Scientific Contributions: Published

[1]    Araruna D., Braz e Silva P., Zuazua E., Asymptotics and stabilization for dynamic models of nonlinear beams, Proceedings of the Estonian Academy of Sciences, 2010, 59, 2, 150–155.

[2]   Araruna D., Braz e Silva P., Zuazua E., Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system, J. Systems Science and Complexity, 23(3) (2010), 414-430.

[3]   Arrieta J. M., Lopez-F. M., Zuazua E. , On a nonlocal moving frame approximation of traveling waves, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 753–758, DOI: 10.1016/j.crma.2011.07.001

[4]    Banica, V., Ignat, L., Dispersion for the Schrodinger equation on networks, Journal of Mathematical Physics (52), 083703, 2011  

[5]   Beauchard K., Zuazua E., Large time asymptotics for partially dissipative hyperbolic systems, Arch. Rational Mech. Anal. 199 (2011), 177–227  

[6]    Bourdarias C., Ersoy M., Gerbi S., A kinetic scheme for transient mixed flows in non uniform closed pipes: a global manner to upwind all the source term, Journal of Scientific Computing, 48(1-3) Pgs: 89-104, 2011,  

[7]   C. Bourdarias, M. Ersoy, S. Gerbi, A mathematical model for unsteady mixed flows in closed water pipes, SCIENCE CHINA Mathematics, 55(1), pp 1-26, 2012.  

 [8]   Brandts J., Korotov S., Krizek, M., Generalization of the Zlamal condition for simplicial finite elements in R^d, Applications of Mathematics, 56 (2011), 417-424  

[9]   Bueno-Orovio A., Castro C., Palacios F., Zuazua E., Continuous adjoint approach for the Spalart-Allmaras model in aerodynamic optimization, AIAA Journal. 50(3) Pgs: 631-646 (2012)  

[10] Casado-Diaz J., Castro C., Luna-Laynez M., Zuazua E., Numerical approximation of a one-dimensional elliptic optimal design problem, SIAM J. Multiscale Analysis.  (9)3 Pgs: 1181-1216 (2011)  

 [11] Cazacu C., On Hardy inequalities with singularities on the boundary, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 273–277  

[12] Cazacu C., Hardy inequality and Pohozaev identity for operators with boundary singularities: some applications, C. R. Acad. Sci. Paris, Ser. I 349 (2011)  

[13] Ersoy M., Ngom T., Sy M., Compressible primitive equations: formal derivation and stability of weak solutions, Nonlinearity, 24(1), pp 79-96, 2011.  

[14] Ervedoza S., Zuazua E., A systematic method for building smooth controls for smooth data, Discrete and Continuous Dynamical Systems, special issue in honor of D. L. Russell, 14 (4) (2010), 1375-1401.

[15] Ervedoza S., Zuazua E., Sharp observability estimates for heat equations, Archive for Rational Mechanics and Analysis. 202(3) Pgs: 975-1017 (2011)  

[16] Ervedoza S., Zuazua E., The Wave Equation: Control and Numerics ,“Control of Partial Differential Equations", P. M. Cannarsa and J. M. Coron, eds., “Lecture Notes in Mathematics”, CIME Subseries, Springer Verlag, 2012.

 [17] Farago I., Korotov S., Szabo T., On continuous and discrete maximum principles for elliptic problems with the third boundary condition, Applied Mathematics and Computation.

[18] Hannukainen A., Korotov S., Krizek M., The maximum angle condition is not necessary for convergence of the finite element method. Numerische Mathematik. 120(1), Pgs: 79-88 (2012)  

[19] Ignat L., Stan D., Dispersive properties for discrete Schrodinger equations, Journal Of Fourier Analysis And Applications Volume 17, Number 5, 1035-1065 )  

[20] Ignat, L., Pazoto. AF., Rosier, L., Inverse problem for the heat equation and the Schrödinger equation on a tree, Inverse Problems 28 (2012) 015011 (30pp)  

[21] Korotov S., Krizek M., Local nonobtuse tetrahedral refinements around an edge, Applied Mathematics and Computation, 24(6) Pgs: 817-821, 2011  

[22] Krejcirik D., Zuazua E., The asymptotic behaviour of the heat equation in a twisted Dirichlet-Neumann waveguide, J. Differential Equations 250 (2011) 2334–2346.  

