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I. Fluid equations

Main variables:

e p(t,x), density field,

e u(t,x), velocity field.

e p(t,x), pressure field.

o T'(t,x), temperature field.

e F(t,x), total energy field.




The continuity equation establishes the mass conservation,

O,p+ V- (pu) = 0. (1)

The conservation of momentum provides
p(Ou+uVu)+Vp—-V .0 =0. (2)
which is equivalent to the momentum equation
O(pu) + V- (pu®u)+ V- (pl —0o) =0, (3)
For Newtonian flows o is assumed to be
o=p(Vu+Vu') + (£ - ;,u)lv-u, 4)
where 1 and £ are the first and second viscosities of the fluid. For inviscid flows, u = £ = 0,
di(pu) + V- (pu®@u) + Vp = 0. (5)
Finally, we establish the conservation of energy,
Oh(pE)+V - (puH) =1 -u, (6)
where H is the stagnation enthalpy,

H=F+~. (7)



The system of equations is closed with the equation of state that can be written as

P
p(y—1)

where v is a physical constant and e is the internal energy. The energy E and the internal
energy e are related by

(8)

e =

1
E=-u’+e.
2u + e




Euler system for compressible flows in 2-D.

In the two dimensional case without external forces, if we write u = (u, v) and x = (z, y),
the Euler system for compressible flows can be written as

p pu pv
v=| " F pu’ +p F puv (10)
| v ] v puv Y P4
pE puH pvH

where
:(7—1)p(E—%(u2—|—vz)>, H=F+~<. (11)




Figure 1: Duct with variable cross area.

Equations of a perfect gas on a duct with variable cross sectional area.

We consider the one-dimensional version of the Euler equations for a flow in a duct of
variable cross sectional area A.

dA
0 (AU) + 0, (AF) = %P, x € (0,z.), (12)
where,

pu 0 p
F=| pu*+p |, P=|p |, U= pU : (13)

puH 0 pE

1

H=e+l=_T1 P2 22 (14)




The inviscid Burgers equation

The simplest model that contains some of the main features of the above systems is the
Burgers equation,

Opu + 0, (u?/2) = 0, reQCR.

This is a particular case of a general conservation law
Oru + O f(u) =0, x € Q) CR,

with f(u) = u?/2.




I1. Solutions of scalar conservation laws

The linear advection equation

ou+ad,u=0, xR, t>0 (15)

where a 1s a given constant. For a given initial datum
u(0,z) = u’(z), = €R,
the Cauchy problem is well-defined and the solution is simply
u(t,z) = u(z — at), t > 0.

The solution u at time ¢ = ¢ is a pure translation of the initial datum u?. In fact, if we define
the characteristic lines of (16)) as

2'(t) = a, 2(0) = zg € R,

the solution wu satisfies 1
Sult,a(t) =,

1.e., it is constant along each characteristic line.




A similar situation occurs for the linear advection equation with a smooth variable coeffi-
cient a(x),
Ou + Op(a(z)u) =0, zeR, t>0. (16)

If we define the characteristics lines by

2’ (t) = a(z(t)), x(0) = xo,

then the solution u can be obtained solving an ordinary differential equation along these char-

acteristics, namely
d
Zult,a(t) = —a'((D)u(t, (1))




Two important properties:

1. Finite speed of propagation.

2. Characteristics allow to define a natural notion of weak solution for such cases.




The inviscid Burgers equation

dru+0,(%) =0, inRx (0,T),
u(z,0) = u’(z),

Our main objective is to study the main properties of the solutions of this problem and
their numerical approximation.

Characteristics

Let u(x,t) be a smooth solution of the Burgers equation
2
Opu + ax(“?) — 0

Then,
Ou + ud,u = 0.




We introduce the characteristics as the integral curves x(t) of the differential equation

dx

i u(x,t).

Along these curves the solution is constant since

%u@j(t)? t) = Oru(x(t),t))+0z (ulz(t), t))cjl_f = Opu(z(t),t))+0: (u(x(t), 1)) u(z(t),t) = 0.
Therefore
dx

o= u(z,t) = u’(2(0),0),

and the characteristics are straight lines whose slopes depend on the initial data.




