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Chapter 1

Continuous-time Random
Walks and Fractional
Diffusion Models

1.1 Introduction

This chapter contains a rather pedantic introduction to continuous-time random
walks (CTRWs) and their link to space-time fractional diffusion. The material
covered below is standard and rather elementary in the analysis of stochastic
processes, but applied scientists may have not been previously exposed to it, at
least in this form. The basic idea is to derive a theorem relating the continuous or
hydrodynamic limit of CTRWs to the space-time fractional diffusion as quickly
as possible. The cost to be paid is generality, even if we give pointers to the
literature helping in filling gaps. We assume that our readers are more interested
in basic ideas rather than in mathematical details. Incidentally, theorem 1.3.11
shows how the Caputo time derivative naturally emerges when some known
results on normal diffusion are generalized to fractional diffusion. One can go
on and use an equivalent formulation in terms of Riemann-Liouville fractional
derivatives, but there is no point in doing that. A similar presentation of this
material, but with more emphasis on compound Poisson process and a discussion
of the so-called Montroll-Weiss equation [58] can be found in a chapter of a recent
collective book [70].

CTRWs are used in physics to model single particle (tracer) diffusion when
the tracer time of residence in a site is much larger than the time needed to
jump to another site [58, 74, 75, 57, 78, 54, 55]. CTRWs are phenomenological
models and do not include microscopic theories for tracer motion. However, the
reader is warned that the processes called CTRWs in the literature on physics
and chemical physics are known as generalized compound Poisson processes or
compound renewal processes in the mathematical literature and they have a
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long history. Compound Poisson processes can be used to approximate Lévy
processes. Indeed, as discussed by Feller in Chapter 17 of the second volume
of his book [20] any infinitely divisible distribution can be approximated by a
compound Poisson distribution. The importance of these processes prompted de
Finetti to devote part of his second volume in probability theory to compound
Poisson processes as well [16]. In theorem 1.2.51, we will derive a distribution
given by equation 1.67. When P (n, t) is the distribution of the Poisson pro-
cess, equation 1.67 is also known as generalized Poisson distribution and it was
discussed by Feller in his 1943 paper [19]. From the modelling viewpoint, this
distribution is quite versatile. In the words of Feller [19]:

Consider independent random events for which the simple Poisson
distribution may be assumed, such as: telephone calls, the occur-
rence of claims in an insurance company, fire accidents, sickness and
the like. With each event there may be associated a random variable
X . Thus, in the above examples, X may represent the length of the
ensuing conversation, the sum under risk, the damage, the cost (or
length) of hospitalization, respectively.

The applications to insurance problems were indeed available at the beginning
of the XXth Century [44, 15]. Already in 1943, Feller also wrote [19]:

In view of the above examples, it is not surprising that the law,
or special cases of it, have been discovered, by various means and
sometimes under disguised forms, by many authors.

This process of rediscovery went on also after Feller’s paper; as outlined above, it
is the case of physics, where X is interpreted as tracer’s position. More recently,
for financial applications, X is seen as the log-return for a stock [71, 48, 69, 49].
More on that will be presented in the next chapter.

1.2 The Definition of Continuous-Time Random

Walks

In this section, we shall formally define CTRWs as random walks subordinated
to a counting renewal process. Essentially, we need two basic ingredients:

1. the random walk Xn;

2. the counting process N(t).

Let us begin with the random walk. This is a stochastic process given by a sum
of independent and identically distributed (i.i.d.) random variables.

Definition 1.2.1 Let {Yi}∞i=1 be a sequence of i.i.d. random variables with
cumulative distribution function given by FY (y) = P(Y ≤ y), then the process
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Xn defined as

X0 = 0 (1.1)

Xn =
n∑

i=1

Yi, n ≥ 1 (1.2)

is a random walk.

In this book, we will not deal with issues of existence of stochastic processes,
however it is useful to see that the definition is not void. Let us consider the
following example.

Example 1.2.2 Let {Yi}∞i=1 be a sequence of Bernoullian random variables with

FY (y) =
1

2
θ(y) +

1

2
θ(y − 1) (1.3)

where θ(x) is the càdlàg (continue à droite, limite à gauche) version of Heaviside
function. This means that, for all i ≥ 1, one has Yi = 0 with probability 1/2
or Yi = 1 with probability 1/2. In this case, the random walk Xn is just the
number of successes up to time step n. Its one-point distribution is given by the
binomial distribution of parameters 1/2 and n. In other words, one can write
Xn ∼ Bin(1/2, n), or, more explicitly

P (k, n) = P(Xn = k) =

(
n

k

)
1

2n
. (1.4)

In example 1.2.2, we are able to derive the one-point distribution function
P (k, n) of the random walk Xn using a well-known result of elementary prob-
ability theory. Elementary probability theory is helpful in deriving a general
formula for the cumulative distribution function FXn

(x) = P(Xn ≤ x) and for
a generic random walk, as well.

Theorem 1.2.3 Let {Yi}∞i=1 be a sequence of i.i.d. random variables with cu-
mulative distribution function given by FY (y). Then the cumulative distribution
function of the corresponding random walk Xn is given by the n-fold convolution
of FY (y), in symbols one gets

FXn
(x) = F ∗n

Y (x). (1.5)

Proof Let us use induction on n for n ≥ 2. To see that the formula is true for
n = 2, let us consider the random variable X2 = Y1 +Y2. One has the following
chain of equalities

FX2
(x) = P(X2 ≤ x) = P(Y1 + Y2 ≤ x) = E(IY1+Y2≤x) =

E
(
I{Y1∈R}∩{Y2≤x−Y1}

)
= E (IY1∈RIY2≤x−Y1

) =
∫ +∞

−∞
dFY (y1)

∫ x−y1

−∞
dFY (y2) =

∫ +∞

−∞
dFY (y1)FY (x − y1) = F ∗2

Y (x). (1.6)
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Now suppose that the formula is true for n − 1 and let us prove that it holds

also for n. The inductive hypothesis is FXn−1
(x) = F ∗(n−1)

Y (x). Taking into
account definition 1.2.1, one has Xn = Xn−1 + Yn and Xn−1 is independent of
Yn, therefore, as before, we can write

FXn
(x) = P(Xn ≤ x) = P(Xn−1 + Yn ≤ x) = E(IXn−1+Yn≤x) =

E
(
I{Xn−1∈R}∩{Yn≤x−Xn−1}

)
= E

(
IXn−1∈RIYn≤x−Xn−1

)
=

∫ +∞

−∞
dF ∗(n−1)

Y (u)

∫ x−u

−∞
dFY (w) =

∫ +∞

−∞
dF ∗(n−1)

Y (u)FY (x − u) = F ∗n
Y (x).

(1.7)

The latter chain of equalities completes the inductive proof.

Remark 1.2.4 In the previous proof, IA denotes the indicator function for set
A. Moreover, the following facts are used: for any event A, one has that P(A) =
E(IA) and, for two events A, B, IA∩B = IAIB .

Remark 1.2.5 Note that one has F ∗1
Y (x) = FY (x). The meaning of F ∗0

Y (x) is
more interesting. Indeed, it is possible to show that F ∗0

Y (x) = θ(x) where θ(x)
denotes the càdlàg version of the Heaviside function.

Remark 1.2.6 The convolution used in equation (1.5) is called Lebesgue-Stieltjes
convolution or convolution of measures. The following corollary connects this
convolution to the usual convolution of functions for absolutely continuous mea-
sures (probability measures admitting a probability density function). Some au-
thors use the symbol " to denote the convolution of measures [20].

Corollary 1.2.7 Let {Yi}∞i=1 be a sequence of i.i.d. random variables with cu-
mulative distribution function given by FY (y). Assume that the probability den-
sity function fY (y) = dFY (y)/dy exists. Then the probability density function of
the corresponding random walk Xn is given by the n-fold convolution of fY (y),
in symbols one can write

fXn
(x) = f∗n

Y (x) (1.8)

Proof It is sufficient to derive equation (1.5) in order to get this result. Recall
that if fY (x) exists, one can write dFY (x) = fY (x)dx.

Remark 1.2.8 Note that the derivative of Heaviside function, θ(x), is a gen-
eralized function [77] known as Dirac delta, δ(x).

Theorem 1.2.3 shows that the one-point measure of random walk is the n-fold
convolution of the jump measure. For this reason, it is useful to use Fourier
transforms when dealing with sums of independent (and identically distributed)
random variables. Given a random variable X , one can define its characteristic
function as follows.
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Definition 1.2.9 Let X be a random variable, its characteristic function f̂(κ)
is given by

f̂X(κ) = E
(
eiκX

)
. (1.9)

Theorem 1.2.10 If the random variable X has a probability density function
fX(x), then its characteristic function is just the Fourier transform of the prob-
ability density function. In symbols, one has

f̂X(κ) = F(fX(x);κ) =

∫ +∞

−∞
dx eiκxfX(x) (1.10)

Proof The proof immediately follows from the definition

f̂X(κ) = E
(
eiκX

)
=

∫ +∞

−∞
dx eiκxfX(x), (1.11)

an elementary result which will be very useful.

