SIAM Conference on Computational Science and Engineering (CSEQ7)

A Posteriori Error Estimation and Adaptivity in Computational Science and E ngineering

A Three-Dimensional Self-Adaptive Goal-Oriented
hp-Finite Element Method with a Multigrid Solver:
Applications to Electromagnetics.

D. Pardo, L. Demkowicz, C. Torres-Verdin, M. Paszynski

February 21, 2007

Costa Mesa, California

Department of Petroleum and Geosystems Engineering, and
Institute for Computational Engineering and Sciences (ICES)

THE UNIVERSITY OF TEXAS AT AUSTIN




D. Pardo, L. Demkowicz, C. Torres-Verdin, M. Paszynski 21 Feb 2007

MOTIVATION (APPLICATIONS)

Main Objective: To Solve an Inverse Problem

B

A software for solving the DIRECT problem is essential in order to s olve
the INVERSE problem
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MOTIVATION (APPLICATIONS)

Deviated Cased Wells: VoVu = f (Electrostatics)

MATERIAL |

Large material contrasts.

MATERIAL Il MATERIAL Il

| Large dynamic range.
Large domain needed.

Elongated geometries.

MATERIAL IV

Objective: Determine 2nd difference of potential at the receiver e lectrodes.

2
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MOTIVATION (APPLICATIONS)

60 degrees deviated well

Elongated elements needed (due to geometry)
Goal-oriented adaptivity needed

The University of Texas at Austin High Performance Finite Element Software




OVERVIEW

Motivation: Simulation of resistivity logging
measurements.

The hp-Finite Element Method.
Goal-Oriented hp-Adaptivity.
Two-Grid Solver.

e Formulation.

e Convergence theory.

e The idea of goal-oriented solver.

e The problem of elongated elements.
e Implementation details.

Numerical Results.
Conclusions and future work.
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THE hAp-FINITE ELEMENT METHOD (FEM)

The h-Finite Element Method

1. Convergence limited by the polynomial degree, and large material
contrasts.

2. Optimal h-grids do NOT converge exponentially in real applications.

¢ 3. They may “lock” (100 % error).

The p-Finite Element Method

3

1. Exponential convergence feasible for analytical (“nice”) solutions.
2. Optimal p-grids do NOT converge exponentially in real applications.

3. If initial h-grid is not adequate, the p-method will fail miserably.
e

1. Exponential convergence feasible for ALL solutions.
2. Optimal hp-grids DO converge exponentially in real applications.

3. If initial hp-grid is not adequate, results will still be great.

£
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GOAL-ORIENTED hp-ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)
Let’s L be the quantity of interest (Ex.. Second difference of potential).

We consider the following problem (in variational form):
( Find L(u), where uw € V. = H'(£2) such that :
/O'Vu-Vv:/f-v YveV.

Q

Y
\ - 4 N 7

b(u, v) F(v)

7\

\

We define residual r.(v) := b(e,v). We seek for a functional G € V' ~V
relating the residual and the error in the quantity of interest, that is , such that
G(r.) := L(e). Functional G is the solution of the so-called  dual problem:

Find G € V such that :
b(v,G) = L(v) YveV.

Notice that, in particular, L(e) = b(e,G) <« (Representation Formula) .
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GOAL-ORIENTED hp-ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

DIRECT PROBLEM - w - DUAL PROBLEM - G -
2D Cross-Section 2D Cross-Section

THTHINRI
i

Representation Formula for the Error in the Quantity of Interest:

L(u) =b(u,G) = /Qa' Vu-VGAV
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GOAL-ORIENTED hp-ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

We define: e = u — upy, u exact solution of direct problem
e = G — Ghpp. G exact solution of dual problem

Upper Bound for the Error in the Quantity of Interest:
L(e)| = b(e, G)| = b(e, )| = | [ o Ve VedV] <
Q

ALGORITHM I: Z|/ o Ve -VedV| <
K

ALGORITHM II: Z\// J(Ve)2dV\// o (Ve)2dV
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SELF-ADAPTIVE GOAL-ORIENTED hp-FEM

Algorithm for Goal-Oriented Adaptivity - STEP | -

Solve
Direct
and Dual
Problems
on Grid
hp

Solve
Direct
and Dual
Problems
on Grid

h/2,p+1

Use the fine grid solution to estimate the coarse grid error function.
Apply the fully automatic goal-oriented hp-adaptive algorithm.

