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Summary

0—wave packets: How do they disperse?
Motivation:

(a) Unique continuation

(b) Multifractality /Intermittency
Talbot effect

0 =1 : Heisenberg UP
0 <6 <1 : Fractional UP

Fluctuations



o-wave packets

Ot = %Au r e R"”
u(z,0) = f(z),

We measure regularity using the space
n n 2 R 2 2
B5(R") = { f € L2AR") | 1113, = [[l2°£II; + | D°£[I; < oo }
where D° f := |¢|° f(¢)

f©)i= [ et s de



e (xg,tg) Translations in space time

u(xg + x,tg + t)
e A\ > (0 Dilations

w(Az, \*t)

e £y Translations in phase space
o~ 15160 |* Fizoy, (z — t&o, 1)
Hence, if u “remains concentrated” up to time one close to the

origin by “tuning” the parameters A\, xq, ty, & We create a wave

packet that is “concentrated” around x —t&p in a box A7 x -+ x
AL x A2,

Beyond that time, the wave packet starts to disperse.

Q.— How does it disperse?



hs(t) = [|z|? |u(z,t)?de 0<d6<1

Ao [l fu(z, 0)* do = [ |¢12|a(g, 0)| dé = a3

t =0 1is a minimum of hg

[ uo(z)|* dz =1



8.2 Self-similar and intermittent random functions 123

e Motivation:

(a) Unique continuation
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(b) Multifractality /Intermittency RS
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Fig. 8.2. The Devil’s staircase: an intermittent function.
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The Talbot effect

u(x,0) =27 i d(x — 2mk)

k=—o00
u(z, tpq) = Z e_ik2ﬁp/q+ilm
k=—o00
27‘(‘ = 2mm
U(T, tpq) = S‘ YG —p,m, q)0 az—27r/~c——q

k=—oco0 m=0

G is the Gauss sum |G| ~ V4



iLl = 2&2 hl(O) =0
hq (t) = CL2(1 + t2)
How small is a2 = [ |z|? |uo(z)|* dz = [ |€]? |Uo(€)|* dé ?
Heinsenberg uncertainty principle
2 > ﬁ
= 41

Minimizers are GGaussians !!



hs (t) =7

e Upper bound: persistence
o2
e fllg, < etllfllss

Scaling gives

Rs(t) < i (1 +12)°
Example w(z, 0) = e~ /2lel”
hs(t) = ca(1 4+ t2)°

e Is this a generic behaviour?

(Nahas-Ponce 2009)
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Lower bound

Theorem 1 (Static, Fractional Uncertainty Principle)
There exists a constant as > 0, for 0 < 0 < 1, such that

||fi|ﬁf=1 21 fllz2 g HD(SfHLQ(R”) = a;.

FEquality is attained and a minimaizer Qs can be chosen strictly pos-
itive and satisfying H|x\5Q5H2 — HD(SQ(;HQ. Any other minimizer
f is of the form f(x) = cA™?Qs(\x) for some A > 0 and |c| = 1.
Furthermore, Qs(x) ~ |x|~"*° for |z| > 1.
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Theorem 2 (Dynamical, Fractional Uncertainty Principle)

If f € 35(R™), for0 < <1, and ||f|l2 =1, then

9
as

2
IR 5 2112 14126
1102 (o) = (G 10715 0)

where ag is the constant in Th. 1. Furthermore, for any T # 0

hs[f1(0)hs[FUT) > a5|T[*,
with equality iof and only if
f(Qf) — Ce—ﬂ'i|x|2/T)\n/2Q5()\I)

for some A >0 and |c| = 1.



Proofs

(a) Theorem 1

Lemma The class X5(R"™) is a Hilbert space compactly embedded
in L*(R™); in particular,

2 2\ 2
£l < € (=Ll + 1D°f15) "
Furthermore, there exists a function Qs with ||Qs||, =1 such that

int || fllss, = ||@s]|s;-
||f||2:1H |25 = Q5|5

Lemma If [Qslls, = infyuy,—1 ulls, and [Qslls =1, then

D25Q5 + ‘ZIZ|25Q5 = 2&%@5.



Kaleta and Kulczycki proved that the ground state satisfies
Qs(x) ~1/|x|"™° (0 < § < 1) for |z| > 1.  (2010)

Qs = Qs (Long tails for Qs , @5) "



(b) Theorem 2

Proof. The solution v can be represented as

]. . 2 . 2 .
u(z,t) = ——7 el /t/f(y)emly| [t=2miwy [t gy, where Re Vit > 0.

