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I. Fluid equations
Main variables:

• ρ(t,x), density field,

• u(t,x), velocity field.

• p(t,x), pressure field.

• T (t,x), temperature field.

• E(t,x), total energy field.



The continuity equation establishes the mass conservation,

∂tρ+∇ · (ρu) = 0. (1)

The conservation of momentum provides

ρ(∂tu+ u∇u) +∇p−∇ · σ = 0. (2)

which is equivalent to the momentum equation

∂t(ρu) +∇ · (ρu⊗ u) +∇ · (pI − σ) = 0, (3)

For Newtonian flows σ is assumed to be

σ = µ
�
∇u+∇uT

�
+ (ξ −

2

3
µ)I∇ · u, (4)

where µ and ξ are the first and second viscosities of the fluid. For inviscid flows, µ = ξ = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0. (5)

Finally, we establish the conservation of energy,

∂t(ρE) +∇ · (ρuH) = f · u, (6)

where H is the stagnation enthalpy,

H = E +
p

ρ
. (7)



The system of equations is closed with the equation of state that can be written as

e =
p

ρ(γ − 1)
, (8)

where γ is a physical constant and e is the internal energy. The energy E and the internal
energy e are related by

E =
1

2
u2 + e.



Euler system for compressible flows in 2-D.

In the two dimensional case without external forces, if we write u = (u, v) and x = (x, y),
the Euler system for compressible flows can be written as

∂tU +∇ · F = ∂tU + ∂xFx + ∂yFy = 0, in Ω (9)

U =





ρ

ρu

ρv

ρE



 , Fx =





ρu

ρu
2 + p

ρuv

ρuH



 , Fy =





ρv

ρuv

ρv
2 + p

ρvH



 (10)

where
p = (γ − 1)ρ

�
E −

1

2
(u2 + v

2)

�
, H = E +

p

ρ
. (11)



Figure 1: Duct with variable cross area.

Equations of a perfect gas on a duct with variable cross sectional area.

We consider the one-dimensional version of the Euler equations for a flow in a duct of
variable cross sectional area A.

∂t(AU) + ∂x(AF ) =
dA

dx
P, x ∈ (0, xe), (12)

where,

F =




ρu

ρu
2 + p

ρuH



 , P =




0
p

0



 , U =




ρ

ρu

ρE



 , (13)

H = e+
p

ρ
=

γ

γ − 1

p

ρ
+

1

2
u
2
. (14)



The inviscid Burgers equation

The simplest model that contains some of the main features of the above systems is the
Burgers equation,

∂tu+ ∂x(u
2
/2) = 0, x ∈ Ω ⊂ R.

This is a particular case of a general conservation law

∂tu+ ∂xf(u) = 0, x ∈ Ω ⊂ R,

with f(u) = u
2
/2.



II. Solutions of scalar conservation laws

The linear advection equation

∂tu+ a∂xu = 0, x ∈ R, t > 0 (15)

where a is a given constant. For a given initial datum

u(0, x) = u
0(x), x ∈ R,

the Cauchy problem is well-defined and the solution is simply

u(t, x) = u
0(x− at), t ≥ 0.

The solution u at time t = t0 is a pure translation of the initial datum u
0. In fact, if we define

the characteristic lines of (16) as

x
�(t) = a, x(0) = x0 ∈ R,

the solution u satisfies
d

dt
u(t, x(t)) = 0,

i.e., it is constant along each characteristic line.



A similar situation occurs for the linear advection equation with a smooth variable coeffi-
cient a(x),

∂tu+ ∂x(a(x)u) = 0, x ∈ R, t > 0. (16)

If we define the characteristics lines by

x
�(t) = a(x(t)), x(0) = x0,

then the solution u can be obtained solving an ordinary differential equation along these char-
acterı́stics, namely

d

dt
u(t, x(t)) = −a

�(x(t))u(t, x(t)).



Two important properties:

1. Finite speed of propagation.

2. Characteristics allow to define a natural notion of weak solution for such cases.



The inviscid Burgers equation
�

∂tu+ ∂x(
u2

2 ) = 0, in R× (0, T ),
u(x, 0) = u

0(x),

Our main objective is to study the main properties of the solutions of this problem and
their numerical approximation.

Characteristics

Let u(x, t) be a smooth solution of the Burgers equation

∂tu+ ∂x(
u
2

2
) = 0

Then,
∂tu+ u∂xu = 0.



We introduce the characteristics as the integral curves x(t) of the differential equation

dx

dt
= u(x, t).

Along these curves the solution is constant since

d

dt
u(x(t), t) = ∂tu(x(t), t))+∂x(u(x(t), t))

dx

dt
= ∂tu(x(t), t))+∂x(u(x(t), t))u(x(t), t) = 0.

Therefore
dx

dt
= u(x, t) = u

0(x(0), 0),

and the characteristics are straight lines whose slopes depend on the initial data.



Note that, for some initial data (even for smooth ones) two different characteristics lines
may possibly meet at some time t = t0. In this case, the solution cannot be continuous for
t > t0 and classical solutions will not exist.