Next optimal hp-grid:

The University of Texas at Austin
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SELF-ADAPTIVE GOAL-ORIENTED hp-FEM

Algorithm for Goal-Oriented Adaptivity - STEP I -

Solve
Direct
and Dual
Problems
on Grid
hp

Solve
Direct
and Dual
Problems
on Grid

h/2,p+1

Use the fine grid solution to estimate the coarse grid error function.
Apply the fully automatic goal-oriented hp-adaptive algorithm.

Next optimal hp-grid:

The University of Texas at Austin
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SELF-ADAPTIVE GOAL-ORIENTED hp-FEM

Algorithm for Goal-Oriented Adaptivity - STEP Il -

Solve
Direct
and Dual
Problems
on Grid
hp

Solve
Direct
and Dual
Problems
on Grid

h/2,p+1

Use the fine grid solution to estimate the coarse grid error function.
Apply the fully automatic goal-oriented hp-adaptive algorithm.

Next optimal hp-grid:

The University of Texas at Austin
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SELF-ADAPTIVE GOAL-ORIENTED hp-FEM

Algorithm for Goal-Oriented Adaptivity - STEP |V -

Solve Solve
Direct Direct
and Dual and Dual
Problems Problems
on Grid on Grid
hp h/2,p+1
gy A,

Use the fine grid solution to estimate the coarse grid error function.
Apply the fully automatic goal-oriented hp-adaptive algorithm.

Next optimal hp-grid:

12
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TWO-GRID (TG) SOLVER: FORMULATION

Two-Grid Solver (Ax=Db)

—

lobal Problem)

A

13
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TWO-GRID (TG) SOLVER: FORMULATION

We seek x such that Ax = b. Consider the following iterative scheme:

r+) = [I — a™AS]r™

where S is a matrix, and o™ is a relaxation parameter. (™ optimal if:

(A_lr(n), Sr(n))A
(ST‘(n), Sr(n))A

o™ = arg min || z™tY — z ||4=

Then, we define our two grid solver as:

1iteration with S = Sp = > A" +
1 iteration with S = S¢ = PcAZ'Rc

14
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TG SOLVER: CONVERGENCE THEORY

Error reduction and stopping criteria

Errorstep n=e™ =™ — . ™ = [T — ScAle™ = [T — Pgle™. Then:

e 1% | (&™), SpAe™) 4 |7 | (™, (Pc + SrA)é™) 4 |?
| et™ 1% | €0 {141 SpAe™ || | e 41l SrAe™ |1
Then:
(n+1) |2 e, (P, SrA)e) 4 |?
Il gA < sup[l — | (e ( C;—'_ rA) )2A | ] < C <1 (Error Reduction)
| e |I% e | e ll4ll SrAe [I%

For our stopping criteria, we want: Solver Error ~ Discretization Error. That is:

| e™* b ]la

Ie© [l

< 0.01 (Stopping Criteria)

15
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TG SOLVER: GOAL-ORIENTED

Goal-Oriented Solver: Motivation

MODEL PROBLEM |

3 0 Fg Energy-Based TG Solver
DOMAIN = [0,1] o %g | ‘ ‘
§@§ L .« |=—Energy norm
0| M¥en  ihi b |---Quantity of |
cenerepssf 10 ORI .Quantltyoflnterest
' “: ' ::: 'l'lllllll .
S : ua
510}
ie)
0}
i
5
e
10 +
Au=f
SOURCE=[0,0.2]
10° * * *
N 0 20 40 60 80
N Number of Iterations
N

We need 50 iterations to converge!!

16
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TG SOLVER: GOAL-ORIENTED
Goal-Oriented Solver: Motivation
RECEIVER | =[0.8,1]x[0.6,0.8]x[0.8,1]
uantity of Interest: 7 R NI
Q y [ I‘ \(/\[f [ 0 A L ;. :...‘,' ,'f,".:". .
[ u—0.99{ U W vy e
R T R — "y
R veTaL=p20ano” i
5107
jo)
0]
x
S
SOURCE=(0,0.7] -
\\\\i\ — Energy norm
VaVu 0 20 10 60 80
3 G era=1.08 Number of Iterations
DOMAIN = [0,1] 0o =1 d0

We need more than 80 iterations to converge!!

17
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TG SOLVER: GOAL-ORIENTED

Goal-Oriented Solver: Formulation (Part |)

We seek L(u) suchthat Au = f and AG = [. Consider the following iterative
scheme:

rntD) = [T — a™AS]r(™ rgH_l) = [I — ﬁ(”)AS]rg)
W) = ) g G = GOy G gl

where S is a matrix, and o™, 3(™ are relaxation parameters. Then, we define
our two grid solver as:

1iteration with S = Sp = > A" +
1 iteration with S = S¢ = PcAZ'Rc

How do we select o™, 3™ to be optimal ?

