Scientific Contributions: Published
[5] Beauchard K., Zuazua E., Large time asymptotics for partially dissipative hyperbolic systems, Arch. Rational Mech. Anal. 199 (2011), 177–227
[6] Bourdarias C., Ersoy M., Gerbi S., A kinetic scheme for transient mixed flows in non uniform closed pipes: a global manner to upwind all the source term, Journal of Scientific Computing, 48(1-3) Pgs: 89-104, 2011,
[9] Bueno-Orovio A., Castro C., Palacios F., Zuazua E., Continuous adjoint approach for the Spalart-Allmaras model in aerodynamic optimization, AIAA Journal. 50(3) Pgs: 631-646 (2012)
[10] Casado-Diaz J., Castro C., Luna-Laynez M., Zuazua E., Numerical approximation of a one-dimensional elliptic optimal design problem, SIAM J. Multiscale Analysis. (9)3 Pgs: 1181-1216 (2011)
[11] Cazacu C., On Hardy inequalities with singularities on the boundary, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 273–277
[12] Cazacu C., Hardy inequality and Pohozaev identity for operators with boundary singularities: some applications, C. R. Acad. Sci. Paris, Ser. I 349 (2011)
[14] Ervedoza S., Zuazua E., A systematic method for building smooth controls for smooth data, Discrete and Continuous Dynamical Systems, special issue in honor of D. L. Russell, 14 (4) (2010), 1375-1401.
[15] Ervedoza S., Zuazua E., Sharp observability estimates for heat equations, Archive for Rational Mechanics and Analysis. 202(3) Pgs: 975-1017 (2011)
[17] Farago I., Korotov S., Szabo T., On continuous and discrete maximum principles for elliptic problems with the third boundary condition, Applied Mathematics and Computation.
[18] Hannukainen A., Korotov S., Krizek M., The maximum angle condition is not necessary for convergence of the finite element method. Numerische Mathematik. 120(1), Pgs: 79-88 (2012)
[19] Ignat L., Stan D., Dispersive properties for discrete Schrodinger equations, Journal Of Fourier Analysis And Applications Volume 17, Number 5, 1035-1065 )
[20] Ignat, L., Pazoto. AF., Rosier, L., Inverse problem for the heat equation and the Schrödinger equation on a tree, Inverse Problems 28 (2012) 015011 (30pp)
[24] Marica A., Zuazua E., Localized solutions for the finite difference semi-discretization of the wave equation, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 647–652.
[25] Marica A., Zuazua E., Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the 1-d wave equation, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1087–1092.
[26] Marica A., Zuazua E., High frequency wave packets for the Schrodinger equation and its numerical approximations, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 105–110.
[27] Micu S., Zuazua E., On the regularity of null-controls of the linear 1-d heat equation, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 673–677, doi : 10.1016/j.cr
[28] Micu S., Zuazua E., Regularity issues for the null-controllability of the linear 1-d heat equation, Systems and Control Letters, 60 (2011) 406-413.
[29] Munch A., Zuazua E., Numerical approximation of null controls for the heat equation: Ill-posedness and remedies, Inverse Problems 26(8) 085018 (2010) (39 pp.)
[30] Ou Y., Zhu P., Spherically symmetric solutions to a model for phase transitions driven by configurational forces, J. Math. Phys. 52, 093708 (2011)
[31] Ou Y., Low Mach number limit of viscous polytropic fluid flows, Journal of Differential Equations, Volume 251, Issue 8, 15 October 2011, Pages 2037-2065
[32] Porretta A., Zuazua E., Null controllability of viscous Hamilton-Jacobi equations, Annales IHP, 2012 pp. 301-333, DOI 10.1016/j.anihpc.2011.11.002
[33] Tu Z, Lu X., Counterexamples of regularity behavior for σ-evolution equations, JMAA(Journal of Mathematical Analysis and Applications) 382 (2011), 148-161
[34] Zuazua E., Switching control, J. Eur. Math. Soc. 13, 85–117 (2011)
[35] Arrieta J.M., Lopez-Fernandez M., Zuazua E., Approximating travelling waves by equilibria of non local equations. Asymptotic Analysis 78 (2012) 145–186.