AR rs——epe ey TP PP TTE R PR L SRR LR L

Note that, for some initial data (even for smooth ones) two different characteristics lines
may possibly meet at some time ¢ = ty. In this case, the solution cannot be continuous for
t > to and classical solutions will not exist.




Weak solutions

Let u be a smooth solution of Burgers equation and let ¢ € C3(R x [0,T)) be a test
function. Multiplying the equation of u by ¢ and integrating we obtain

0 = Am4<8tu+8x(%2))¢
- -/ (atw”‘;i o) = [ ue,0p(,0)

We adopt this identity as the definition of weak solution.




The following characterization of weak solutions is easily proved:
1. wis a classical solution when smooth (C1).
2. w satisfies the Rankine-Hugoniot conditions

[u]sns + [u*/2]sn, = 0

along discontinuities ..




If we parametrize the discontinuity > with a function s(t) by
Y ={(ts()), t € (0,T);

then s(¢) must satisfy

[W? /2] (1,5(2))
[w(2,5())

s'(t) =

Weak solutions allows us to determine the physically relevant solution when characteristics
intersect. However, this definition does not provide unicity for some initial data.




A situation where characteristics do not fill the domain

t

In general, the physical relevant solution is obtained by defining a new class of solutions,
known as entropy solutions, for which unicity holds. Entropy solutions can also be character-
ized as limits, as € — 0, of solutions of the Burgers equations with viscosity:

Oyt + 0y () = edypu, InR x (0,T),
u(z,0) = u’(2),




III Numerical approximation of scalar conservation
laws

A first example

Consider the advection equation

Ou+ adu =0, inR x (0,7),
u(z,0) = u(x).

We introduce a uniform discretization in space and time. We take At, Az > 0.

t" = nAt, n €N
r; = jAz, JjE L

Our objective is to compute u? ~ u(z;,1").




The simplest scheme:

does not converge!!

Teorema (Lax) A consistent and stable numerical scheme is convergent.




Consistent schemes

The order of accuracy of a difference scheme is the largest number p > 1 such that any
smooth solution u and for A = At/Ax constant, the numerical scheme evaluated on it provides

a rest of the order
O(APTY), as At — 0.

A numerical scheme is consistent if its order of accuracy is at lest 1.
The above scheme is consistent.
Stability

A numerical scheme is stable if it satisfies a discrete maximum principle: If m < ug <M
forall j € Zthenm < u? < M foralln e Ny j € Z

The above numerical scheme is not stable. To see that we can perform the von Neumann
analysis. We consider solutions of the type

n o_ Anezksz:c

U;

and we see that the amplification factor is |A| > 1.




Conservative schemes

Ou+ 0. f(u) =0, x € R, t >0,
u(z,0) = u’(x).

We assume that f is a C? function, u® € L°(R) and we set

a(u) = f'(u).
We set A
A= NS

General 3-point explicit difference scheme:

v;-“q = H(v} 1,v],v74), Vn > 0,5 € Z, (17)

where H : R® — R is a continuous function and v denotes an approximation of the exact
solution v at the grid point (z; = jAx,t, = nAt).




Definition 1 The above difference scheme can be put in conservation form if there exists a

continuous function g : R?> — R such that

The function g is called the numerical flux.

If we define
912 = 907, v )

then, the numerical scheme (17) reads

+1 _
viTT =07 = My — 9i1)2)-

The difference scheme (19)) is consistent with equation (17) if

g(v,v) = f(v), Yv € R,

(18)

(19)

(20)




Concerning the initial datum (17) we will consider any suitable discretization. A common
choice i1s to take

Vig = 1 /QCHI/2 u’(z) d (21)
J 3

where Zlfj+1/2 = (CIJJ + $3+1)/2

Finally the approximation by a conservative scheme of (17)-(17) is

/U;H_l = U5 — )‘(9;'1-1-1/2 — 9;'1_1/2)7 JE€L, n=>0 (22)

v = wvjp. (23)




The Lax-Wendroff theorem

For a given sequence (v;‘) we introduce the piecewise constant function va defined in
(0,00) x R by

n

vA(t, ) =07, t € [ty thy1), T € (Tj—1/2,Tj41/2)- (24)

Theorem 2 (Lax-Wendroff) Assume that the difference scheme (19) is consistent with (17)) and

let v° = (v; ) be given by (21). Assume that there exists a sequence Ax — 0 such that if
At = MAx (with X\ constant)

VAl Loe ((0,00)xR)) < C,

1 ((0,00) x R)) and a.e. to a function u

va converges in Lj, .