Remark 1.2.11 The conditions on fX(x) for the existence of the Fourier trans-
form are not too demanding. For instance, the Fourier transform may also exist
for generalized functions. In the case of Dirac delta, one has

F(δ(x);κ) =

∫ +∞

−∞
dx δ(x)eiκx = 1. (1.12)

If Lebesgue-Stieltjes integrals are used, a generic probability density function
fX(x) will be a non-negative generalized function satisfying the constraint

∫ +∞

−∞
dxfX(x) = 1, (1.13)

and its Fourier transform will exist, as well [12]. It is possible to prove that the
characteristic function has the following properties:

1. it is continuous for every κ ∈ R;

2. f̂X(0) = 1;

3. f̂X(κ) is a positive semi-definite function.

Of these three properties, only the third one needs further illustration. This is a
rather technical condition. Take an arbitrary integer n and a set of real numbers
κ1, . . . ,κn, then build the matrix ai,j = f̃(κi − κj). Then this matrix is positive
semi-definite. A theorem due to Bochner shows that the converse is true, that
is any function with the three properties above is the characteristic function of
a random variable [7].
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Remark 1.2.12 The derivatives of the characteristic function in κ = 0 are
related to the moments of the corresponding random variable. The reader can
check that

E[Y ] = −i
dfY (κ)

dκ

∣∣∣∣
k=0

, (1.14)

and that

E[Y 2] = − d2fY (κ)

dκ2

∣∣∣∣
k=0

. (1.15)

The following property of the Fourier transform shows why it is so important
when studying the sum of independent random variables.

Theorem 1.2.13 Let f(x) and g(x) be two functions with respective Fourier

transforms f̂(κ) and ĝ(κ), then the Fourier transform of their convolution (f ∗
g)(x) is the product of their Fourier transforms. In symbols, one has

F((f ∗ g)(x);κ) = f̂(κ)ĝ(κ). (1.16)

Proof The proof of this theorem, with different levels of detail, can be found
in any book on Fourier methods. See reference [12] for example.

The convolution theorem for Fourier transform has an immediate consequence
on the characteristic function of the random walk Xn.

Corollary 1.2.14 Let {Yi}∞i=1 be a sequence of i.i.d. random variables with
cumulative distribution function given by FY (y) and generalized probability dis-
tribution function denoted by fY (y). Let Xn be the corresponding random walk.
Then the characteristic function of the random walk is given by

f̂Xn
(κ) = E

(
eikXn

)
= [f̂Y (κ)]n. (1.17)

Proof This statement is a direct consequence of corollary 1.2.7 and of the
convolution theorem 1.16.

The following example is a simple way to introduce the concept of stable random
variables.

Example 1.2.15 Let {Yn}∞n=1 be a sequence of i.i.d. random variables with
probability density function given by

fY (y) =
1√
4π

e−y2/4. (1.18)

This is the normal (Gaussian) probability density function with expectation µ =
0 and variance σ2 = 2; in other terms, we have Yi ∼ N(0, 2). Which is the
characteristic function of the corresponding random walk Xn? For the Yis, the
characteristic function is

f̂Y (κ) =
1√
4π

∫ +∞

−∞
dy eiκy−y2/4 = e−k2

. (1.19)
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Therefore, from equation (1.17), one gets for Xn

f̂Xn
(κ) =

[
e−k2

]n
= e−nk2

. (1.20)

This Fourier transform can be easily inverted to get the probability density func-
tion p(x, n) = fXn

(x)

p(x, n) = fXn
(x) =

1√
4nπ

e−x2/4n. (1.21)

The reader can prove that when Yi ∼ N(µ,σ2), that is when one has

fY (x) =
1√

2πnσ2
e−(x−µ)2/2σ2

, (1.22)

the characteristic function for jumps is

f̂Y (κ) = eiµκ−σ2κ2/2, (1.23)

the characteristic function of the random walk is

f̂Xn
(κ) = einµκ−nσ2κ2/2, (1.24)

and its probability density function is

p(x, n) = fXn
(x) =

1√
2πnσ2

e−(x−nµ)2/2nσ2

. (1.25)

By comparing equations (1.22) and (1.25), one can see that the n-fold convolu-
tion of a normal distribution is still a normal distribution, but with parameters
rescaled by n. Another way of expressing this result is through the concept of
stable random variable.

Definition 1.2.16 Let Y1 and Y2 be two independent and identically distributed
random variables that can be seen as copies of a random variable Y . Then, Y
is said to be stable or stable in the broad sense if for any constants a and b, the
sum aY1 + bY2 is distributed as cY + d for some constants c and d. If d = 0,
then the random variable Y is called strictly stable [60].

The reader might wish to check directly that normal random variables are stable,
behaving as a sort of “fixed point” for the convolution. Another important
property of stable random variables is that they are attractors: under suitable
hypothesis, when convolutions are repeated infinitely many times, the limiting
distribution is given by a stable random variable. This is essentially the content
of the famous central limit theorem. We will now discuss it in its Lindenberg-
Lévy version. For that, we need to define the convergence in distribution for a
sequence of random variables. Let us first define the so-called weak convergence
for sequences of function
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Definition 1.2.17 Let {Fi(x)}∞i=1 be a sequence of cumulative probability dis-
tribution functions defined on R. The sequence converges weakly to the cumu-
lative probability distribution F (x) and we write

lim
i→∞

Fi(x)
w
= F (x) (1.26)

if one has
lim

i→∞
Fi(x) = F (x) (1.27)

on all the x ∈ CF , where CF is the continuity set of F (x).

Once weak convergence is defined, we can use it to define convergence in distri-
bution for random variables.

Definition 1.2.18 Let {Xi}∞i=1 be a sequence of random variables. We say that
the sequence converges in distribution to a random variable X, and we write

lim
i→∞

Xi
d
= X (1.28)

if one has
lim

i→∞
FXi

(x) = P(Xi ≤ x)
w
= FX(x). (1.29)

The Lévy continuity theorem provides a necessary condition for the convergence
in distribution.

Theorem 1.2.19 Let {Xi}∞i=1 be a sequence of random variables with cumula-

tive distribution functions FXi
(x). Let f̂Xi

(κ) = E(eiκXi ) be the corresponding

caracteristic functions. Assume that there is a function f̂(κ) such that for any
κ ∈ R (pointwise), one has

lim
i→∞

f̂Xi
(κ) = f̂(κ), (1.30)

with f̂(κ) continuous for κ = 0, f̂(0) = 1 and positive semi-definite. Then, there
is a random variable X and a corresponding cumulative distribution function
FX(x) such that f̂(κ) is the characteristic function of X and

lim
i→∞

FXi
(x)

w
= FX(x). (1.31)

Proof A nice proof of this theorem is contained in a book by David Williams
[80], chapter 18.

Theorem 1.2.20 Let {Yi}∞i=1 be a sequence of i.i.d. random variables, such
that their common expected value is µY = E(Y ) < ∞ and their common variance
is σ2

Y = E[(Y − µY )2] < ∞. Let Xn be the corresponding random walk. Define
the random variable Zn =

√
n(Xn/n− µY )/σY , then for n → ∞, Zn converges

in distribution to a normally distributed random variable Z ∼ N(0, 1).
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Proof As a consequence of the convolution theorem 1.2.13 and of equation
(1.15), one gets for a generic κ ∈ R

f̂Zn
(κ) =

[
f̂Y

(
κ√
nσY

)]n

=

[
1 − 1

2

κ2

n
+ o

(
κ2

nσ2
Y

)]n

, (1.32)

where the first two terms of McLaurin expansion for the characteristic function
are highlighted. Therefore, one has that

lim
n→∞

f̂Zn
(κ) = e−κ2/2. (1.33)

Equation (1.23) and the Lévy continuity theorem immediately imply that Zn
d→

Z for n → ∞ with Z ∼ N(0, 1).

The central limit theorem can be generalized in different directions. In our
opinion, the fastest path to understand the connection between fractional dif-
fusion and continuous-time random walks is to use symmetric α-stable random
variables [82, 34, 67, 60].

Definition 1.2.21 A symmetric α-stable random variable Yα has the following
characteristic function

f̂Yα
(κ) = e−|κ|α , (1.34)

for α ∈ (0, 2].

Remark 1.2.22 In general, neither the cumulative distribution function FYα
(y)

nor the probability density fYα
(y) can be written in terms of elementary func-

tions. There are exceptions. As a consequence of equation (1.23), one has
that Y2 ∼ N(0, 2). Another remarkable case is α = 1 which coincides with the
Cauchy distribution. Note that these distributions have infinite second moment
for α ∈ (0, 2), whereas their first moment is finite for α ∈ (1, 2]. In the ap-
plied literature, a scale parameter h > 0 is often included in the definition, and
one writes f̂Yα

(κ|h) = e−|hκ|α. Sometimes, the scale parameter has the form

c = hα, so that one has f̂Yα
(κ|c) = e−c|κ|α. It is a useful exercise to check that

Yα defined in 1.2.21 is indeed a stable random variable according to definition
1.2.16.

