 6=0

| < g,w > |

‖∇w‖0,Ω

• From the definition it follows

| < g,w > | ≤ ‖g‖−1,Ω‖∇w‖0,Ω
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Consistent Error Estimate

• Now we can look at the integral identity (II)
∫

Ω

A∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈ H1
0 (Ω) (II)

as equality of two distributions from H−1(Ω) acting on w ∈ H1
0 (Ω)

< −divA∇u,w >=< f,w >

which is correct due to A∇u ∈ (L2(Ω))d and f ∈ L2(Ω)

• Using < f,w >≤ ‖f‖−1,Ω‖∇w‖0,Ω we get an estimate

‖∇u‖0,Ω ≤
1

C1
‖f‖−1,Ω

which suggests to use negative norm for the residuals
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Let ū ∈ H1
0 (Ω) be an approximation of u. We have

∫

Ω

A∇(u−ū)·∇w dx =

∫

Ω

(

fw−A∇ū·∇w
)

dx =:< f+divA∇ū, w >

where f + divA∇ū ∈ H−1(Ω). Setting w = u− ū, we obtain

C1‖∇(u− ū)‖0,Ω ≤ ‖f + divA∇ū‖−1,Ω

Further

‖f + divA∇ū‖−1,Ω = supw∈H1
0
(Ω),w 6=0

| < f + divA∇ū, w > |

‖∇w‖0,Ω
=

= supw∈H1
0
(Ω),w 6=0

|
∫

Ω

A∇(u− ū) · ∇w dx|

‖∇w‖0,Ω
≤ C2‖∇(u− ū)‖0,Ω
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Finally

1

C2
‖f + divA∇ū‖−1,Ω ≤ ‖∇(u− ū)‖0,Ω ≤

1

C1
‖f + divA∇ū‖−1,Ω

• Thus, the upper and the lower bounds of the error can be

evaluated in terms of the negative norm of the residual

• A posteriori error estimates obtained in the 70–90 -th are based

on reasonable evaluation of ‖f +divA∇ū‖−1,Ω, where ū is assumed

to be the “exact” finite element aproximation, i.e., the error ε3 is

neglected again

• We shall present in detail the so-called explicit residual method,

which is essentially based two key points – Galerkin orthogonality

property and Clement interpolation operator, and clearly

demonstrates all main features of the approach of estimating the

errors via residuals for linear BVPs
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Estimation of Residuals in 1D

First we consider the model problem in 1D

−(a(x)u′(x))′ = f(x) , x ∈ (0, 1) & u(0) = u(1) = 0

where f ∈ L2(0, 1), a(x) ∈ C1([0, 1]) and a(x) ≥ a0 > 0

• Let △i = (xi, xi+1), x0 = 0, xN+1 = 1 and hi = |xi+1 − xi|

• We also assume that the approximation ū ∈ H1
0 (0, 1) and is

smooth in each subinterval △i, i = 1, . . . , N
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Then we observe

‖f + (aū′)′‖−1,(0,1) = supw∈H1
0
(0,1), w 6=0

∣

∣

∣

1
∫

0

(−aū′w′ + fw) dx
∣

∣

∣

‖w′‖0,(0,1)
=

= supw∈H1
0
(0,1), w 6=0

∣

∣

∣

N
∑

i=0

∫

△i

(−aū′w′ + fw) dx
∣

∣

∣

‖w′‖0,(0,1)
=

= supw∈H1
0
(0,1), w 6=0

∣

∣

∣

N
∑

i=0

∫

△i

ri(ū)w dx+
N
∑

i=0

a(xi)w(xi)j(ū
′(xi))

∣

∣

∣

‖w′‖0,(0,1)
=

where j(ū′(xi)) = ū′(xi + 0)− ū′(xi − 0) is the jump of gradient of

the approximation ū at the node xi and ri(ū) = (aū′)′ + f is the

residual in △i
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• It is most probably impossible to get an upper bound for the

presented supremum if ū is an arbitrary function

• However, when ū = uh, i.e., if it is assumed that approximation is

obtained with a help of FEM, it turns to be possible to get the

desired upper estimate in a relatively simple way

So, let Vh ⊂ H1
0 (0, 1) be a finite-dimensional subspace and

0 =

1
∫

0

au′
hw

′
h dx−

1
∫

0

fwh dx ∀wh ∈ Vh

This means that we can add RHS of the above identity with any

wh to the numerator in the definition of the residual, which gives

the following
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‖f + (au′
h)

′‖−1,(0,1) =

= supw∈H1
0
(0,1), w 6=0

∣

∣

∣

1
∫

0

(−au′
h(w − πhw)′ + f(w − πhw)) dx

∣

∣

∣

‖w′‖0,(0,1)

where πh : H1
0 (0, 1) → Vh is the interpolation operator defined by

conditions πhw ∈ Vh, πhw(0) = πhw(1) = 0 and

πhw(xi) = w(xi), i = 1, . . . , N
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Hence, we can get

‖f + (au′
h)