[2] Li H., Lu Q., Boundary Unique Continuation for Stochastic Parabolic Equations-
[3] Marica A., Zuazua E., On the quadratic finite element approximation of 1-d waves: propagation, observation, control and numerical implementation, “CFL-80: A Celebration of 80 Years of the Discovery of CFL Condition", C. Kubrusly and C. A. Moura, eds., Springer Proceedings in Mathematics, Springer Verlag.
[4] Marica A., Zuazua E., Symmetric discontinuous Galerkin approximations of waves: high frequency propagation and control, Springer Briefs
[5] Tran, M-B,Overlapping optimized Schwarz methods for parabolic equations in n-dimensions. , Proceddings of the American Mathematical Society
[6] Yin Z., Lu Q., Recent progress on observability for stochastic partial differential equations
[7] Zuazua E., Control and stabilization of waves on 1-d networks, "Traffic flow on networks", B. Piccoli and M. Rascle, eds., “Lecture Notes in Mathematics”, CIME Subseries, Springer Verlag.
[1] Audiard, C., Dispersive schemes for the critical Korteweg de Vries equation.
[2] C. Bourdarias, M. Ersoy, S. Gerbi, Unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach.
[3] Casas E., Zuazua E. Spike Controls for Elliptic and Parabolic PDE.
[4] Cazacu C. ,Schrodinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results.
[5] Cazacu C. ,Controllability of the heat equation with an inverse-square potential localized on the boundary.
[6] Cazacu C., Zuazua E.,Improved multipolar Hardy inequalities.
[7] Dutykh D., Chhay M., Fedele F.,Geometric numerical schemes for the kdv equation
[8] Guerrero, S., Imanuvilov, O. Yu, Puel, J-P.,A result concerning the global approximate controllability of the Navier Stokes system in dimension 3
[9] Ignat L., Zuazua E. , Asymptotic expansions for anisotropic heat kernels.
[11] Lu Q.,Observability Estimate for Stochastic Schrodinger Equations
[12] Imanuvilov, O-Y., Puel, J-P., Yamamoto, M.,Carleman estimates for second order non homogeneous parabolic equations
[13] Lu Q., Yin Z.,L infinity null Controllability of Parabolic Equation with Equivalued Surface Boundary Conditions
[15] Privat Y., Trelat E., Zuazua E., Optimal observation of the one-dimensional wave equation
[16] Privat Y., Trelat E., Zuazua E., Optimal location of controllers for the one-dimensional wave
[17] Puel, J-P., A regularity property for Schrödinger equations on bounded domains
[19] Qi Lu,Xu Zhang,Global Uniqueness for an Inverse Stochastic Hyperbolic Equation with Three Unknowns
[20] Sy, A.,Numerical control of an discrete phase transition model: the monopole problem
[21] Tran, B-M.,Convergence properties of overlapping Schwarz domain decomposition algorithms,
[22] Tran, M-B, Parallel Schwarz waveform relaxation algorithm for an n-dimensional semilinear heat equation.
[24] Privat Y., Trelat E., Zuazua E. On the best observation of wave and Schrodinger equations in quantum ergodic billiards
[25] Cazenave T., Escobedo M., Zuazua E. Blow-up for a time-oscillating nonlinear heat equation
[26] Lu Q., Zuazua E. Robust null controllability for heat equations with unknown switching control mode
[27] Carvalho A.N., Sonner S. Pullback Exponential Attractors for Evolution Processes in Banach Spaces: Theoretical Results
[28] Lamberti P.D., Provenzano L. A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
[1] Landajuela M., Burgers Equation. Internship at BCAM, Summer 2011