Similarly to the Normal distribution, symmetric α-stable distributions are fixed
points as well as attractors for the convolution. Gnedenko and Kolmogorov and
Lévy proved a generalization of the central limit theorem, involving sums of
independent and identically distributed random variables with infinite second
moment [28, 43].

Theorem 1.2.23 Let {Y }∞i=1 be a sequence of i.i.d. random variables such that
their characteristic function has the following behaviour in the neighborhood of
κ = 0

f̂Y (κ) = 1 − |κ|α + o(|κ|α). (1.35)
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Let Xn be the corresponding random walk and define Zn = Xn/n1/α, then one
has

lim
n→∞

Zn
d
= Z, (1.36)

where Z is a symmetric α-stable distribution.

Proof Given a κ ∈ R, one has the following chain of equalities

f̂Zn
(κ) =

[
f̂Y

( κ

n1/α

)]n
=

[
1 − |κ|α

n
+ o

(
|κ|α

n

)]n

, (1.37)

so that
lim

n→∞
f̂Zn

(κ) = e−|k|α . (1.38)

The Lévy continuity theorem yields the thesis.

A natural question is whether condition (1.35) is satisfied by some random
variable. Indeed, random variables whose cumulative distribution function has
a power-law behavior for |y| → ∞ do satisfy (1.35). This result can be presented
with different levels of sofistication (see e.g. [67]). Here, we present a simplified
version; for more details, the reader can consult a paper by R. Gorenflo and
E.A.A. Abdel-Rehim [29].

Theorem 1.2.24 Let Y be a symmetric random variable and assume that its
cumulative distribution function FY (y) has the following asymptotic behavior
for large y and for α ∈ (0, 2)

lim
y→∞

b

α

FY (y)

1/yα
= 1, (1.39)

with

b =
Γ(α + 1) sin(απ/2)

π
, (1.40)

then the characteristic function of Y satisfies condition 1.35.

Proof This theorem is proved in Chapter 8 of [6].

It is now possible to define the counting process N(t), the second ingredient
needed for the continuous-time random walk. Here, we shall only consider
counting processes of renewal type.

Definition 1.2.25 Let {J}∞i=1 be a sequence of i.i.d. positive random variables
interpreted as sojourn times between subsequent events arriving at random times.
They define a renewal process whose epochs of renewal (time instants at which
the events occur) are the random times {T }∞n=0 defined by

T0 = 0,

Tn =
n∑

i=1

Ji. (1.41)
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The name renewal process is due to the fact that at any epoch of renewal, the
process starts again from the beginning.

Definition 1.2.26 Associated to any renewal process, there is the process N(t)
defined as

N(t) = max{n : Tn ≤ t} (1.42)

counting the number of events up to time t.

Remark 1.2.27 The counting process N(t) is the Poisson process if and only
if J ∼ exp(λ), that is if and only if sojourn times are i.i.d. exponentially
distributed random variables with parameter λ. Incidentally, this is the only
case of Lévy and Markov counting process related to a renewal process (see
Çinlar’s book [10] for a proof of this statement).

Remark 1.2.28 We shall always assume that the counting process has càdlàg
(continue à droite et limite à gauche i.e. right continuous with left limits) sample
paths. This means that the realizations are represented by step functions. If tk
is the epoch of the k-th jump, we have N(t−k ) = k − 1 and N(t+k ) = k.

Remark 1.2.29 In equation (1.42), max is used instead of the more general
sup as only processes with finite (but arbitrary) number of jumps in (0, t] are
considered here.

Given the cumulative probability distribution function FJ (t) for the sojourn
times, one immediately gets the distribution for the corresponding epochs.

Theorem 1.2.30 Let {J}∞i=1 be a sequence of i.i.d. sojourn times with cumu-
lative distribution function FJ(t), then one gets for the generic epoch Tn

FTn
(t) = F ∗n

J (t). (1.43)

Proof This theorem is the same as theorem 1.2.3 with Tn playing the role of Xn.
The only difference is that the cumulative distribution function is non-vanishing
only for positive support.

Example 1.2.31 Assume that J ∼ exp(λ), then it can be proved by direct
calculation that the epochs Tn follow the so-called Erlang distribution

FTn
(t) = 1 − e−λt

n−1∑

i=0

(λt)i

i!
. (1.44)

The distribution of the random variable N(t) can be derived from the knowledge
of FJ (t) as well.

Theorem 1.2.32 Let {J}∞i=1 be a sequence of i.i.d. sojourn times with cumu-
lative distribution function FJ(t), then one has

P (n, t) = P(N(t) = n) = (f∗n
J ∗ F̄J)(t) =

∫ t

0
duf∗n

J (u)F̄J(t − u), (1.45)

where fJ(t) is the probability density function of sojourn times J and F̄J(t) =
1 − FJ(t) is the complementary cumulative distribution function.
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Proof The event {N(t) = n} is equivalent to the event {Tn ≤ t} ∩ {Tn+1 >
t} = {Tn ≤ t, Tn+1 > t}. Further observe that Tn+1 = Tn + Jn+1 and Tn and
Jn+1 are independent random variables. Now, the following chain of equalities
holds true

P(N(t) = n) = P(Tn ≤ t, Tn+1 > t) = P(Tn ≤ t, Jn+1 > t − Tn) =

= E
(
I{Tn≤t}I{Jn+1>t−Tn}

)
=

∫

Tn≤t
du f∗n

J (u)

∫

Jn+1>t−Tn

dw fJ(w) =

=

∫ t

0
du f∗n

J (u)

∫ ∞

t−u
dw fj(w) =

∫ t

0
du f∗n

J (u)[1 − FJ(t − u)] =

=

∫ t

0
duf∗n

J (u)F̄J(t − u) = (f∗n
J ∗ F̄J )(t). (1.46)

In the above derivation, IA denotes the indicator function of event A. Moreover,
we have used the fact that P(A) = E(IA) and that P(A∪B) = E(IAIB). Finally,
the independence of Tn and Jn+1 implies that their joint probability density
function is the product of the two marginals fTn,Jn+1

(u, w) = fTn
(u)fJn+1

(w) =
f∗n

J (u)fJ(w).

For positive random variables, the Laplace transform plays the same role as the
Fourier transform.

Definition 1.2.33 Let Y be a positive random variable, then its Laplace trans-
form is

f̃Y (s) = E(e−sY ), (1.47)

with s ∈ C.

Theorem 1.2.34 Let fY (y) (with y > 0) denote the (generalized) probability
density function of a positive random variable Y , then, for s ∈ C, the Laplace
transform is given by

f̃Y (s) = E(e−sY ) = L(fY (y); s) =

∫ ∞

0
dy fY (y)e−st. (1.48)

Proof This is an immediate consequence of the definition (and indeed it could
be incorporated in the definition itself). If fY (y) is a generalized function, equa-
tion (1.48) is often called the Laplace-Stieltjes transform of the random variable
or the Laplace-Stieltjes transform of the cumulative distribution function FY (y).

Remark 1.2.35 Let s = Re(s) + iIm(s), then one can write

L(fY (y); s) = f̃Y (s) =

∫ ∞

0
dy fY (y)e−Re(s)yei(−Im(s))y. (1.49)

in other words, the Laplace transform, can be seen as the Fourier transform
calculated for κ = −Im(s) for the function gY (y) which is 0 for y < 0 and
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equals fY (y)e−Re(s)y for y > 0. For values of s in which gY (y) ∈ L1(R), the
Laplace transform exists. A classical reference on Laplace transforms is the book
by Widder [79].

Not surprisingly, a convolution theorem holds true also for Laplace transforms.

Theorem 1.2.36 Let f(t) and g(t) be two functions with positive support and

with respective Laplace transforms f̃(s) and g̃(s), then the Laplace transform
of their convolution (f ∗ g)(t) is the product of their Laplace transforms. In
symbols, one has

L((f ∗ g)(t); s) = f̃(s)g̃(s). (1.50)

Proof This theorem is proved in any textbook on Laplace transforms, see e.g.
the book by LePage [42].

It is now possible to define the fractional Poisson process [64, 41, 72, 46] as a
counting renewal process.

Definition 1.2.37 The Mittag-Leffler renewal process is the sequence {Jβ,i}∞i=1

of positive independent and identically distributed random variables with com-
plementary cumulative distribution function F̄Jβ

(t) given by

F̄Jβ
(t) = Eβ(−tβ), (1.51)

where Eβ(z) is the one-parameter Mittag-Leffler function.

Remark 1.2.38 The one-parameter Mittag-Leffler function in (1.51) is a gen-
eralization of the exponential function. It is defined by the following series

Eβ(z) =
∞∑

n=0

zn

Γ(βn + 1)
, (1.52)

The Mittag-Leffler function coincides with the exponential function for β = 1.
The function Eβ(−tβ) is completely monotonic and it is 1 for t = 0. This means
that it is a legitimate survival function.