[23] Lu, Q., Carleman Estimate for Stochastic Parabolic Equations and inverse stochastic parabolic Problems, Inverse Problems 28 (2012) 045008  

[24] Marica A., Zuazua E., Localized solutions for the finite difference semi-discretization of the wave equation, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 647–652.  

[25] Marica A., Zuazua E., Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the 1-d wave equation, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 1087–1092.  

[26] Marica A., Zuazua E., High frequency wave packets for the Schrodinger equation and its numerical approximations, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 105–110.  

[27] Micu S., Zuazua E., On the regularity of null-controls of the linear 1-d heat equation, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 673–677, doi : 10.1016/  

[28] Micu S., Zuazua E., Regularity issues for the null-controllability of the linear 1-d heat equation, Systems and Control Letters, 60 (2011) 406-413.

[29] Munch A., Zuazua E., Numerical approximation of null controls for the heat equation: Ill-posedness and remedies, Inverse Problems 26(8) 085018 (2010) (39 pp.)  
[30] Ou Y., Zhu P., Spherically symmetric solutions to a model for phase transitions driven by configurational forces, J. Math. Phys. 52, 093708 (2011)  

[31] Ou Y., Low Mach number limit of viscous polytropic fluid flows, Journal of Differential Equations, Volume 251, Issue 8, 15 October 2011, Pages 2037-2065  

[32] Porretta A., Zuazua E., Null controllability of viscous Hamilton-Jacobi equations, Annales IHP, 2012 pp. 301-333, DOI 10.1016/j.anihpc.2011.11.002
[33] Tu Z, Lu X., Counterexamples of regularity behavior for σ-evolution equations, JMAA(Journal of Mathematical Analysis and Applications) 382 (2011), 148-161

[34] Zuazua E., Switching control, J. Eur. Math. Soc. 13, 85–117 (2011)  

[35]   Arrieta J.M., Lopez-Fernandez M., Zuazua E., Approximating travelling waves by equilibria of non local equations. Asymptotic Analysis 78 (2012) 145–186.

[36]   Ignat L., Zuazua E., Convergence rates for dispersive approximation schemes to Nonlinear Schrödinger equations, Journal de Mathématiques Pures et appliqués, Journal de Mathématiques Pures et appliquées, doi:10.1016/j.matpur.2012.01.001 (on line)

[37]    Palacios F., Duraisamy K., Alonso J. J., Zuazua E.  Robust Grid Adaptation for Efficient Uncertainty, AIAA Journal, 50(7) (2012), pp. 1538-1546

[38]   [38] Ervedoza S., Glass O., Guerrero S., Puel J-P., Local Exact Controllability for the One-Dimensional Compressible Navier-Stokes Equation, Archive for Rational Mechanics and Analysis, 206(1) (2012), pp. 189-238

Scientific Contributions: To Appear

[1] Cresson J., Efendiev M.A., Sonner S. On the Positivity of Solutions of Systems of Stochastic PDEs,  ZAMM

[2]    Li H., Lu Q., Boundary Unique Continuation for Stochastic Parabolic Equations-

[3]    Marica A., Zuazua E., On the quadratic finite element approximation of 1-d waves: propagation, observation, control and numerical implementation, “CFL-80: A Celebration of 80 Years of the Discovery of CFL Condition", C. Kubrusly and C. A. Moura, eds., Springer Proceedings in Mathematics, Springer Verlag.