Then u is a weak solution of ((17)-(17).

The above theorem tell us that a difference scheme in conservation form which converges
always converges to a weak solution.




The idea of the proof is that a conservative numerical scheme satisfies the weak discrete
form

n+1

nt1 % —90 ©r
AtA:UZZ( e =+ S JHA >+szuy%

and this 1s a natural discretization of the weak form

/ ) [ (woro+ F0)0ap) dadt+ [ aP(a)ol,0) =




The main questions now are:

e Find sufficient conditions to convergence.

e Find criteria which ensure that the limit is the unique entropy solution.

e Determine the order of accuracy of the difference scheme.




Stability

We focus on the linear advection equation

Oiu + ad,u = 0.

Assume that we have a 3-points linear difference scheme of the form

n+1

Y

= c_1v;_1 + Ui +c1viy g, n > 0. (25)

It can be shown that the linear difference scheme (25) can be put in conservation form if
and only if

c_1+co+c1 =1.

The numerical flux is then given by

C_1U — C10v

g(u,v) =

and the consistency condition (20) reads

C_1 — C1 = Aa.

Thus, setting
q = 1— Co,



the conservative and consistent schemes can be written in viscous form as

U?H = v} — Aa(viy —vi1)/2+ q(vjy — 207 +vfq)/2




Define the ¢?-norm of a sequence v = (v;) as
lvlla = (Az ) v)'V2.
J

Then, the difference scheme is L?-stable if there exists a constant C' > 0, independent of At
such that
[v™]l2 < Cllv”]l2, ¥n > 0.

The coefficient © = Aa is called the Courant number and it can be shown that the differ-
ential scheme above is L?-stable if ¢ satisfies

(Aa)? < g < 1.

In the particular case ¢ = (\a)? we obtain a second order accurate differential scheme
known as Lax-Wendroff scheme which is L?-stable under the condition

AMal < 1.

This condition can be interpreted geometrically in terms of the domain of dependence of
the numerical difference scheme. This interpretation is known as the Courant-Friedrichs-Levy
(CFL) condition.




Some examples

Lax-Friedrichs scheme

which can be put in conservation form with the numerical flux

gl = L0 TI0) v

In the linear case, ¢ = 1 and this scheme is L?-stable under the CFL condition

At
(™) — < 1.
%X\f (uﬂ!m <




Upwind scheme Assume f monotone

n+1 n n n
U, _uj+f(uj+1)_f(uj)zo si f! <0
At Az ’ ’
n+1 n n n
wi =y f(uf) = fufy)
J J J J .y
=0 0,
At Az 87>
In the linear case, ¢ = |a\| = |v| and the scheme is L*-stable under the CFL condition.

Godunov scheme

The Godunov scheme is based on the exact solution of local Riemann problems. The
numerical flux is given by

_ minwe[u,v] f(w)7 ifu<wv
g<u, U) - { MaXayelu,v] f(w)7 ifv<u

In the linear case, it coincides with the upwind difference scheme.



Murman-Roe

g(u,0) = 5 () + F(0) — la(u,0)](v — u),
where

f)—f(u)
a](ru/7 U) — , v—U lfu f v :
f(u) ifu=wv

Lax-Wendroff
g(u,0) = 5 () + f(0) — M, 0)|(f(0) — F (),

where

f)=f(u)
“(“’“):{ PGt use



Definition 3 A numerical scheme UJ"H = H(v}_y,v7, v}, ) is monotone if H is increasing
in each variable.

Definition 4 A numerical scheme v?“ H(v} y,v7, 07 ) is TVD if

TV (0P < TV (0t

where TV (v}) = > |v]lq — v

il

n+1

Definition 5 A numerical scheme v;

constant C' > 0 such that

= H(v} 4,v},v} ) is L>-stable if there exists a
sup [v}| < C

J
foralln > 0.

A numerical scheme TVD and L°°-stable is convergent.
Monotone schemes are TVD, L°°-stable and consistent with the entropy condition.

Lax-Friedrichs, upwind and Godunov are monotone.