Remark 1.2.39 The function Eβ(−tβ) is approximated by a stretched expo-
nential for t → 0:

Eβ(−tβ) , 1 − tβ

Γ(β + 1)
, e−tβ/Γ(β+1), for 0 < t - 1, (1.53)

and by a power-law for t → ∞:

Eβ(−tβ) , sin(βπ)

π

Γ(β)

tβ
, for t . 1. (1.54)
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Remark 1.2.40 For applications, it is often convenient to include a scale pa-
rameter in the definition (1.51), and one can write

F̄Jβ
(t) = Eβ

(
−(t/γt)

β
)
. (1.55)

The scale factor can be introduced in different ways, and the reader is warned
to pay attention to its definition. The assumption γt = 1 made in (1.51) is
equivalent to a change of time unit.

Theorem 1.2.41 The counting process Nβ(t) associated to the renewal process
defined by equation (1.51) has the following distribution

Pβ(n, t) = P(Nβ(t) = n) =
tβn

n!
E(n)

β (−tβ), (1.56)

where E(n)
β (−tβ) denotes the n-th derivative of Eβ(z) evaluated at the point

z = −tβ.

Proof The Laplace transform of Pβ(0, t) = F̄Jβ
(t) = Eβ(−tβ) is given by [62]

P̃β(0, s) =
sβ−1

1 + sβ
. (1.57)

Therefore, the Laplace transform of the probability density function fJβ
(t) =

−dPβ(0, t)/dt is given by (see e.g. [42] for the Laplace transform of the deriva-
tive)

f̃Jβ
(s) =

1

1 + sβ
; (1.58)

recalling equation (1.45) and the convolution theorem for Laplace transforms
1.2.36, one immediately has

P̃β(n, s) =
1

(1 + sβ)n

sβ−1

1 + sβ
. (1.59)

Using equation (1.80) in Podlubny’s book [62] for the inversion of the Laplace
transform in (1.59), one gets the thesis (1.56).

Remark 1.2.42 The previous theorem was proved by Scalas et al. [72, 46].
Notice that N1(t) is the Poisson process with parameter λ = 1. Recently, Meer-
schaert et al. [50] proved that the fractional Poisson process Nβ(t) coincides
with the process defined by N1(Dβ(t)) where Dβ(t) is the functional inverse of
the standard β-stable subordinator. The latter process was also known as frac-
tal time Poisson process. This result unifies different approaches to fractional
calculus [3, 50].

Remark 1.2.43 For 0 < β < 1, the fractional Poisson process is semi-Markov,
but not Markovian and is not Lévy. The process Nβ(t) is not Markovian as the
only Markovian counting process is the Poisson process [10]. It is not Lévy as
its distribution is not infinitely divisible. The reader not familiar with infinite
divisibility can jump to definition 1.3.4.
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It is now possible to define continuous-time random walks as compound renewal
processes.

Definition 1.2.44 Let {Yi}∞i=1 be a sequence of i.i.d. random variables with cu-
mulative probability distribution FY (y) and let Xn be the corresponding random
walk. We give to the Yis the meaning of jump widths for a diffusing particle.
Let {J}∞i=1 be a sequence of i.i.d. random variables with cumulative probabil-
ity distribution FJ(t) and with the meaning of sojourn times. Let N(t) be the
corresponding counting process. We then define the following stochastic process

X(t) = XN(t) =

N(t)∑

i=1

Yi (1.60)

and we call it compound renewal process or continuous-time random walk (CTRW).

Remark 1.2.45 The CTRW is a random walk Xn subordinated to a counting
process, that is a random sum of independent random variables. Note that we
have not said if the couple (Ji, Xi) consists of independent random variables.
If this is the case, we have an uncoupled (or decoupled) CTRW. This is the
simplest case in which durations are independent of jumps. This remark leads
us to consider a particular class of non-Markovian stochastic processes, the so-
called semi-Markov processes [10, 35, 21, 22]. In the following, the reader will
find a quick-and-dirty introduction to semi-Markov processes.

Definition 1.2.46 A Markov renewal process is a two-component Markov chain
{Xn, Tn}∞n=0, where Xn, n ≥ 0 is a Markov chain and Tn, n ≥ 0 is the n-th
epoch of a renewal process, homogeneous with respect to the second component
and with transition probability given by

P(Xn+1 ∈ A, Jn+1 ≤ t|X0, . . . Xn, J1, . . . , Jn) = P(Xn+1 ∈ A, Jn+1 ≤ t|Xn),
(1.61)

where A ⊂ R is a Borel set and Jn+1 = Tn+1 − Tn.

Remark 1.2.47 We will also assume homogeneity with respect to the first com-
ponent. On other words, if Xn = x, the probability on the right-hand side of
equation (1.61) does not explicilty depend on n.

Remark 1.2.48 The positive function

Q(x, A, t) = P(Xn+1 = y ∈ A, Jn+1 ≤ t|Xn = x), (1.62)

is called semi-Markov kernel with x ∈ R, A ⊂ R a Borel set, and t ≥ 0.

Definition 1.2.49 Let N(t) denote the counting process defined as in equation
(1.42), the stochastic process X(t) defined as

X(t) = XN(t) (1.63)

is the semi-Markov process associated to the Markov renewal process Xn, Tn,
n ≥ 0.
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Theorem 1.2.50 Compound renewal processes are semi-Markov processes with
semi-Markov kernel given by

Q(x, A, t) = P (x, A)FJ (t), (1.64)

where P (x, A) is the Markov kernel (a.k.a. Markov transition function or tran-
sition probability kernel) of the random walk

P (x, A)
def
= P(Xn+1 = y ∈ A|Xn = x), (1.65)

and FJ(t) is the cumulative probability distribution function of sojourn times.
Moreover, let fY (y) denote the probability density function of jumps, one has

P (x, A) =

∫

A−x
fY (u) du, (1.66)

where A − x is the set of values in A translated of x towards left.

Proof The compound renewal process is a semi-Markov process by construc-
tion, where the couple Xn, Tn, n ≥ 0 defining the corresponding Markov renewal
process is made up of a random walk Xn, n ≥ 0 with X0 = 0 and a renewal
process with epochs given by Tn, n ≥ 0 with T0 = 0. Equation (1.64) is an
immediate consequence of the independence between the random walk and the
renewal process. Finally, equation (1.66) is the standard Markov kernel of a
random walk whose jumps are i.i.d. random variables with probability density
function fY (y).

The cumulative distribution function of an uncoupled compound renewal process
can be obtained by means of purely probabilistic considerations.

Theorem 1.2.51 Let {Y }∞i=1 be a sequence of i.i.d. real-valued random vari-
ables with cumulative distribution function FY (y) and let N(t), t ≥ 0 denote a
counting process independent of the previous sequence and such that the number
of events in the interval [0, t] is a finite but arbitrary integer n = 0, 1, . . .. Let
X(t) denote the corresponding compound renewal process. Then if P (n, t) =
P(N(t) = n), the cumulative distribution function of X(t) is

FX(t)(x, t) =
∞∑

n=0

P (n, t)F ∗n
Y (x), (1.67)

where F ∗n
Y (x) is the n-fold convolution of FY (y).

Proof Assume that X(0) = 0 and that, at time t, there have been N(t) jumps,
with N(t) assuming integer values starting from 0 (N(t) = 0 means no jumps
up to time t). Consider a realization of N(t), that is suppose one has N(t) = n.
This means that

X(t) =
N(t)∑

i=1

Yi =
n∑

i=1

Yi = Xn. (1.68)
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In this case, one finds

FXn
(x) = P(Xn ≤ x) = P

(
n∑

i=1

Yi ≤ x

)

= F ∗n
Y (x). (1.69)

Given the independence between N(t) and the Yis, one further has that

P(Xn ≤ x, N(t) = n) = P(N(t) = n)P(Xn ≤ x) = P (n, t)F ∗n
Y (x). (1.70)

The events {Xn ≤ x, N(t) = n} for n ≥ 0 are mutually exclusive and exhaustive,
and this yields

{X(t) ≤ x} = ∪∞
n=0{Xn ≤ x, N(t) = n}, (1.71)

and, for any m 0= n,

{Xm ≤ x, N(t) = m} ∩ {Xn ≤ x, N(t) = n} = ∅. (1.72)

Calculating the probability of the two sides in equation (1.71) and using equation
(1.70) and the axiom of infinite additivity leads to

FX(t)(x, t) = P(X(t) ≤ x) = P (∪∞
n=0{Xn ≤ x, N(t) = n})

=
∞∑

n=0

P(Xn ≤ x, N(t) = n) =
∞∑

n=0

P (n, t)F ∗n
Y (x). (1.73)

which is our thesis.

Remark 1.2.52 For n = 0, one assumes F ∗0
Y0

(y) = θ(y) where θ(y) is the
Heaviside function. Note that P (0, t) is nothing else but the survival function
at y = 0 of the counting process. Therefore, equation (1.67) can be equivalently
written as

FX(t)(x, t) = P (n, 0) θ(x) +
∞∑

n=1

P (n, t)F ∗n
Y (x), (1.74)

where θ(x) is the càdlàg version of Heaviside step function.

Remark 1.2.53 The series (1.67) is uniformly convergent for x 0= 0 and for
any value of t ∈ (0,∞). This statement can be proved using Weierstrass M test.
For x = 0 there is a jump in the cumulative distribution function of amplitude
P (0, t).

