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(57) ABSTRACT

A computer-implemented method of simulating behaviour of
a thermodynamic system over time, the thermodynamic sys-
tem having a state described by collective vectors of position
and momentum at any given time and the method comprising
a momentum refreshment process, a conservative dynamics
process, and an acceptance/rejection process, wherein the
momentum refreshment process comprises mixing the col-
lective momentum vector with a noise vector; the conserva-
tive dynamics process comprises applying a mollified
impulse multiple time stepping conservative dynamics
method to a current state, in which process calculations for
forces corresponding to more slowly varying energy parts in
the thermodynamic system undergo an averaging procedure
and are carried out at a larger time step than calculations for
forces corresponding to more quickly varying energy parts;
and wherein the acceptance/rejection process is based on the
system energy and comprises accepting a current state or
returning a replacement state.
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METHOD, APPARATUS AND COMPUTER
PROGRAM FOR MULTIPLE TIME STEPPING
SIMULATION OF A THERMODYNAMIC
SYSTEM

FIELD OF THE INVENTION

[0001] The present invention relates to simulation of ther-
modynamic systems. In such simulations, physical character-
istics and changes in the system can be modelled. The inven-
tion has applications in the modelling of physical, chemical
and biological systems in particular. For example, embodi-
ments of the invention can use an atomistic model to represent
simple, complex and even extremely large biomolecular sys-
tems such as whole viruses. There are many applications for
such simulation, for example in biosciences, material sci-
ences and in public health and medicine.

BACKGROUND OF THE INVENTION

[0002] Molecular dynamics (MD) simulations provide
invaluable insight into the properties of biomolecular and
other complex systems such as macromolecular systems.
Some problems that are beyond experiment can only be tack-
led by simulation. Unfortunately, accurate simulations of
macromolecules are often computationally demanding and in
many cases are not feasible due to the large number of par-
ticles that involve complex and long-range interactions. New
approaches and improved computing platforms are needed to
enhance the reliability of macromolecular simulations and to
approach realistic time frames.

[0003] Biological and some other complex systems are
multi-scale in nature. For example, the dynamics of proteins
contain motions over different time scales, from atomic vibra-
tions in the order of femtoseconds to collective motions at
millisecond scales. FIG. 1 depicts the dynamics of molecules
such as protein molecules, to illustrate the variation in time
scales.

[0004] Traditional time stepping integrators (e.g. Verlet)
commonly used in molecular dynamics (MD) are not able to
address this time scale problem. A typical time-step for these
methods is 1 femtosecond. This makes atomistic simulation
of biomolecules computationally extremely expensive.
Multi-scale numerical methods, in which the presence of fast
scales does not affect the time integration of slow scales, are
urgently needed for efficient simulation of large biomolecular
systems. Such approaches, in theory, can essentially enhance
performance of molecular simulation since the most compu-
tationally expensive long-range electrostatic interactions
contribute to the dynamics on relatively long time scales
(compared with internal vibrations) and thus ideally do not
need to be calculated frequently. Also, such approaches
enhance the data locality which makes them better suited for
implementation on parallel computers than traditional MD
schemes.

[0005] Multiple-time-stepping (MTS) methods are among
the most popular methods of this type. In MTS methods,
savings of computational time can be realized if the slowly
varying forces due to distant interactions are held constant
over longer intervals than the more rapidly varying short-
range forces. Standard integration procedures in MD can then
be modified by evaluating the long-range forces less often
than the short-range terms. The ratio between frequencies of
evaluation of the long-range forces (outer step-size) and
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short-range forces (inner step-size) measures the gain in
simulation time and will be further referred as “the step-size
ratio”.

[0006] FIG. 2 is adiagramatic explanation of the M TS idea,
which splits the forces in a system into bonded “fast” forces
and long range non bonded “slow” forces (which tend to be
non-linear), evaluating the slow forces less frequently. For
this, multiple timestepping integrators are required to solve
modified ODEs (ordinary differential equations).