[4]    Marica A., Zuazua E., Symmetric discontinuous Galerkin approximations of waves: high frequency propagation and control, Springer Briefs

[5]    Tran, M-B,Overlapping optimized Schwarz methods for parabolic equations in n-dimensions. , Proceddings of the American Mathematical Society

[6]    Yin Z., Lu Q., Recent progress on observability for stochastic partial differential equations

[7]    Zuazua E., Control and stabilization of waves on 1-d networks, "Traffic flow on networks", B. Piccoli and M. Rascle, eds., “Lecture Notes in Mathematics”, CIME Subseries, Springer Verlag.

[8] Bendahmane M., Chaves-Silva F. W.,Null Controllability of a Degenerate reaction-diffusion system in cardiac electro-phisyology,

Scientific Contributions: Submitted

[1]    Audiard, C., Dispersive schemes for the critical Korteweg de Vries equation.

[2]    C. Bourdarias, M. Ersoy, S. Gerbi, Unsteady mixed flows in non uniform closed water pipes: a Full Kinetic Approach.

[3]    Casas E., Zuazua E. Spike Controls for Elliptic and Parabolic PDE.

[4]    Cazacu C. ,Schrodinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results.

[5]    Cazacu C. ,Controllability of the heat equation with an inverse-square potential localized on the boundary.

[6]    Cazacu C., Zuazua E.,Improved multipolar Hardy inequalities.

[7]    Dutykh D., Chhay M., Fedele F.,Geometric numerical schemes for the kdv equation

[8]    Guerrero, S., Imanuvilov, O. Yu, Puel, J-P.,A result concerning the global approximate controllability of the Navier Stokes system in dimension 3

[9] Ignat L., Zuazua E. , Asymptotic expansions for anisotropic heat kernels.

[10] Li H., Lu Q.,Null Controllability of Some Systems of Two Backward Stochastic Heat Equations with One Control Force,

[11] Lu Q.,Observability Estimate for Stochastic Schrodinger Equations

[12] Imanuvilov, O-Y., Puel, J-P., Yamamoto, M.,Carleman estimates for second order non homogeneous parabolic equations

[13] Lu Q., Yin Z.,L infinity null Controllability of Parabolic Equation with Equivalued Surface Boundary Conditions

[14] Nersesyan V., Nersisyan H., Global exact controllability in infinite time of Schrodinger equation: multidimensional case.

[15] Privat Y., Trelat E., Zuazua E., Optimal observation of the one-dimensional wave equation

[16] Privat Y., Trelat E., Zuazua E., Optimal location of controllers for the one-dimensional wave

[17] Puel, J-P., A regularity property for Schrödinger equations on bounded domains

[18] Bendahmane M., Chaves-Silva F. W.,Controllability of a Degenerating Reaction-Diffusion System in Electrocardiology,

[19] Qi Lu,Xu Zhang,Global Uniqueness for an Inverse Stochastic Hyperbolic Equation with Three Unknowns

[20] Sy, A.,Numerical control of an discrete phase transition model: the monopole problem

[21] Tran, B-M.,Convergence properties of overlapping Schwarz domain decomposition algorithms,

[22] Tran, M-B, Parallel Schwarz waveform relaxation algorithm for an n-dimensional semilinear heat equation.

[23] Wang G., Zuazua E.,On the equivalence of minimal time and minimal norm controls for internally controlled heat equations

[24] Privat Y., Trelat E., Zuazua E. On the best observation of wave and Schrodinger equations in quantum ergodic billiards

[25] Cazenave T., Escobedo M., Zuazua E. Blow-up for a time-oscillating nonlinear heat equation

[26] Lu Q., Zuazua E. Robust null controllability for heat equations with unknown switching control mode

[27] Carvalho A.N., Sonner S. Pullback Exponential Attractors for Evolution Processes in Banach Spaces: Theoretical Results

[28] Lamberti P.D., Provenzano L. A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations



[1] Landajuela M., Burgers Equation. Internship at BCAM, Summer 2011