Example 1.2.54 As an example of compound renewal process, consider the
case in which Yi ∼ N (µ,σ2), so that their cumulative distribution function is

FY (y) = Φ(y|µ,σ2) =
1

2

(
1 + erf

(
y − µ√

2σ2

))
, (1.75)

where

erf(y) =
2√
π

∫ y

0
e−u2

du (1.76)
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is the error function. In this case, the convolution F ∗n
Y (x) is given by Φ(x|nµ, nσ2).

The sojourn times are Ji ∼ exp(λ) and one finds

P (n, t) = e−λt (λt)n

n!
. (1.77)

As a consequence of theorem 1.2.51 one gets

FX(t)(x, t) = e−λt
∞∑

n=0

(λt)n

n!
Φ(x|nµ, nσ2). (1.78)

Equation (1.78) can be directly used for numerical estimates of FX(t)(x, t).

Corollary 1.2.55 In the same hypotheses as in Theorem 1.2.51, the probability
density fX(t)(y, t) of the process X(t) is given by

fX(t)(x, t) = P (0, t) δ(x) +
∞∑

n=1

P (n, t)f∗n
Y (x), (1.79)

where f∗n
Y (x) is the n-fold convolution of the probability density function fY (y) =

dFY (y)/dy.

Proof The sought probability density function is fX(t)(x, t) = dFX(t)(x, t)/dy;
equation (1.79) is the formal derivative of equation (1.67). If x 0= 0, there is
no singular term and the series converges uniformly (f∗n

Y (x) is bounded and
Weierstrass M test applies), therefore, for any x the series converges to the
derivative of FX(t)(x, t). This is so also in the case x = 0 for n ≥ 1 and the
jump in x = 0 gives the singular term of weight P (0, t) (see equation (1.74)).

Among all the compound renewal processes, we will need the compound frac-
tional Poisson process [41].

Definition 1.2.56 Let {Yi}∞i=1 be a sequence of i.i.d. random variables with
cumulative distribution function given by FY (y) and let Nβ(t) be the fractional
Poisson process, then the process Xβ(t) defined as

Xβ(t) = XNβ(t) =

Nβ(t)∑

i=1

Yi (1.80)

is called compound fractional Poisson process.

Remark 1.2.57 The process X1(t) coincides with the compound Poisson pro-
cess of parameter λ = 1.

Theorem 1.2.58 Let Xβ(t) be a compound fractional Poisson process, then
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1. its cumulative distribution function FXβ(t)(x, t) is given by

FXβ(t)(x, t) = Eβ(−tβ)θ(x) +
∞∑

n=1

tβn

n!
E(n)

β (−tβ)F ∗n
Y (x); (1.81)

2. its probability density fXβ(t)(x, t) function is given by

fXβ(t)(x, t) = Eβ(−tβ)δ(x) +
∞∑

n=1

tβn

n!
E(n)

β (−tβ)f∗n
Y (x); (1.82)

3. its characteristic function f̂Xβ(t)(κ, t) is given by

f̂Xβ(t)(κ, t) = Eβ

[
tβ(f̂Y (κ) − 1)

]
. (1.83)

Proof The first two equations (1.81) and (1.82) are a straightforward conse-
quence of Theorem 1.2.51, Corollary 1.2.55 and Theorem 1.2.41. Equation (1.83)
is the Fourier transform of (1.82).

Remark 1.2.59 For 0 < β < 1, the compound fractional Poisson process is
neither Markovian nor Lévy (see Remark 1.2.43). However, it is a semi-Markov
process as a consequence of theorem 1.2.50.

It is now possible to discuss the relationship between CTRWs and the space-time
fractional diffusion equation. This will be the subject of the next section.

1.3 Fractional Diffusion and Limit Theorems

In order to link the processes introduced in the previous section to fractional
diffusion, let us first consider the following Cauchy problem.

Theorem 1.3.1 Consider the Cauchy problem for the space-time fractional dif-
fusion equation with 0 < α ≤ 2 and 0 < β ≤ 1

RDα
x uα,β(x, t) = CDβ

t uα,β(x, t)

uα,β(x, 0+) = δ(x), (1.84)

then the Green function

uα,β(x, t) =
1

tβ/α
Wα,β

( x

tβ/α

)
, (1.85)

where

Wα,β(u) =
1

2π

∫ +∞

−∞
dκ e−iκuEβ(−|κ|α), (1.86)

solves the Cauchy problem [47, 72].
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Proof In equation (1.84), RDα
x denotes the symmetric Riesz operator [66] whose

Fourier symbol is −|κ|α; more precisely, for a suitable function f(x) one can
write

F(RDα
x f(x);κ) = −|κ|αf̂(κ). (1.87)

Moreover, CDβ
t is the Caputo derivative, whose Laplace symbol is given by

L(CDβ
t g(t); s) = sβ g̃(s) − sβ−1g(0+), (1.88)

where g is a function whose Laplace trasform exists. The application of the
Laplace-Fourier transform to equation (1.84) implies that

−|κ|α̂̃uα,β(κ, s) = sβ ̂̃uα,β(κ, s) − sβ−1, (1.89)

so that the Laplace-Fourier transform of the sought Green function is

̂̃uα,β(κ, s) =
sβ−1

|κ|α + sβ
. (1.90)

A comparison between (1.57) and (1.90) immediately shows that the inversion
of the Laplace transform gives the Fourier transform of uα,β(x, t)

ûα,β(κ, t) = Eβ(−|κ|αtβ). (1.91)

A further inversion of the Fourier transform leads to the thesis.

Remark 1.3.2 In the above derivation, the role of Fourier and Laplace trans-
forms is interchangeable. One can first invert the Fourier transform and then
the Laplace transform and get the same result.

Remark 1.3.3 The Green function uα,β(x, t) is a probability density function
for any t > 0, that is ∫ +∞

−∞
dxuα,β(x, t) = 1. (1.92)

When α = 2 and β = 1, the Riesz symmetric derivative coincides with the second
derivative with respect to x: RD2

x = ∂2/∂x2 and the Caputo derivative becomes
the first derivative with respect to time: CD1

t = ∂/∂t. Then, equation (1.84) de-
fines the Cauchy problem for ordinary diffusion, with diffusion coefficient equal
to 1; the corresponding Green function is

u2,1(x, t) =
1√
4πt

e−x2/4t. (1.93)

Definition 1.3.4 A random variable X is called infinitely divisible if, for any n,
it can be written as the sum of n independent and identically distributed random
variables. Equivalently, the corresponding cumulative distribution function is
called infinitely divisible if, for any n, it can be written as FX(x) = F ∗n

Yn
(x),

that is there exists a random variable Yn whose n-fold convolution gives FX(x).

20



Remark 1.3.5 Stable distributions are infinitely divisible, but the converse is
not true, not every infinitely divisible distribution is stable.

Remark 1.3.6 The Poisson distribution and the compound Poisson distribu-
tion are infinitely divisible and it can be shown that any infinitely divisible dis-
tribution is the limit of compound Poisson distributions.

Theorem 1.3.7 For 0 < α ≤ 2, and β = 1, the characteristic function of the
Green function is

ûα,1(κ, t) = e−|κ|αt (1.94)

and it is infinitely divisible.

Proof For β = 1, the Mittag-Leffler function coincides with the exponential
function and equation (1.91) yields equation (1.94). In order to show that
the random variable Uα,1(t) is infinitely divisible for every t, one has to show
that its cumulative distribution function is the n-fold convolution of n identical
distribution functions. But then, it is enough to choose a random variable whose
characteristic function is given by

[e−|κ|αt]1/n = e−|κ|αt/n, (1.95)

to prove infinite divisibility of Uα,1(t).

Remark 1.3.8 It can be proved that to every infinitely divisible distribution
there corresponds a unique càdlàg extension of a Lévy process. In the case under
scrutiny, u2,1(x, t) corresponds to the Wiener process whose increments follow
the N(0, 2t) distribution. The density uα,1(x, t) for 0 < α < 2 corresponds to
processes (called Lévy flights in the applied literature) that generalize the Wiener
process and whose increments follow the symmetric α-stable distribution. For
more information on infinitely divisible distribution, Lévy processes and related
pseudo-differential operators the reader can consult the following references [20,
4, 68, 76, 32, 2].

A simple way to understand the connection between CTRWs and space-time
fractional diffusion is to consider the following stochastic process.

Definition 1.3.9 Let {Yα,i}∞i=1 be a sequence of i.i.d. symmetric α-stable dis-
tributions whose characteristic function is given by

f̂Yα
(κ) = e−|k|α (1.96)

and let Xα,n be the corresponding random walk. The following compound frac-
tional Poisson process

Xα,β(t) = Xα,Nβ(t) =

Nβ(t)∑

i=1

Yα,i (1.97)

is the fractional compound Poisson process with symmetric α-stable jumps.
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Corollary 1.3.10 The characteristic function of the fractional compound Pois-
son process with symmetric α-stable jumps is given by

f̂Xα,β(t)(κ) = Eβ

[
tβ

(
e−|κ|α − 1

)]
. (1.98)

Proof This result is an immediate consequence of equations (1.83) and (1.96).