Weak solutions

Let u be a smooth solution of Burgers equation and let ϕ ∈ C
1
0 (R × [0, T )) be a test

function. Multiplying the equation of u by ϕ and integrating we obtain

0 =

� ∞

0

�

R

�
∂tu+ ∂x(

u
2

2
)

�
ϕ

= −

� ∞

0

�

R

�
∂tϕ+

u
2

2
∂xϕ

�
−

�

R
u(x, 0)ϕ(x, 0).

We adopt this identity as the definition of weak solution.



The following characterization of weak solutions is easily proved:

1. u is a classical solution when smooth (C1).

2. u satisfies the Rankine-Hugoniot conditions

[u]Σnt + [u2
/2]Σnx = 0

along discontinuities Σ.



If we parametrize the discontinuity Σ with a function s(t) by

Σ = {(t, s(t)), t ∈ (0, T )}

then s(t) must satisfy

s
�(t) =

[u2
/2](t,s(t))

[u](t,s(t))
.

Weak solutions allows us to determine the physically relevant solution when characteristics
intersect. However, this definition does not provide unicity for some initial data.



A situation where characteristics do not fill the domain

In general, the physical relevant solution is obtained by defining a new class of solutions,
known as entropy solutions, for which unicity holds. Entropy solutions can also be character-
ized as limits, as ε → 0, of solutions of the Burgers equations with viscosity:

�
∂tu+ ∂x(

u2

2 ) = ε∂xxu, in R× (0, T ),
u(x, 0) = u

0(x),



III Numerical approximation of scalar conservation
laws

A first example

Consider the advection equation
�

∂tu+ a∂xu = 0, in R× (0, T ),
u(x, 0) = u

0(x).

We introduce a uniform discretization in space and time. We take ∆t,∆x > 0.
�

t
n = n∆t, n ∈ N
xj = j∆x, j ∈ Z

Our objective is to compute u
n
j ∼ u(xj , t

n).



The simplest scheme:

u
n+1
j − u

n
j

∆t
+ a

u
n
j+1 − u

n
j−1

2∆x
= 0,

does not converge!!

Teorema (Lax) A consistent and stable numerical scheme is convergent.



Consistent schemes

The order of accuracy of a difference scheme is the largest number p ≥ 1 such that any
smooth solution u and for λ = ∆t/∆x constant, the numerical scheme evaluated on it provides
a rest of the order

O(∆t
p+1), as ∆t → 0.

A numerical scheme is consistent if its order of accuracy is at lest 1.

The above scheme is consistent.

Stability

A numerical scheme is stable if it satisfies a discrete maximum principle: If m ≤ u
0
j ≤ M

for all j ∈ Z then m ≤ u
n
j ≤ M for all n ∈ N y j ∈ Z

The above numerical scheme is not stable. To see that we can perform the von Neumann
analysis. We consider solutions of the type

u
n
j = A

n
e
ikj∆x

and we see that the amplification factor is |A| > 1.



Conservative schemes

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0,

u(x, 0) = u
0(x).

We assume that f is a C
2 function, u0 ∈ L

∞(R) and we set

a(u) = f
�(u).

We set
λ =

∆t

∆x
.

General 3-point explicit difference scheme:

v
n+1
j = H(vnj−1, v

n
j , v

n
j+1), ∀n ≥ 0, j ∈ Z, (17)

where H : R3 → R is a continuous function and v
n
j denotes an approximation of the exact

solution u at the grid point (xj = j∆x, tn = n∆t).



Definition 1 The above difference scheme can be put in conservation form if there exists a
continuous function g : R2 → R such that

H(v−1, v0, v1) = v
0
− λ[g(v−1, v0)− g(v0, v1)]. (18)

The function g is called the numerical flux.

If we define
g
n
j+1/2 = g(vnj , v

n
j+1)

then, the numerical scheme (17) reads

v
n+1
j = v

n
j − λ(gnj+1/2 − g

n
j−1/2). (19)

The difference scheme (19) is consistent with equation (17) if

g(v, v) = f(v), ∀v ∈ R. (20)



Concerning the initial datum (17) we will consider any suitable discretization. A common
choice is to take

vj,0 =
1

∆x

� xj+1/2

xj−1/2

u
0(x) dx, (21)

where xj+1/2 = (xj + xj+1)/2.

Finally the approximation by a conservative scheme of (17)-(17) is

v
n+1
j = v

n
j − λ(gnj+1/2 − g

n
j−1/2), j ∈ Z, n ≥ 0 (22)

v
0
j = vj,0. (23)



The Lax-Wendroff theorem

For a given sequence (vnj ) we introduce the piecewise constant function v∆ defined in
(0,∞)× R by

v∆(t, x) = v
n
j , t ∈ [tn, tn+1), x ∈ (xj−1/2, xj+1/2). (24)

Theorem 2 (Lax-Wendroff) Assume that the difference scheme (19) is consistent with (17) and
let v0 = (vj,0) be given by (21). Assume that there exists a sequence ∆x → 0 such that if
∆t = λ∆x (with λ constant)

�v∆�L∞((0,∞)×R)) ≤ C,

v∆ converges in L
1
loc((0,∞)× R)) and a.e. to a function u

Then u is a weak solution of (17)-(17).