18
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TG SOLVER: GOAL-ORIENTED

Goal-Oriented Solver: Formulation (Part II)

Recall that: |L(u)| = |b(u, G)| < Yk [br(u, G)| < Xk ||ullx||Gllx —

Selection | ( Goall):

a(n) — IB(”) = arg min Z |bK(’U,* — ’Uzgl—i_l)) GEXTL—Fl))I
K

Selection Il ( Goal2):

a™ = 3™ = arg mO}nZ ||lu* — u&"+1)||K ||G(an+1)||K
K

u* =u™ + (S — SAS)r™

19
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TG SOLVER: GOAL-ORIENTED

Goal-Oriented Solver: Numerical Results

MODEL PROBLEM |

Energy-Based TG Solver Goall-Oriented TG Solver
h-‘;': S Energy norm —Energy norm
10” [y ‘.':;'; . .‘:3';-‘;. A e -Quantity of interest, 10° - = -Quantity of interest.
c c
je) o
510} 510}
O ©
Q Q
4 4
5 5
W 307 W07 .
-6 -6 o
10 * : * 10 * * *
0 20 40 60 80 0 20 40 60 80
Number of Iterations Number of Iterations
50 iter. to converge 8 iter. to converge

With the GOAL-ORIENTED solver we reduce the number of iterati ons

20
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TG SOLVER: GOAL-ORIENTED

21 Feb 2007

Error Reduction

Goal-Oriented Solver: Numerical Results

MODEL PROBLEM I

Energy-Based TG Solver

TR TE T

-
-
L i
L™
=
-
-

—Energy norm
- = -Quantity of interest

20 40 60 80
Number of lterations

>80 iter. to converge

We only converge with the GOAL-ORIENTED solver

The University of Texas at Austin

Error Reduction

21

Goall-Oriented TG Solver

—Energy norm

- = -Quantity of interest.

S
S~
N~
-
...

20 40 60
Number of lterations

8 iter. to converge
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TG SOLVER: GOAL-ORIENTED

Goal-Oriented Solver: Numerical Results

Goall-Oriented TG Solver

MODEL PROBLEM II
Goal2-Oriented TG Solver

—Energy norm —Energy norm
- = -Quantity of interest} 10° - = -Quantity of interest.
c c
9 9
I3} o, .-
Q Q
14 . 14
§ ~~‘s § S ~
w907 TN e
-6 -6
10 * * * 10 * * *
0 20 40 60 80 0 20 40 60 80

Number of lterations

8 iter. to converge

Number of lterations

16 iter. to converge

Goall algorithm converges in less iterations than Goal2

The University of Texas at Austin
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TG SOLVER: ELONGATED ELEMENTS

Elongated Elements

MODEL PROBLEM | (Initial Grid)

Isotropic Anisotropic

23
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TG SOLVER: ELONGATED ELEMENTS
Elongated Elements
Max. Aspect Ratio: 1 Max. Aspect Ratio: 1000
0
10 ‘ ‘ — 10 ‘ ‘ ‘ __
—Estimate —Estimate
- EXact == EX&C'[
10}
c c
2 \ - 0
§o) -4 - §o)
g g
5 5
L] - LI
10"t A~
10° 10°

0 20 40 60 80 100
Number of iterations

20 40 60 80 100
Number of iterations

erates

For elongated elements, convergence and error estimation degen

24
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TG SOLVER: ELONGATED ELEMENTS
Elongated Elements
Max. Aspect Ratio: 1¢° Max. Aspect Ratio: 10°
0
10 ‘ ‘ ‘ 10 ‘ ‘ ‘
—Estimate —Estimate
- = -Exact - = -Exact
107
c c
e )
I3} ( 3}
'g -2 ‘\ 'g
$0 O\ :
0 0
T A N E m
107} ;
10" 10

0 20 40 60 80 100
Number of iterations

For elongated elements, convergence and error estimation degen

25
The University of Texas at Austin

20 40 60 80 100
Number of iterations

erates

High Performance Finite Element Software




D. Pardo, L. Demkowicz, C. Torres-Verdin, M. Paszynski 21 Feb 2007

TG SOLVER: ELONGATED ELEMENTS

Elongated Elements

Max. Aspect Ratio: 10°

Max. Aspect Ratio: 10°. Line1 Smoother

10’ - 10’ —
—Estimate —Estimate
- EXact = ExaCt
107}
C c
je) o
5 5
3 3 4
& &10 r
o o
I b
10}
10° * * * * 10" * * * *
0 20 40 60 80 100 0 20 40 60 80 100
Number of iterations Number of iterations
Linel Smoother=old smoother + additional block composed of all d.o.f.