[0007] For biomolecular applications, the computational
complexity of the fast, short-range force evaluations scales
linearly in the number of atoms in the system, N, while it
scales quadratically in N for the slow, long-range force evalu-
ations. Furthermore, while the short-range fast forces are easy
to compute in parallel, long-range slow forces require global
data communication and hence are more difficult to parallel-
ize efficiently. Therefore, in theory, MTS methods can dra-
matically speed up MD simulations by reducing the number
of expensive slow force evaluations.

[0008] In practice, however, MTS methods such as the
popular Verlet-I/r-RESPA (Grubmiiller et al., 1991; Hum-
phreys et al., 1994) suffer from severe resonance instabilities
that limit practical performance gain (Ma et al., 2003; Izagu-
irre et al., 2001). For solvated biomolecular systems, one, for
example, has to update expensive slow forces only four times
less often than calculating cheap fast forces.

[0009] Another problem is that common time-stepping
methods do not exactly sample from the target temperature
even if the simulations are stable and are subject to a thermo-
stat (Pastor et al., 1988; Bond and Leimkuhler, 2007). The
resultant error can be controlled by increasing the frequency
of updating slow forces and, in fact, calculating them much
more often than required by stability considerations alone.
This obviously reduces computational efficiency.

[0010] These resonance induced instabilities of impulse
MTS methods have been reduced, through the introduction of
mollified MTS methods by Izaguirre et al., 1999, giving
improved linear stability by defining a slow part of potential
energy at a time-averaged position. Further improvements
have been achieved by weak coupling to a stochastic heat bath
(Langevin dynamics) (Izaguirre et al., 2001). However, accu-
rate simulations still put limits on the step-size ratio which to
weaken non-linear instabilities (slow forces) must be in the
range of 6-12 for solvated biomolecular systems (Izaguirre et
al., 1999, 2001). Moreover, these improved methods can suf-
fer from not reproducing system properties accurately and it
may still be necessary to chose simulation parameters very
carefully to provide a stable simulation.

[0011] Itisdesirable to provide a method and apparatus for
simulation which overcome or at least mitigate some of the
disadvantages of the prior art.

STATEMENTS OF THE INVENTION

[0012] The invention is defined in the independent claims,
to which reference should now be made. Advantageous pre-
ferred features are set out in the sub claims.

[0013] According to one preferred embodiment of the
invention there is provided a computer-implemented method
of simulating behaviour of a thermodynamic system over
time, the thermodynamic system having potential energy that
can be split into more quickly carrying parts and more slowly
carrying parts and having a state described by collective vec-
tors of position and momentum at any given time, the method
comprising a momentum refreshment process, a conservative
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dynamics process, and an acceptance/rejection process,
wherein the momentum refreshment process comprises mix-
ing the collective momentum vector with a noise vector;
wherein the conservative dynamics process comprises apply-
ing a mollified impulse multiple time stepping conservative
dynamics method to a current state, in which process calcu-
lations for forces corresponding to more slowly varying
energy parts in the thermodynamic system undergo an aver-
aging procedure and are carried out at a larger time step than
calculations for forces corresponding to more quickly vary-
ing energy parts; and wherein the acceptance/rejection pro-
cess is based on the system energy and comprises accepting a
current state or returning a replacement state.

[0014] The inventors have developed a novel method for
constant temperature molecular simulation of large systems,
embodiments of which can take advantage of the multi-scale
nature of the simulated systems and remove or at least miti-
gate some of the bottlenecks of existing multi-scale methods.
[0015] Embodiments of the invention are referred to as
MTS-GHMC (in which GHMC stands for Generalized
Hybrid Monte Carlo) and can provide accurate reproduction
of thermodynamic and dynamical properties; exact tempera-
ture control during simulation; and computational robustness
and efficiency.