The above theorem tell us that a difference scheme in conservation form which converges
always converges to a weak solution.



The idea of the proof is that a conservative numerical scheme satisfies the weak discrete
form

∆t ∆x

�

n

�

j

�
u
n+1
j

ϕ
n+1
j − ϕ

n
j

∆t
+ f

n
j+1/2

ϕ
n
j+1 − ϕ

n
j

∆x

�
+∆x

�

j

u
0
jϕ

0
j = 0

and this is a natural discretization of the weak form
� T

0

�

R
(u∂tϕ+ f(u)∂xϕ) dx dt+

�

R
u
0(x)ϕ(x, 0) = 0.



The main questions now are:

• Find sufficient conditions to convergence.

• Find criteria which ensure that the limit is the unique entropy solution.

• Determine the order of accuracy of the difference scheme.



Stability

We focus on the linear advection equation

∂tu+ a∂xu = 0.

Assume that we have a 3-points linear difference scheme of the form

v
n+1
j = c−1v

n
j−1 + c0v

n
j + c1v

n
j+1, n ≥ 0. (25)

It can be shown that the linear difference scheme (25) can be put in conservation form if
and only if

c−1 + c0 + c1 = 1.

The numerical flux is then given by

g(u, v) =
c−1u− c1v

λ
,

and the consistency condition (20) reads

c−1 − c1 = λa.

Thus, setting
q = 1− c0,



the conservative and consistent schemes can be written in viscous form as

v
n+1
j = v

n
j − λa(vnj+1 − v

n
j−1)/2 + q(vnj+1 − 2vnj + v

n
j−1)/2



Define the �
2-norm of a sequence v = (vj) as

�v�2 = (∆x

�

j

v
2
j )

1/2
.

Then, the difference scheme is L2-stable if there exists a constant C > 0, independent of ∆t

such that
�v

n
�2 ≤ C�v

0
�2, ∀n ≥ 0.

The coefficient µ = λa is called the Courant number and it can be shown that the differ-
ential scheme above is L2-stable if q satisfies

(λa)2 ≤ q ≤ 1.

In the particular case q = (λa)2 we obtain a second order accurate differential scheme
known as Lax-Wendroff scheme which is L2-stable under the condition

λ|a| ≤ 1.

This condition can be interpreted geometrically in terms of the domain of dependence of
the numerical difference scheme. This interpretation is known as the Courant-Friedrichs-Levy
(CFL) condition.



Some examples

Lax-Friedrichs scheme

u
n+1
j −

1
2 (u

n
j+1 + u

n
j−1)

∆t
+

f(un
j+1)− f(un

j−1)

∆x
= 0,

which can be put in conservation form with the numerical flux

g(u, v) =
f(u) + f(v)

2
−

v − u

2λ
.

In the linear case, q = 1 and this scheme is L2-stable under the CFL condition

max
j,n

|f
�(un

j )|
∆t

∆x
≤ 1.



Upwind scheme Assume f monotone

u
n+1
j − u

n
j

∆t
+

f(un
j+1)− f(un

j )

∆x
= 0, si f �

< 0,

u
n+1
j − u

n
j

∆t
+

f(un
j )− f(un

j−1)

∆x
= 0, si f �

> 0,

In the linear case, q = |aλ| = |ν| and the scheme is L2-stable under the CFL condition.

Godunov scheme

The Godunov scheme is based on the exact solution of local Riemann problems. The
numerical flux is given by

g(u, v) =

�
minw∈[u,v] f(w), if u ≤ v

maxw∈[u,v] f(w), if v ≤ u

In the linear case, it coincides with the upwind difference scheme.



Murman-Roe

g(u, v) =
1

2
(f(u) + f(v)− |a(u, v)|(v − u)),

where

a(u, v) =

� f(v)−f(u)
v−u if u �= v

f
�(u) if u = v

,

Lax-Wendroff

g(u, v) =
1

2
(f(u) + f(v)− λ|a(u, v)|(f(v)− f(u))),

where

a(u, v) =

� f(v)−f(u)
v−u if u �= v

f
�(u) if u = v

,



Definition 3 A numerical scheme v
n+1
j = H(vnj−1, v

n
j , v

n
j+1) is monotone if H is increasing

in each variable.

Definition 4 A numerical scheme v
n+1
j = H(vnj−1, v

n
j , v

n
j+1) is TVD if

TV (vn+1
j ) ≤ TV (vn+1

j )

where TV (vnj ) =
�

j |v
n
j+1 − v

n
j |.

Definition 5 A numerical scheme v
n+1
j = H(vnj−1, v

n
j , v

n
j+1) is L

∞-stable if there exists a
constant C > 0 such that

sup
j

|v
n
j | ≤ C

for all n ≥ 0.

A numerical scheme TVD and L
∞-stable is convergent.

Monotone schemes are TVD, L∞-stable and consistent with the entropy condition.

Lax-Friedrichs, upwind and Godunov are monotone.