associated to elongated elements

26
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TG SOLVER: ELONGATED ELEMENTS

Elongated Elements

Max. Aspect Ratio: 10° (two—directions)

~
bl
---------------------

Error Reduction
=

-6/|——Estimate

- - -Exact

o Estimate linel
|l Exactlinel

0 20 40 60 80 100
Number of iterations

Line smoothers are necessary in presence of elongated elements

27
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TG SOLVER: ELONGATED ELEMENTS

Elongated Elements

Max. Aspect Ratio: 1¢° (two—directions) Max. Aspect Ratio: 10° (two—directions)

10° ‘ ‘ ‘ ‘ 10°
107 G- | 107}
c | Wl Tt mccccccammm====- c
e e N
0 © .
5 -4 = -4 A
2 10 + 2 10 + .
5 S &
LE = : LTJ L . . ..'.-
107! Estimate 10 Estlma.te linel
- - -Exact - - -Exact linel
o Estimate linel o Estimate line2
|| @ Exactlinel |l @ Exactline2
10 ; : * * 10 ; : * *
0 20 40 60 80 100 0 20 40 60 80 100
Number of iterations Number of iterations
Line2 Smoother=old smoother + additional block composed of all EDGE

and VERTEX d.o.f. associated to elongated elements

28
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TG SOLVER: IMPLEMENTATION

Implementation Detalls

Block-Jacobi Smoother: PATCH-LEVEL (UNASSEMBLED) OPERATIONS.
e Enables flexible (adaptive) smoother selection.
e Does not require inversion (only LU factor).
Stiffness matrix: ASSEMBLED.
e Facilitates flexible (adaptive) smoother selection.
e Minimizes storage (avoids node repetition).
Transfer operators: ACTING ON RIGHT HAND SIDE, ASSEMBLED.
e Avoids using matrix-matrix multiplications.
e Logic consistent with that of the stiffness matrix.
Coarse-grid solve: ASSEMBLED.
e Logic consistent with that of the stiffness matrix.

e Logic consistent with that of the smoother.

29
The University of Texas at Austin High Performance Finite Element Software




D. Pardo, L. Demkowicz, C. Torres-Verdin, M. Paszynski 21 Feb 2007

NUMERICAL RESULTS

Model Problem with Steel Casing

Frequency: 0 Hz.

Casing resistivity: 107> Ohm - m.

Casing width: 0.01127 m

100 cm.

: 20 |_arge constrast in resistivity

50 cm

Electrodes

0.1 0hm m

Size (domain): 1000m x 2000m

30
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NUMERICAL RESULTS
Deviated Cased Wells
MATERIAL |
| MATERIAL Il MATERIAL Il
MATERIAL IV
Objective: Determine 2nd difference of potential at the receiver e lectrodes.
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NUMERICAL RESULTS

Axisymmetric problem

=

o
ol

|
o
al

Vert. Pos. Receivers (m)
(@)

I
[

-1.5¢

_2 !
10 10
2nd Diff. of Potential (V)

32
The University of Texas at Austin High Performance Finite Element Software




D. Pardo, L. Demkowicz, C. Torres-Verdin, M. Paszynski 21 Feb 2007

NUMERICAL RESULTS

Axisymmetric problem

_2D =
15| © 2D-->3D| f§

0.5¢

Vert. Pos. Receivers (m)
O
o1 (@)

I
[

-1.5¢

5 i ‘
10 10
2nd Diff. of Potential (V)
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NUMERICAL RESULTS

Axisymmetric problem

—2D
1.5, O 2D -2 3D
+ 2D ——> 3D (p+1)

=

O
Ul

Vert. Pos. Receivers (m)
O
(6 (@)

I
[

-1.5¢

-2 5 L
10 10
2nd Diff. of Potential (V)
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NUMERICAL RESULTS

Axisymmetric problem

2 - w 2 ‘
—2D —2D ——>3D
1.5} O 2D-->3D i 1.5t —2D —>3D ( p+1),
+ 2D -—> 3D (p+1)
E Y E |
2 2
.GZJ 0.5 .023 0.5
& &
z O 2 0
% %
o
g -0.5 a -05
5 5
> = -1

-1.5} -1.5
PRt 5 2 0.5 1
10 10 el Errar (in %

2nd Diff. of Potential (V) el. Error (in %)
32
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NUMERICAL RESULTS

30 degrees deviated well

——2D. 0 degrees.
21 * 2D -—>3D. 30 degrees.