[0016] More specifically, the embodiments of invention
allow recognition of a possible use of a Monte Carlo simula-
tion process (that is, a process with some stochastic random
input) in an MTS setting, leading to modification of the spe-
cific advantageous GHMC method of Akhmatskaya et al.,
2009 to provide the desired weak stochastic stabilization for
the MD multi-scale integrator to enhance computational per-
formance; and adaptation and implementation of a mollified
impulse MTS method in the Molecular Dynamics Monte
Carlo (MDMC) step of the GHMC method of Kennedy and
Pendleton, 2001; Horowitz, 1991; Akhmatskaya et al., 2009
to eliminate resonance induced instabilities.

[0017] The inventors have recognised that the problems in
the MTS prior art methods can surprisingly be addressed
using a different technique, in which molecular dynamics
simulation is interspersed with a momentum refreshment pro-
cess having a random (noise) element. The molecular dynam-
ics process (also referred to herein as conservative dynamics
to highlight that the systems modelled need not necessarily
divided into molecules) can be made more efficient by a
random momentum refreshment process which can help to
start the system development more quickly in a favourable
direction. This, combined with the improved linear stability
inherent in the technique can allow increases in efficiency by
reduction of the frequency of calculation of expensive slow
forces, an increase in stability and an increase in accuracy
since the additional functionality makes sure that the method
rigorously samples from the constant temperature ensemble.
[0018] The MTS-GHMC method comprises a momentum
refreshment process, a conservative dynamics process and an
acceptance/rejection process. The method can begin with
either the momentum refreshment process or conservative
dynamic process. It might give faster conversion to start the
method with a momentum refreshment process. In either
case, the resulting state of any process provides the current
state for the next process. Advantageously, the acceptance/
rejection process is carried out after the conservative dynam-
ics process and there is a single acceptance/rejection process
in the method. That is, no acceptance/rejection process is
required after the momentum refreshment process.
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[0019] The acceptance/rejection process itself may com-
prise any suitable acceptance rejection criterion such as a
Metropolis criterion. Preferably, if the system energy satisfies
agiven condition (for example is eftectively lowered) then the
results from the conservative dynamics process are accepted.
Preferably, if the criterion is not fulfilled, either the result of
the momentum refreshment process is accepted or a momen-
tum flip is implemented to provide the accepted state. These
two alternatives are suitable for different conditions. The
momentum flip alternative is preferred for sampling purposes
but can interfere with the dynamics of the underlying Lan-
gevin requirements. On the other hand, the momentum flip
can improve the acceptance rate. As long as the acceptance
rate without the momentum flip does not drop below a certain
threshold, the alternative without a momentum flip can
improve the accuracy and stability of a time-stepping method
without Metropolis correction, for example Langevin dynam-
ics, and can also reproduce dynamical properties faithfully.
[0020] The momentum refreshment process may be
repeated and the conservative dynamics process is highly
likely to be repeated as a multiple iteration process, in which
the entire process in question is repeated a number of times
consecutively to provide a final resulting state which can be
used as a current state for the next process. Usually, the
method as a whole is also repeated, for example so that the
results of the acceptance/rejection process are fed into the
momentum refreshment process in a further iteration of the
method.

[0021] Any suitable methodology can be used for combin-
ing the collective momentum vector with a noise vector in the
momentum refreshment process. In one suitable method, the
states in the method are denoted by Q,=(I",%t)%,i=0, ..., 1,
where 1 is a given integer, I',=(X,7, P,/)7, X, is a collective
vector of atomic positions, P, is a collective vector of atomic
momenta, and t, is time and the momentum refreshment pro-
cess comprises: given a current state Q~T,%, t)%, T ~(X7,
P, /)7, mixing its collective atomic momentum vector P, with
an independent and identically distributed normal noise vec-
tor Z, of dimension 3N, so that

P=cos(¢p)P+sin($p)E;

where i is a given integer, N is the number of particles in the
system, 0<¢=/2 is a given angle and E~N M| N fM™]
denotes the (3N)-dimensional normal distribution with zero
mean and covariance matrix M, M is the diagonal mass
matrix of the molecular system, and f=1/k;T is the inverse
temperature, the resulting state vector being denoted by Q,=(
T T~X" PH"

[0022] Turning to the conservative dynamics process, each
iteration of the process will usually include describing the
forces of the atoms of the molecules of the molecular system
using the chosen force field, integrating Newton’s equation to
predict the positions and velocities and recalculation of the
forces.