′‖−1,(0,1) = supw∈H1
0
(0,1), w 6=0

∣

∣

∣

N
∑

i=0

∫

△i

ri(uh)(w − πhw) dx+
N
∑

i=0

a(xi)(w(xi)− πhw(xi))j(u
′
h(xi))

∣

∣

∣

‖w′‖0,(0,1)

• Since w(xi)− πhw(xi) = 0, the second term in the numenator

vanishes

• We also have

N
∑

i=0

∫

△i

ri(uh)(w − πhw) dx ≤
N
∑

i=0

‖ri(uh)‖0,△i
‖w − πhw‖0,△i
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Since for w ∈ H1
0 (0, 1)

‖w − πhw‖0,△i
≤ ci‖w

′‖0,△i

we obtain for the numenator of the above expression that

N
∑

i=0

∫

△i

ri(uh)(w − πhw) dx ≤
N
∑

i=0

‖ri(uh)‖0,△i
‖w − πhw‖0,△i

≤

≤
N
∑

i=0

ci‖ri(uh)‖0,△i
‖w′‖0,△i

≤
(

N
∑

i=0

c2i ‖ri(uh)‖
2
0,△i

)1/2

‖w′‖0,(0,1)

which implies

‖f + (au′
h)

′‖−1,(0,1) ≤
(

N
∑

i=0

c2i ‖ri(uh)‖
2
0,△i

)1/2

• This bound presents a sum of local residuals ri(uh) with weights

given by the interpolation constants ci
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Interpolation Constants

• There is still an open problem - how to compute the interpolation

constants

• It turned out that for the above considered 1D cade this task can

be relatively easy solved

Let γi be a constant such that

infw∈H1(△i),w 6=0

‖w′‖20,△i

‖w − πhw‖20,△i

≥ γi

Then, obviously, we can take ci = γ
−1/2
i
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Note that

xi+1
∫

xi

|w′|2 dx =

xi+1
∫

xi

|(w − πhw)
′ + (πhw)

′|2 dx

where (πhw)
′ is constant on (xi, xi+1). Hence

xi+1
∫

xi

(w − πhw)
′(πhw)

′ dx = 0

and

xi+1
∫

xi

|w′|2 dx =

xi+1
∫

xi

|(w−πhw)
′|2 dx+

xi+1
∫

xi

|(πhw)
′|2 dx ≥

xi+1
∫

xi

|(w−πhw)
′|2 dx
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Thus, we have

infw∈H1(△i),w 6=0

‖w′‖20,△i

‖w − πhw‖20,△i

≥ infw∈H1(△i),w 6=0

xi+1
∫

xi

|(w − πhw)
′|2 dx

xi+1
∫

xi

|w − πhw|2 dx

≥

≥ infθ∈H1(△i),θ 6=0

xi+1
∫

xi

|θ′|2 dx

xi+1
∫

xi

|θ|2 dx

= infθ∈H1(0,hi),θ 6=0

hi
∫

0

|θ′|2 dx

xi
∫

0

|θ|2 dx

=
π2

h2
i

• The last equality comes from the fact that the infimum is attained

on the eigenfunction sin π
hi

x of the problem θ′′ + λθ = 0 in (0, hi)

• As a result, we take γi =
π
2

h2

i

and ci =
hi

π
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Estimation of Residuals in 2D

Now we consider the model problem in 2D

−div(A∇u) = f in Ω & u = 0 on ∂Ω

Let Vh ⊂ H1
0 (Ω) be FE-space generated by linear elements and

triangulation Th and let uh be the corresponding FE solution. i.e.,
∫

Ω

A∇uh · ∇wh dx =

∫

Ω

fwh dx ∀wh ∈ Vh

In this case the negative norm of the residual is

‖f + divA∇uh‖−1,Ω = supw∈H1
0
(Ω),w 6=0

|
∫

Ω

(

fw −A∇uh · ∇w
)

dx|

‖∇w‖0,Ω
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• Let πh : H1
0 (Ω) → Vh be a continuous interpolation operator

• Then for the finite element approximation uh we have

‖f + divA∇uh‖−1,Ω =

= supw∈H1
0
(Ω),w 6=0

|
∫

Ω

(

f(w − πhw)−A∇uh · ∇(w − πhw)
)

dx|

‖∇w‖0,Ω

• One of the most known interpolation operators πh with desired

properties has been suggested in Ph. Clément “Approximations by

finite element functions using local regularization”, RAIRO Anal.