[
T

©
a1

Vert. Pos. Receivers (m)
=
o1l (@)

|
[IEN
T

|
=
[$))

-2 w .
10°° 10° 107° 10

2nd. Diff. of Potential (V)

-4
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NUMERICAL RESULTS

30 degrees deviated well

—2D. 0 degrees.
2 * 2D ——>3D. 30 degrees.
0 2D ——> 3D (p+1). 30 degrees.

1.5¢ B

[
T

©
a1

Vert. Pos. Receivers (m)
=
o1 o

|
[IEN
T

|
=
[$))

_2 ! |
10°° 10° 107° 10

2nd. Diff. of Potential (V)

-4
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NUMERICAL RESULTS

21 Feb 2007

The University of Texas at Austin

30 degrees deviated well

—2D. 0 degrees.

21 * 2D ——>3D. 30 degrees.

0 2D ——> 3D (p+1). 30 degrees.
1.5+ —3D adapt. 30 degrees

[EEN
T

o
1

Vert. Pos. Receivers (m)
o
a1 o

|
[EEN
T

|
=
[4))

_2 ! |
10°° 10° 10° 10
2nd. Diff. of Potential (V)

33
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NUMERICAL RESULTS

30 degrees deviated well

—2D. 0 degrees.
2 * 2D ——> 3D. 30 degrees. 2 ‘ ‘
o 2D ——> 3D (p+1). 30 degrees. —2D -->3D
1.5/|—3D adapt. 30 degrees —2D -—> 3D (p+1)]]

=
o1

[HEN
[H

o
1

o
ol
~~

e

Vert. Pos. Receivers (m)
o

Vert. Pos. Receivers (m)
o

-0.5
_17
-1.5 ~1.5|
~275 8 6 -4 -2 ‘ ‘
10 10 10 10 0 100 200 300
2nd. Diff. of Potential (V) Rel. Error (in %)
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NUMERICAL RESULTS

60 degrees deviated well

24 2D. O degrees
+ 2D ——> 3D. 60 degrees

ot
Ul
T

Vert. Position of Receivers (m)
O
gl (@)

|
|
T

_2 1 ¥ 1
10 1078 10°° 10

2nd Diff. of Potential (V)

-4
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NUMERICAL RESULTS

60 degrees deviated well

2/——2D. 0 degrees
+ 2D ——> 3D. 60 degrees
© 2D -—> 3D (p+1). 60 degrees||

ot
Ul
T

Vert. Position of Receivers (m)
O
gl (@)

|
|
T

-1.5¢

_2 1 E 1
10 1078 10°° 10

2nd Diff. of Potential (V)
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NUMERICAL RESULTS

60 degrees deviated well

2 /——2D. 0 degrees

+ 2D ——> 3D. 60 degrees
15l © 2D -—> 3D (p+1). 60 degrees||
~~||——3D adapt. 60 degrees
E 1
o
2
(&)
[¢B)
o
S o
c
je)
2 0.5}
a
S -1
-1.5¢
275, -8 e -4
10 10 10 10

2nd Diff. of Potential (V)
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NUMERICAL RESULTS

60 degrees deviated well

oJ/=——2D. O degrees

+ 2D ——> 3D. 60 degrees
15l © 2D -—> 3D (p+1). 60 degrees||
"~||——3D adapt. 60 degrees
E 1
o
2
(&)
[¢B)
o
S of
c
je)
2 0.5}
a
S -1
-1.5¢
25, -8 - -
10 10 10 10

2nd Diff. of Potential (V)
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Vert. Pos. Receivers (m)
o

2 | MC"”

[EEY

ot
a1

—2D ——> 3D
— 2D ——> 3D (p+1)|

-0.5 :
_1 _— 4

-1.5 :
2 100 200 300

Rel. Error (in %)
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CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

e A goal-oriented adaptive strategy should be accompanied by a
goal-oriented iterative solver.

e Error estimation may fail in presence of elongated elements.

e Elongated elements should be identified before solving the actual
problem.

e Line smoothers are needed to converge in presence of elongated
elements.

FUTURE WORK

e New error estimators.

e Electrodynamic problems.

Department of Petroleum and Geosystems Engineering, and
Institute for Computational Engineering and Sciences (ICES)
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