[0023] The multiple time stepping method is carried out so
that the calculations for more quickly varying forces (usually
those relating to forces over a shorter distance range) are
carried out more frequently than calculations for more slowly
varying forces. Preferably, the states in the method are
denoted by Q=T t,), i=0, . . ., I, where I is a given integer,
T~X,5P,57%, X, is a collective vector of atomic positions, P,
is a collective vector of atomic momenta, and t, is time and the
conservative dynamics process comprises: applying the mol-
lified multiple time stepping method to the current state ©,
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using a time-reversible and volume conserving mapping ¥_,
=LA, in T=(X”,P%)” and a resulting state defined by

éi(fiTxli‘”)Ta fi:lyx(fi)a

[0024] where >0 is a given integer and At is the larger
time step.

[0025] The mollified multiple time stepping method is
effectively a method which includes averaging to overcome
linear instabilities. This can be carried out by applying a
method as set out above, wherein the mollified multiple time
stepping method applies an operator A to a collective position
vector X and derives mollified slowly varying potential
energy U, ..~ related to the slowly varying potential

moll.y K
energy and yields F,, HySZOW wherein, preferably:
dZ
Mo X(0=
L pL
Z IS (1~ mADFSY (X (1) + Z 016, (t — nSOFF (X (1)),
m=0 n=0

for te[0,t'=LAt] with the slow forces defined by
Froty” ™ XA oy, (XA X) TFI(A(X)),

where M is a diagonal mass matrix of atomic masses, A (X)
denotes the Jacobian matrix of partial derivatives, the larger
time-step for more slowly varying forces F’** is At, the
smaller time-step for more quickly varying forces is F/***is dt,
8, is the Dirac delta function, ¢,,=d, =1 except when m=n=0 or
m=L, n=pL, respectively, in which case c,,=d, =%, and inte-
ger p>1.

[0026] Accordingly, the acceptance criterion also relates to
mollified values and preferably, the acceptance/rejection pro-
cess comprises testing a current state to find the next accepted
state Q,,, using a Metropolis accept/reject criterion

0 { €y with probability min(1, exp(— SAHoi )
i+l =

o otherwise,
with

AHpotty 2= Huotty (1) = Hpotty (T5),

in which Q,” indicates applying a momentum flip to the state
Q, and Q,*=Q, and indicates that no momentum flip has been
applied.

[0027] Since mollified terms are used, the calculated prop-
erties are preferably recalculated at the end of the entire
method (that is after all the iterations of the full method) to
allow for the use of mollified terms.