Numér., 9 (1975)

• It is often called Clement’s interpolation operator and widely

used in a posteriori error estimation analysis
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Clement’s Interpolation Operator

• Let xs denote a node of the triangulation Th, v ∈ H1
0 (Ω)

• Let Ωs denote the union of elements in Th having xs as a vertex

For any interior xs we find a polynomial ps(x) ∈ P 1(Ωs) such that
∫

Ωs

(v − ps)q dx = 0 ∀q ∈ P 1(Ωs)

Now we uniquely define linear and continuous mapping

πh : H1
0 (Ω) → Vh

by setting

πhv(xs) = ps(xs) if xs ∈ Ω & πhv(xs) = 0 if xs ∈ ∂Ω
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Interpolation Estimates

• Let the triangular elements of the triangulation Th be denoted by

the symbols △i and let Ekl denote the common edge of △k and △l

The following relation hold

‖v − πhv‖0,△i
≤ C1,idiam (△i)‖v‖1,ΩN (△i)

‖v − πhv‖0,Ekl
≤ C2,kl|Ekl|

1/2 ‖v‖1,ΩN (Ekl)

where ΩN (△i) denotes the union of all triangles having at least one

common node with the element △i and ΩN (Ekl) stands for the

union of all triangles having at least a common node with Ekl

• For more details see book [Verfürth, 1996] and references therein
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Let σh := A∇uh, then we have

‖f + divA∇uh‖−1,Ω =

= supw∈H1
0
(Ω),w 6=0

|
∫

Ω

(

f(w − πhw)− σh · ∇(w − πhw)
)

dx|

‖∇w‖0,Ω

Let νkl be the unit normal to the edge Ekl, then we observe
∫

△i

σh · ∇(w − πhw) dx =
∑

Ekl⊂∂△i

∫

Ekl

σh · νkl (w − πhw) ds−

−

∫

△i

divσh (w − πhw) dx
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Further

‖f + divA∇uh‖−1,Ω ≤

≤ supw∈H1
0
(Ω),w 6=0

|
N
∑

i=1

∫

△i

(f + divσh)(w − πhw) dx|

‖∇w‖0,Ω
+

+ supw∈H1
0
(Ω),w 6=0

|
K
∑

k=1

K
∑

l>k

∫

Ekl⊂Ω

j(σh · νkl)(w − πhw) ds|

‖∇w‖0,Ω
= I1 + I2

where N is the number of elements and K is the number of nodes

in the triangulation Th, the symbol j stands for the jump function

• In the above we consider only edges Ekl ⊂ Ω since w − πhw = 0

on the boundary ∂Ω by definition
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Consider now the term I1. First, we notice that
∫

△i

(f + divσh)(w − πhw) dx ≤ ‖f + divσh‖0,△i
‖w − πhw‖0,△i

≤

≤ C1,i‖f + divσh‖0,△i
diam (△i)‖w‖1,ΩN (△i)

Then we get
N
∑

i=1

∫

△i

(f + divσh)(w − πhw) dx ≤

≤ d1

(

N
∑

i=1

C2
1,idiam

2 (△i)‖f + divσh‖
2
0,△i

)1/2

‖w‖1,Ω

• d1 depends on the maximal number of elements in ΩN (△i)
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Consider now the term I2. Using interpolation estimates we get

K
∑

k=1

K
∑

l>k

∫

Ekl⊂Ω

j(σh · νkl)(w − πhw) ds ≤

≤
K
∑

k=1

K
∑

l>k,Ekl⊂Ω

‖j(σh · νkl)‖0,Ekl
C2,kl|Ekl|

1/2‖w‖1,ΩN (Ekl) ≤

≤ d2

(

K
∑

k=1

K
∑

l>k,Ekl⊂Ω

C2
2,kl|Ekl|‖j(σh · νkl)‖

2
0,Ekl

)1/2

‖w‖1,Ω

• d2 depends on the maximal number of elements in ΩN (Ekl)
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Error Estimate of Residual Type

Finally, we obtain

‖f + divA∇uh‖−1,Ω ≤

≤ C0

((

N
∑

i=1

C2
1,idiam

2 (△i)‖f + divσh‖
2
0,△i

)1/2

+

+
(

K
∑

k=1

K
∑

l>k,Ekl⊂Ω

C2
2,kl|Ekl|‖j(σh · νkl)‖

2
0,Ekl

)1/2)

(•)

• In the above, the constant C0 depends on d1 and d2
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Final Comments

Quasi-Uniform Meshes: In this case all generic constants C1,i

are approximately of the same value (and, similarly, the constants

C2,kl), i.e., they can be replaced by only two constants c1 and c2,

respectively. Then RHS of the estimate (•) has a form

C
(

N
∑

i=1

η2(△i)
)1/2

where

η2(△i) = c21diam
2 (△i)‖f+divσh‖

2
0,△i

+
c22
2

∑

Ekl⊂∂△i

|Ekl|‖j(σh·νkl)‖
2
0,Ekl

and the constant C depends on c1, c2, and C0

• However, for strongly nonhomogeneous meshes this estimate can

lead to high overestimation of the error
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Arbitrary Meshes: In the general case, sharper evaluation of the

interpolation constants is desired. It leads to considerations of the

following two variational problems

infv∈H1
0
(Ω),v 6=0

‖v‖1,ΩN (△i)

‖v − πhv‖0,△i

diam (△i)

and

infv∈H1
0
(Ω),v 6=0

‖v‖1,ΩN (Ekl)

‖v − πhv‖0,Ekl

|Ekl|
1/2

• The constants C1,i and C2,kl are very difficult to compute or even

to estimate from above, see, e.g., the paper [Carstensen, Funken]

• Moreover, the number of those constants depends on the

dimension of the finite-element space Vh and can be very large

• In fact, the estimation derived is only error indicator
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