(it)5

If we define g;(y) := f(y)em|y|2/t, then the solution can be written

as
1

By the uncertainty principle we have

w(z,t) = ™o /G, (2 /1),

ag < H|x‘59tH2 HDégtHQ = 1] ~"hs(0)2hs(1)7,

with equality if and only if g¢(x) = cA™2Qs(Ax) for some A > 0
and |c| = 1, so and referencia hold. This inequality implies the

lower bound

4
as

hs(t) 5 [t%°.
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Conclusion

o c_(1+12)0 < hs(t) < cp(1+12)°

e Gaussian hs(t) = cq(1 + t2)°

cG # C—, C4 =1

Q.— Are there fluctuations?



*k

k

*

n >3 hs(t) is convex for § > 1/2.

Decay hs (7);

hs(0)

d = 1,2 are the relevant ones.

We will focus our attention in d = 1.

Dirac comb

can be relevant.

Periodic case?

Fp(x) := Z d(x —m)

meZ



Renormalization

hs|Fp|] does not make sense, we are able to extend, after renor-
malization, the functional hs to periodic functions and then to the
Dirac comb. To approach the Dirac comb in R we use functions of
the form

fer s (@) 1= N (e22) Fey /|| Fy |l

where 1) is a smooth function with ¢(0) = 1, N., is chosen so that
Hf€1,€2H2 =1, and

F€1 (CE) - Z 51—16—71'((:1:—m)/<€1)2 _ Z e—w(slm)2627ri:cm.

meZ meZ

We prove that in the limit e — 0 (1 fixed) the function hs|f:, e,]
splits into a smooth background and an oscillating, periodic func-
tion that we call h, s[F:,]. In Figure 1 we can see how hs|fe, c,]
approaches, after renormalization, h, s|F¢,].



€1 :02, €9 =0.01 €1 =0.2, e =0.0001
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Figure 1: The red line is the plot of hs|fc, c,], for § = 0.25. The choice of €1 = 0.2
is due to the high computational cost of taking a smaller value of £; and then to
diminish es.




eo — 0

Theorem 3.

2b1 5 1
hp,s|Fp](2t) = — Mzg(zu +0) | > el (t)—
2 (p,q)=1
¢>0 odd
2(21+20 — 1) 92(1+9)
- Z 20+9) Oz () + 20+9) 02(t) |,
(p,a)=1 (p,q)=1
g=2 (mod 4) q=0 (mod 4)

where ((s) is the Riemann zeta function, and

| T'(20)
(2m)2° |T'(=0)|T'(6)

b1,s =



e; =0.0001
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Figure 2: Plot of h, s[F:,] when 6 = 0.25.
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Figure 3: Plot of Hs. Even though Hs has some symmetry, e.g. Hs(1 —t) =
cs — Hs(t—), the appearance of “unpredictable” large jumps resembles an a-Levy
process with small exponent «.




We define the spectrum of singularities dg,(7y) := dim F’,, where

F,:={t€][0,1)| Hs has Holder exponent v at t}.

Theorem 4. Let a:=1/(1+ ), then

dus(v) = ay, fory€0,1/a).

Jaffard proved (1999) that the spectrum of singularities of an a-
Levy process is almost surely

dal) = {ﬂo e

do () = —oo means that no point has Holder exponent ~.



About the proofs

(a) Theorem 3

; 2015 1
sl =g 201 D
1 27
Lemma
(25 ujp g for k € Z odd
1 | 420 1
Z ———1735 = \ 327 2_ddk g=zs  for k= 0(mod 4)
ml#mg |m1 mQ‘ d>0
m? —m2=k 0 for £k = 2 (mod 4)




(b) Theorem 4

e The point process D, =QnN|[0,1]

ps :QNJ[0,1) - X =R\ {0}.

e The counting function

N,(I,U) == |{t e D, NI | p(t) € U}.

o H(t+h) - H(t) = / YN, (I, dy)
R\ {0}

-/ N (1, [y,00)) — Ny (I, [~y —00))] dy.



Theorem For I C [0,1), the function
(N |ps(I,7r) := Ny, (I, ( — 00, —r| U |r, oo)), for r >0,
satisfies the bounds

(N, (I,1) < C’5|I\7°_1/(1+5) +1, all r <s 1,

1| 1
N I > /(1+3) Nr <s|J 2(1+9)
| ‘p&( 9 T) N5 log(c(s/T) r 9 a r N5 | ‘

+  Jarnik‘s theorem about the Hausdorff dimension of the “ir-
rationals”.
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