[0028] In order to use the method on a computer initial
conditions and parameters need to be entered by manually or
automatically. Thus the method preferably includes a step of
initially accepting input of simulation conditions, wherein the
simulation conditions include at least one of volume, mass,
temperature, pressure, number of particles, and total energy;
and/or a step of initially accepting input of simulation param-
eters, wherein the simulation parameters include at least one
of a number of repetitions of the momentum refreshment
process and a number of repetitions of the conservative
dynamics process, the larger and smaller time steps in con-
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servative dynamics, the number of iterations of the entire
method, the current state for the first step in the method, the
force field parameters, a time-reversible and volume conserv-
ing mapping W, and a constant angle ¢, where 0<¢=m/2 .
[0029] At the end of the method, the results can be dis-
played on a screen or printout.
[0030] To put the method into the context of the full simu-
lation, a method of molecular simulation of a system over
time may comprise the steps of modelling the system using an
atomistic model; carrying out the method of simulating
behaviour of a thermodynamic system as set out above and
analysing the results obtained from the simulation and relat-
ing them to macroscopic level properties.
[0031] After the system has been modelled, the results of
the modelling can be related to the macroscopic properties
allowing assessment and optionally also modification of the
system at a microscopic level. The method can then be
repeated on the modified system.
[0032] Embodiments of another aspect of the invention
provide an apparatus which simulates behaviour of a thermo-
dynamic system over time, the thermodynamic system hav-
ing potential energy that can be split into more quickly vary-
ing parts and more slowly varying parts, and having a state
described by collective vectors of position and momentum at
any given time, the apparatus comprising a momentum
refreshment processing part, a conservative dynamics pro-
cessing part, and an acceptance/rejection processing part,
wherein the momentum refreshment processing part com-
prises functionality for mixing the collective momentum vec-
tor with a noise vector; the conservative dynamics processing
part comprises functionality for applying a mollified impulse
multiple time stepping conservative dynamics method to a
current state, in which calculations for forces corresponding
to more slowly varying energy parts in the thermodynamic
system undergo an averaging procedure and are carried out at
a larger time step than calculations for forces corresponding
to more quickly varying energy parts; and wherein the accep-
tance/rejection processing part comprises functionality based
on the system energy for accepting a current state or returning
a replacement state.
[0033] The preferred features of the above method state-
ments are also applicable to this apparatus aspect.
[0034] The method is preferably carried out by a computer
or computer network, the specification and arrangement of
such computing functionality being well known to a person
skilled in the art of molecular simulation.
[0035] The present invention can be implemented to give
many advantages over the prior art methods for simulating
multi-scale systems, for example over a range of thermody-
namic ensembles such as NPT and NVT ensembles.
[0036] In more detail, embodiments of the invention can:

[0037] 1. enable efficient detailed atomistic simulations

of extremely large macromolecular systems which are
not possible with existing simulation methods;

[0038] 2. offer the following advantages over existing

MTS implementations:

[0039] Stability: MTS-GHMC is always stable while
other MTS methods suffer from resonance or non-
resonance induced instabilities.

[0040] Accuracy: MTS-GHMC rigorously samples
from the constant temperature ensemble in contrast to
existing MTS methods.

[0041] Efficiency: MTS-GHMC is able to reduce the
frequency of calculation of expensive slow forces by
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a factor of ~20 compared with traditional MD meth-
ods and by a factor of ~2 over the best performing
MTS approaches.

[0042] Applicability: MTS-GHMC is considerably
more efficient than standard techniques when applied
to awide range of atomistic models: from very simple
ones to extremely large biomolecular systems (e.g.
whole viruses). The results may prove to be a valuable
contribution in materials science and biosciences and
eventually contribute to public health and medicine.

[0043] 3. be amenable to massively parallel computing.
[0044] The state of the art and invention will now be
explained with reference to specific examples and drawings,
in which:

[0045] FIG.1 is a schematic diagram depicting the dynam-
ics of molecules such as protein molecules;

[0046] FIG. 2 is a diagrammatic explanation of the MTS
general methodology;

[0047] FIG. 3 is aflow chart representing a general embodi-
ment;
[0048] FIG. 4 is a plot of mean energy against effective

outer step size for MTS LD and MTS GHMC; and
[0049] FIG. 5 is a graph showing the autocorrelation func-
tions of diatomic center of mass velocities.

GENERAL EMBODIMENT

[0050] FIG. 3 shows an outline embodiment of the inven-
tion. There is a momentum refreshment process, followed by
an MTS conservative dynamics process and then the results
are tested. If they are accepted, the test procedure returns the
results as is; if they are rejected the test procedure returns the
state after the momentum refreshment process, with or with-
out a momentum flip. The entire method can be repeated.
[0051] The following sections are directed to the math-
ematical derivation and application of the MTS GHMC
method.

PROBLEM STATEMENT AND PROPOSED
METHODOLOGY

[0052] Molecular dynamics (MD) requires the solution of
Newton’s equations of motion for a classical unconstrained
simulation

M
=-VU(X),

dZ
M—X
dr
where M is a diagonal mass matrix of atomic masses, X is the
collective atomic position vector, U is the potential energy,

typically given by

U=ponded  ppronbonded. o)
yponded g foond , [ pngle g phihedral g fimproper 3)
gronbonded_ fLennard-Jones [ pelectrosiatics @)

and the gradient vector —AU(X) is the force. Let N denote the
number of atoms of the molecular model. Then the compu-
tational complexity of bonded interactions is proportional to
N while it scales with N for non-bonded interactions. Simple
cut-oft schemes have been devised to reduce the computa-
tional cost of non-bonded interactions. But it has also been
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found that cut-off schemes lead to poor approximations for
highly charged systems such as biomolecular systems
(Schlick, 2002).