If properly rescaled, the random variable Xα,β(t) can be made to converge
weakly to Uα,β(t), the random variable whose distribution is characterized by
the probability density function (1.85) that solves the Cauchy problem for the
space-time fractional diffusion equation (1.84). The trick is to build a sequence
of random variables whose characteristic function converges to (1.91). Indeed,
we can prove the following theorem.

Theorem 1.3.11 Let Xα,β(t) be a compound fractional Poisson process with
symmetric α-stable jumps and let h and r be two scaling factors such that

Xα,n(h) = hYα,1 + . . . + hYα,n (1.99)

Tβ,n(r) = rJβ,1 + . . . + rJβ,n, (1.100)

and

lim
h,r→0

hα

rβ
= 1, (1.101)

with 0 < α ≤ 2 and 0 < β ≤ 1. Given the assumption on the jumps Yα,i, for
h → 0, one has

f̂Yα
(hκ) = 1 − hα|κ|α + o(hα|κ|α), (1.102)

then, for h, r → 0 with hα/rβ → 1, fhXα,β(rt)(x, t) weakly converges to uα,β(x, t),
the Green function of the fractional diffusion equation.

Proof In order to prove weak convergence, it suffices to show the convergence
of the characteristic function (1.83) as a consequence of the Lévy continuity
theorem 1.2.19. Indeed, one can write

f̂hXα,β(rt)(κ, t) = Eβ

[
− tβ

rβ

(
e−hα|κ|α − 1

)]
h,r→0→ Eβ(−tβ|κ|α), (1.103)

which completes the proof and establishes the connection between CTRWs and
the space-time fractional diffusion equation.

Remark 1.3.12 This result can be generalized to compound fractional Poisson
processes with heavy tails both in the jump and in the sojourn time distributions.
A more general proof can be found in [72]. The relationship between fractional
diffusion and CTRWs is discussed in several physics papers with different levels
of detail [23, 65, 14, 66]. Hilfer and Anton realized the important role played by
the Mittag-Leffler function in this derivation and rigorously discussed the link
between fractional diffusion and CTRWs [30].
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Remark 1.3.13 Up to now, we have focused on the (weak) convergence of ran-
dom variables and not of stochastic processes. The convergence of processes
is delicate as one must use techniques related to functional central limit the-
orems in appropriate functions spaces [33]. Let Lα(t) denote the symmetric
α-stable Lévy process. Equation (1.91) is the characteristic function of the pro-
cess Uα,β(t) = Lα(Dβ(t)), that is of the symmetric α-stable Lévy process sub-
ordinated to the inverse β-stable subordinator, Dβ(t), the functional inverse of
the β-stable subordinator. This remark leads to conjecture that Uα,β(t) is the
functional limit of Xα,β(t), the compound fractional Poisson process with α-
stable jumps. This conjecture can be found in a paper by Magdziarz and Weron
[45] and is proved in Meerschaert et al. [50] using the methods discussed by
Meerschaert and Scheffler [52].
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Chapter 2

Applications of
Continuous-Time Random
Walks to Finance and
Economics

2.1 Introduction

In financial markets, when one considers tick-by-tick trades, not only price fluc-
tuations, but also waiting times between consecutive trades vary at random.
This fact is pictorially represented in figure 2.1. In this figure, the value of the
FTSE MIB Index is plotted for trades occurring on February 3rd, 2011. The
FTSE MIB Index is a weighted average of the prices of the thirty more liq-
uid stocks in the Italian Stock Exchange and it is updated every time a trade
occurs. This is a consequence of trading rules. In many regulated financial mar-
kets trading is performed by means of the so-called continuous-double auction.
Here, we just present the basic idea of this microstructural market mechanism
for an order driven market; details may vary from stock exchange to stock ex-
change. For every stock traded in the exchange there is a book where orders are
registered. Traders can either place buy orders (bids) or sell orders (asks) and
this explains why the auction is called double: There are two sides. Morover,
orders can be placed at any time, and, for this reason, the auction is called
continuous. There are many different kinds of orders, but the typical order is

the limit order. A bid limit order is an order to buy q(T )
b units of the share at a

price not larger than a limit price selected by the trader p(T )
b , where T is a label

identifying the trader. An ask limit order is an order to sell q(T )
a units of the

share at a price not smaller than a limit price selected by the trader p(T )
a . The

couples (p(T )
b , q(T )

b ) are stored in the book and ordered from the best bid to the
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Figure 2.1: Tick-by-tick price fluctuations. As eplained in the text, this is the
FTSE MIB Index recorded on February 3rd, 2011. Time is given in seconds
since midnight.

worst bid, the best bid being p̂b = maxT∈Ib
(p(T )

b ), where Ib is the set of traders

placing bids. The couples (p(T )
a , q(T )

a ) are also stored in the book and ordered

from the best ask to the worst ask, the best ask being p̂a = minT∈Ia
(p(T )

a ),
where Ia is the set of traders placing asks. At a generic time t, one has that
p̂a(t) > p̂b(t). The difference

s(t) = p̂a(t) − p̂b(t) (2.1)

is called bid-ask spread. Occasionally, a trader may accept an existing best bid
or best ask, and the i-th trade takes place at the epoch ti. This is called a market
order. Market rules specify which are the priorities for limit orders placed at
the same price and what to do when the quantity requested in a market order is
not fully available at the best price. Several authors use the mid-price defined
as

pm(t) =
p̂b(t) + p̂a(t)

2
(2.2)

in order to summarize and study the above process. Both the bid-ask spread
and the mid-price can be represented as step functions varying at random times.
Jumps in spread and midprice may occur when a better limit order enters the
book or when a trade takes place. Another important process is the one of
realized trades represented in figures 2.1 and 2.2. In figure 2.2, a càdlàg repre-
sentation of the process is given, the so-called previous tick interpolation, where
it is assumed that the price remains constant between two consecutive trades.
With these definitions in mind, we can now show how CTRWs can be used in
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Figure 2.2: Tick-by-tick price fluctuations represented as a càdlàg step function.
FTSE MIB Index, February 3rd, 2011. These are the same data as in figure 2.1.

financial modelling [69, 49]. Figures 2.3 to 2.5 represent consecutive magnifi-
cations of the same price process and they show how scaling breaks down. In
particular, visual inspection shows that scaling is no longer valid already at the
time scale of figure 2.5. In other words, the behaviour of high-frequency price
fluctuations cannot be described by self-similar, or self-affine, or even multifrac-
tal processes.

2.2 Models of price fluctuations in financial mar-

kets

Let p(t) represent the price of an asset at time t. Define p0 = p(0) the initial
price. The variable

x(t) = log

[
p(t)

p0

]
(2.3)

is called logarithmic price or log-price or even logarithmic return or log-return.
With this choice, one has x(0) = 0. Now, let ti be the epoch of the i-th trade
and p(ti) the corresponding price, then the variable

ξi = log

[
p(ti)

p(ti−1)

]
(2.4)

is called tick-by-tick log-return. Let n(t) represent the number of trades from
the market opening, up to time t, then the relationship between the log-price
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Figure 2.3: Tick-by-tick price fluctuations represented as a càdlàg step function.
FTSE MIB Index: A whole trading day, February 3rd 2011.
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Figure 2.4: Tick-by-tick price fluctuations represented as a càdlàg step function.
A zoom of the data of figure 2.3.
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Figure 2.5: Tick-by-tick price fluctuations represented as a càdlàg step function.
A zoom of the data of figure 2.4.

and the tick-by-tick log-returns is

x(t) =

n(t)∑

i=1

ξi. (2.5)

The reason for using these variables in finance is as follows. If price fluctuations
are small compared to the price, one can see that the tick-by-tick log-return is
very close to the tick-by-tick return ri = [p(ti) − p(ti−1)/p(ti−1)]. In symbols,
one can write

ξi = log

[
p(ti)

p(ti−1)

]
≈ p(ti) − p(ti−1)

p(ti−1)
= ri. (2.6)

However, returns are not additive, one cannot write the return from a time t to
a time t+∆t as the sum of tick-by-tick returns, whereas this is possible for log-
returns. Equation (2.5) can be compared with equation (1.60) in Chapter 1. It
becomes natural to interpret x(t) as a realization of a CTRW or of a compound
(renewal) process X(t), n(t) as a realization of a counting (renewal) process
N(t) and ξi as a value of a random variable Yi. The simplest possible choice
for x(t) is the normal compound Poisson process (NCPP) discussed in Chapter
1, with normally distributed tick-by-tick log-returns (jumps) ξ ∼ N(µξ,σ2

ξ ) and
exponentially distributed durations (sojourn times) τi = ti − ti−1 ∼ exp(λ).
However, the normal compound Poisson process is falsified by the following
empirical findings on high frequency data:

1. The empirical distribution of tick-by-tick log-returns is leptokurtic, whereas
the NCPP assumes a normal distribution which is mesokurtic.
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2. The empirical distribution of durations is non-exponential with excess
standard deviation [17, 18, 48, 63, 72], whereas the NCPP assumes an
exponential distribution.

3. The autocorrelation of absolute log-returns decays slowly [63], whereas the
NCPP assumes i.i.d. log-returns.

4. Log-returns and waiting times are not independent [63, 51], whereas the
NCPP assumes their independence.

5. Volatility and activity vary during the trading day [5], whereas the NCPP
assumes they are constant.

Compound renewal processes take into account facts (1) and (2) as well as fact
(4) [51], but they are falsified by fact (3), as they assume independent returns
and durations, and by point (5), as they assume identically distributed returns
and durations.

2.3 Simulation

Simulation of CTRWs is not difficult [24, 26]. A typical algorithm for uncoupled
CTRWs uses the following steps:

1. generate n values for durations from your favorite distribution and store
them in a vector;

2. generate n values for tick-by-tick log-returns from your favorite distribu-
tion and store them in a second vector;

3. generate the epochs by means of a cumulative sum of the duration vector;

4. generate the log-prices by means of a cumulative sum of the tick-by-tick
log-return vector.

If one wishes to simulate x(t), the value of the log-price at time t, it is enough to
include a control statement in the above algorithm to ensure that it runs until
the sum of durations is less or equal than t. These algorithms generate single
realizations of the process either for n jumps or until time t respectively. If many
independent runs are performed, one can approximate the distribution of x(t)
or any other finite dimensional distribution of the process. An algorithm for the
fractional compound process with jumps distributed according to the symmetric
α-stable distribution is given in Appendix 3. In that example, for the variables
ξi, we have used the standard transformation method by Chambers, Mallows
and Stuck [11] for α ∈ (0, 2]

ξi = γx

(
− log(u) cos(φ)

cos[(1 − α)φ]

)1−1/α sin(αφ)

cosφ
, (2.7)
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Figure 2.6: Compound fractional Poisson process simulation for α = 2 and
β = 0.5.

where γx is a scale factor, u is a uniformly distributed random variable between 0
and 1 and φ = π(v−1/2), with v uniformly distributed between 0 and 1 and not
depending on u. For α = 2, equation (2.7) reduces to ξi = 2γ

√
− log(u) sin(φ),

that is to the Box-Muller algorithm for normally distributed random numbers.
The algorithm for the generation of Mittag-Leffler distributed τis with β ∈ (0, 1]
is (see [61, 37, 40, 39, 38, 36, 24])

τi = −γt log(u)

(
sin(βπ)

tan(βπv)
− cos(βπ)

)1/β

, (2.8)

where u and v are independent uniformly distributed random variables with
values between 0 and 1. For β = 1 equation (2.8) reduces to τi = −γt log(u),
that is to the standard transformation formula for the exponential distribution.
The resuls of simulations based on this algorithm are represented in figures
from 2.6 to 2.11 for the following couples of parameters (α = 2,β = 0.5),
(α = 2,β = 0.99), (α = 1.95,β = 0.5), (α = 1.95,β = 0.5), (α = 1,β = 0.5),
and (α = 1,β = 0.5). Visual inspection shows that larger jumps in time are
more likely smaller values of β and larger jumps in log-price are expected for
smaller values of α.

2.4 Option pricing

In sections 2.1 and 2.2, we gave arguments in favor of using CTRWs as models
of tick-by-tick price fluctuations in financial markets. We have also seen the
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Figure 2.7: Compound fractional Poisson process simulation for α = 2 and
β = 0.99.
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Figure 2.8: Compound fractional Poisson process simulation for α = 1.95 and
β = 0.5.
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Figure 2.9: Compound fractional Poisson process simulation for α = 1.95 and
β = 0.99.
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Figure 2.10: Compound fractional Poisson process simulation for α = 1 and
β = 0.5.
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Figure 2.11: Compound fractional Poisson process simulation for α = 1 and
β = 0.99.

limits of uncoupled CTRWs as market models. Now, let us suppose that we
have an underlying asset whose log-price fluctuations are described by equation
(2.5). In other words, we assume that log-price fluctuations follow a compound
renewal process. Furthermore, we assume that these fluctuations represent the
intra-day behavior of an asset, such as a share traded in a stock exchange. For
an intra-day time horizon, we can safely assume that the risk-free interest rate
is rF = 0. This would be the return rate of a zero-coupon bond. Even if such
a return rate were rY = 10% on a yearly time horizon, meaning that the State
issuing this financial instrument is close to default (so that, it would not be
so riskless, after all) or that the inflation rate is quite high, then the interest
rate for one day would be rd ≈ 1/(10 · 200) = 5 · 10−4 (200 is the typical
number of working days in a year) and this number has still to be divided by
8 (number of trading hours) and by 3600 (number of seconds in one hour) in
order to get an approximate interest rate for a time horizon of 1 second. This
gives rs ≈ 1.7 · 10−8. On the other hand, typical tick-by-tick returns in a stock
exchange are larger than the tick divided by the price of the share. Even if we
assume that the share is worth 100 monetary units, with a 1/100 tick size (the
minimum price difference allowed), we will have a return r larger than 1 · 10−4

and much larger than rs. Therefore, it is safe to assume a risk free interest rate
r = 0 for intra-day hedging.

Hedging is performed through special contracts called options whose price is
assumed to depend on the price of the underlying contract. A detailed discussion
of these contracts is outside the scope of the present book. However, it is possible
to present the basic ideas on option pricing, before turning to our high-frequency
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problem. The interest reader can consult the introductory books by Hull [31]
and by Willmott [81]. One of the simplest option contract is the so-called plain-
vanilla European call. This is the right (not the obligation) to buy an asset at
a future time at a given price K called the strike price at a future date T called
the maturity. If, at maturity, the asset price p(T ) is larger than K then, in
principle, the option holder can exercise the option, pay K to the option writer
to get one unit of asset and resell the assets on the market thus realizing a profit
of p(T )−K for each asset unit. On the other side, if p(T ) < K, it does not make
sense to exercise the option. So, one has that the option payoff at maturity is
given by

C(T ) = max(p(T ) − K, 0). (2.9)

The problem to be addressed is the following. Suppose you are at time t < T
and you want to get a plain vanilla option contract. Which is its fair price? In
order to give a feeling on how to solve this problem, we shall consider a simplified
version: the so-called one-period binomial option pricing. The price of an asset
is p0 = p(0) at time t = 0 and it can either go up or down at the next time step
t = 1. Assume that p+

1 = p(1) = p0u with probability q and p−1 = p(1) = p0d
with probability 1 − q, where u is the up factor and d is the down factor. For
the sake of simplicity, we shall further assume that the risk free interest rate is
rF = 0 during this period. The two factors, u and d cannot assume arbitrary
values. Since we want that 0 < p−1 < p+

1 , this means that 0 < d < u. Moreover,
we want to avoid arbitrage, a trading strategy according to which one can get
money out of nothing. Suppose indeed, that d ≥ 1 and that we take from a bank
p0 monetary units to buy one share at time t = 0, then at time t = 1, the value of
our share will be p1 ≥ dp0, then by selling it and giving back p0 monetary units
to the bank, we will surely get a net profit of p1− p0 ≥ dp0 − p0 = (d− 1)p0 ≥ 0
as d ≥ 1. Therefore, to avoid arbitrage, we must take d < 1. Similarly, assume
that u ≤ 1, then one could borrow an asset share at time t = 0, then sell it for
p0 units of money and put the money in a bank. Now, at time t = 1, we could
use this money to pay the share we borrowed at t = 0, since p1 ≤ up0, in the
end we would realize a certain profit p0 − p1 ≥ p0 − up0 = (1 − u)p0 ≥ 0 since
u ≤ 1. In this case, to avoid arbitrage, we must have u > 1. In the end, we
must require that 0 < d < 1 < u. Now, if our strike price is p−1 < K < p+

1 ,
our payoff at time t = 1 will be C+

1 = C(1) = p+
1 − K with probability q and

C−
1 = C(1) = 0 with probability 1 − q. It is possible to prove that the option

price C(0) at t = 0 is given by the following conditional expectation

C(0) = E
Q̃
[C(1)|I(0)], (2.10)

where I(0) represents the information available at time t = 0 and Q̃ represents
the equivalent martingale measure. Two probability measures are equivalent
if each one is absolutely continuous with respect to the other. A probability
measure P is absolutely continuous to respect to measure Q if its null set is
contained in the null set of Q. The null sets of two equivalent measures do coin-
cide. An elementary introduction to these concepts can be found in a book by
T. Mikosch [56]. Among all the equivalent measures, the equivalent martingale
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measure is the one for which the price process is a martingale, meaning that the
price process is integrable and

E
Q̃
[p(1)|I(0)] = p(0). (2.11)

In our case, the martingale measure is given by q̃ = (1− d)/(u− d) and 1− q̃ =
(u − 1)/(u − d) and the option price is given by

C(0) =
1 − d

u − d
C+

1 . (2.12)

The martingale measure can be found by simple algebraic manipulations impos-
ing equation (2.11). Indeed, one has that E

Q̃
[p(1)|I(0)] = q̃up0 +(1− q̃)dp0, and

imposing (2.11) immediately leads to q̃ = (1 − d)/(u − d). Note that equation
(2.10) means that also C is a martingale under the measure Q̃. Technically
speaking I(0) in equation (2.10) is the filtration at time t = 0. A filtration is a
non decreasing family of σ-algebras which represents the information available
at a certain time, see [56] for a rigorous definition of this concept. Equation
(2.12) can be derived from the fact that it is possible to replicate the option
in terms of a suitable non-financing portfolio coupled with a no-arbitrage argu-
ment. This derivation shows that equations (2.10) and (2.12) give the optimal
option price in term of fairness. However, it is not always possible to extend the
arguments leading to the martingale option price when more general assump-
tions on the process followed by the price of the underlying asset are made.
However, it is often possible to compute the martingale price in many cases
of practical interest and this is done by quants in everyday financial practice
[59]. In 1976, R. Merton solved the problem of finding the option martingale
price for an underlying whose log-price follows the NCPP [53]. The idea behind
Merton’s derivation is as follows. Assume that t = 0 is a renewal point, that
the risk free interest rate is rF = 0 and denote the price at t = 0 by S0 = S(0),
the strike price by K and the maturity by T . The NCPP assumption means
that the underlying log-price follows the process

X(t) = log(S0) +

N(t)∑

i=1

Yi, (2.13)

where Yi ∼ N(µ,σ2) and N(t) is the Poisson process. The price should follow
the process S(t) = S0eX(t). This is not a martingale, however. In order to
find the option martingale price, let us consider the situation in which there are
exactly n jumps from 0 and T . In this case, one has to study the processes

Xn = log(S0) +
n∑

i=1

Yi (2.14)

and

Sn = S0e
Xn = S0

n∏

i=1

eYi . (2.15)
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Notice that the random variables eYi follow the log-normal distribution. The
process defined by Xn is not a martingale, but the equivalent martingale measure
can be found by imposing that the process

S′
n = S0e

Xn+na (2.16)

is a martingale and this leads to

a = − log[E(eY )], (2.17)

where
E(eY ) = eµ+σ2/2 (2.18)

so that
a = −(µ + σ2/2). (2.19)

The option price at n = 0 is thus given by

Cn(S0, K, µ,σ2) = ES′ [C(T )|I(0)], (2.20)

where the expected value is computed according to the measure defined by
the process (2.16). For the plain vanilla European call option with C(T ) =
max(S(T ) − K, 0), a straightforward calculation leads to

Cn(S0, K, µ,σ2) = N(d1,n)S0 − N(d2,n)K, (2.21)

where

N(x) =
1√
2π

∫ x

−∞
dy e−y2/2 (2.22)

is the standard normal cumulative distribution function and

d1,n =
log(S0/K) + n(µ + σ2/2)√

nσ
, (2.23)

d2,n = d1,n − σ
√

n. (2.24)

Given the independence between jumps and durations, one can now write the
option price at t = 0 as

C(0) = e−λT
∞∑

n=0

(λT )n

n!
Cn(S0, K, µ,σ2), (2.25)

where λ is the intensity of the Poisson process. To obtain equation (2.25), it
is enough to notice that the probability of having n jumps in the time interval
[0, T ] is given by the Poisson distribution of parameter λT and that one can go
from S0 to S(T ) in any number of steps n. Equation (2.25) can be generalized to
renewal processes simply by replacing the Poisson distribution with the counting
distribution P (n, t). In the Mittag-Leffler case with γt = 1, one can write (see
equation (1.56))

C(0) =
∞∑

n=0

tβn

n!
E(n)

β (−tβ)Cn(S0, K, µ,σ2). (2.26)
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Merton’s result has been recently revisited and it is still the object of active
research [13]. Note that this method works when the random variable eY has
finite first moment. This is the case when all the moments of the tick-by-tick
log-returns Y are finite as in the normal case discussed above.

2.5 Other applications

This chapter focuses on the application of uncoupled continuous-time random
walks in high-frequency financial data modelling. For the sake of simplicity,
we have not discussed the coupled case, but this is covered in reference [51].
Morevoer, it is possible to use the program described in section 2.3 for scenario
simulation and speculative option pricing [73].

As discussed in section 1.1, it is not surprising that CTRWs can also be
applied elsewhere. A standard application is to insurance [44, 15], where the
capital R(t) of an insurance company can be written as

R(t) = u + ct −
N(t)∑

i=1

Yi, (2.27)

and where u is the initial capital of the company, c is the rate of capital increase,
N(t) is the random number of claims Yi that the company has paid since incep-
tion. In this case, ruin is the interesting phenomenon. It takes place the first
time that R(t) = 0, that is when the capital of the insurance company vanishes.
In this framework, one can define the time to ruin as the following hitting time

τ(u) = inf





t : u + ct −

N(t)∑

i=1

Yi < 0





. (2.28)

Two interesting quantities are the probability q(u) of ruin in infinite time and
the probability of ruin in a finite time T . These two quantities are defined as
follows, respectively:

q(u) = P(τ(u) < ∞), (2.29)

and
q(u, T ) = P(τ(u) < T ). (2.30)

It is always possible to study these quantities by means of Monte Carlo simula-
tions, using the algorithm of Appendix 3 or a suitable modification.

Another interpretation of the random variables is in terms of economic
growth. Let us be as general as possible and denote by S a suitable “size”.
This size has the meaning of wealth, firm size, city size, etc., depending on the
scientific context. Then, according to Gibrat’s approach [27], one can define the
log-size X = log(S) and write it as a sum of exogenous shocks Yi

Xn = X0 +
n∑

i=1

Yi. (2.31)
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For large n, if the shocks have finite first and second moments, Xn approximately
follows the normal distribution as a consequence of central limit theorems (see
theorem 1.2.20 for a simple version). This means that the size Sn approximately
follows the log-normal distribution [1]. If the growth shocks arrive at random
times, equation 2.31 can be replace by the familiar equations for CTRWs with
non-homogeneous initial position

X(t) = X0 +
N(t)∑

i=1

Yi. (2.32)

This method was used by Italian economists to study firm growth and size
distribution [8, 25, 9].
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Chapter 3

Monte Carlo simulation of
CTRW

Two implementations are presented (in R and In Matlab) of a Monte Carlo
program to simulate CTRWs according to the algorithm described in section
2.3. The program below, generates and plots a single realization of a CTRW
with a given number of jumps and durations. Even if this is a very simple algo-
rithm, it consists of three parts. The first part is the generator of independent
and indentically distributed Mittag-Leffler deviates according to equation (2.8).
Then, Lévy α-stable deviates are generated following equation (2.7). Finally,
cumulative sums give the position coordinates and the epochs and positions are
plotted as a function of the epochs. This routine can be easily modified with
suitable external cycles to generate many realizations up to a given time t and
estimate the probability density fX(t)(x, t) from the histogram of realized posi-
tions X(t). This was explicitly done in reference [24].
Matlab implementation for the Monte Carlo simulation of CTRW.

%Plot of a single CTRW realization

%Generation of Mittag-Leffler deviates
%See Fulger, Scalas, Germano 2008 and references therein

n=100; %number of points
gammat=1; %scale parameter
beta=0.99; %ML parameter

u1=rand(n,1); %uniform deviates
v1=rand(n,1); %uniform deviates

%Generation of symmetric alpha stable deviates

tau=-gammat*log(u1).*(sin(beta*pi).
/tan(beta*pi*v1)-cos(beta*pi)).^(1/beta);
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gammax=1; %scale parameter
alpha=1.95; %Levy parameter

u2=rand(n,1); %uniform deviates
v2=rand(n,1); %uniform deviates
phi=pi*(v2-0.5);

xi=gammax*(sin(alpha*phi)./cos(phi)).
*(-log(u2).*cos(phi)./cos((1-alpha)*phi)).^(1-1/alpha);

%Random walk

x=cumsum(xi’);
x=[0 x];

%Epochs

t=cumsum(tau’);
t=[0 t];

stairs(t,x) %plots ctrw

R implementation for the Monte Carlo simulation of CTRW.

# Plot of a single CTRW realization

# Generation of Mittag-Leffler deviates
# See Fulger, Scalas, Germano 2008 and references therein

n <- 10000 #number of points
gammat <- 1 #scale parameter
beta <- 0.95 #ML parameter

u1 <- runif(n) #uniform deviates
v1 <- runif(n) #uniform deviates

tau <- -gammat * log(u1) * (sin(beta * pi)/tan(beta * pi * v1) -
cos(beta * pi))^(1/beta)

# Generation of symmetric alpha-stable deviates
# See Fulger, Scalas, Germano 2008 and references therein

gammax <- 1 #scale parameter
alpha <- 1.95 #Levy parameter

u2 <- runif(n)
v2 <- runif(n)
phi <- pi*(v2 - 0.5)

xi <- gammax *(sin(alpha*phi)/cos(phi))*
(-log(u2)*cos(phi)/cos((1-alpha)*phi))^(1-1/alpha)
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# histogram of xi
# hist(xi)

# Random walk

x <- cumsum(xi)

# Epochs

t <- cumsum(tau)

# Stairplot

plot(t,x,type="s")
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