[0053] MD simulations are typically performed either
under constant number of particles N, volume V and tempera-
ture T (NVT ensembles) or under constant number of par-
ticles N, pressure @ and temperature T (N @ T ensembles).
Various techniques have been proposed to perform such
ensemble simulations (see, e.g., Allen & Tildesley, 1987). In
the following, we will focus on NVT ensemble simulations
and will use Langevin dynamics to control temperature, but
the conclusions apply analogously to N@ T and other
ensembles. Details will be given later.

[0054] Throughout, we use the following conventions. We
assume that collective atomic position vector X and the col-
lective atomic momentum vector P=MX are column vectors
of length 3N. We also introduce the state vector I'=(X,P7)%,
which is a column vector of length 6N, and the collective
atomic velocity vector V=M™'P=X. Here Y7 denotes the
transpose of a vector Y, i.e., Y7 is a row vector ifY is a column
vector and vice versa.

[0055] Expectation values from a NVT ensemble are char-
acterized by the canonical distribution

Peanon®@exp(~BH), ®

where f=1/k;T is the inverse temperature and H is the total
energy, which in turn is defined by

H{I) = %PTM’1P+ U(X). ©

[0056] We introduce the following notation. Given a func-
tion f of the state variable T', we denote its expectation value
with respect to p_,,,.,, bY

E[SIHSD)Peanon)el M

[0057] Under the assumption of ergodicity, the ensemble
average (7) can be replaced by a time-average along trajec-
tories from a MD simulation under the NVT ensemble and
one obtains

1 ®
£1f)= Jim 1 [ o,

which forms the base of computing expectation values from
MD simulations. Typical quantities of interest include expec-
tation values for energies and velocity autocorrelation func-
tions (Allen & Tildesley, 1987).

[0058] Theapproximate computation of expectation values
using (8) requires performing MD simulations over time
intervals [0,t'] with t' as large as possible. The length of a MD
simulation is, on the other hand, limited by the length of the
time-step that can be used. Making use of the multi-scale
structure of the molecular force fields, MD simulations have
been greatly accelerated by the use of multiple-time-stepping
(MTS) methods, such as the Verlet-1/r--RESPA method (Grub-
miiller et al., 1991; Humphreys et al., 1994), which is based
on approximating “slow” forces as widely separated
impulses. One derives impulse MTS methods by first rewrit-
ing (1) as



US 2011/0010145 Al

d4? (©)]
— fast slow
MWX_Ff "(X) + Fov(X),

where F*=_AU/** and Fs"=—AU" subject to U=U/*"4
U**, The partitioning of the potential U into a “fast” part
U* and a “slow” part U**®" is done such that
[0059] an appropriate outer (larger) time-step At for the
slow part is significantly larger than an inner (smaller)
time-step Ot for the fast part,
[0060] evaluations of the fast force field F*** are compu-
tationally much less expensive than evaluations of F*°*.
[0061] Givenan integer p>1 such that the outer time-step At
and the inner time-step Ot satisfy At=pdt, an impulse MTS
method can now be stated as

d4? (10)
M——=X(0)=
L pL
Z A8, (1 — mADF (X (1)) + Z 816, (1 — nODFF (X (1),
m=0 n=0

for te[0,t'=LAt], 9§, is the Dirac delta function, and c,=d =1
except when m=n=0 or m=L, n=pL, respectively, in which
case ¢, =d,=%5. Analytic solutions to (10) (i.e., numerical
approximations to (1)) can be found by integrating (10) twice
with respect to time. See Appendix A for more details.
[0062] MTS methods, such as (10), can dramatically speed
up MD simulations since the expensive force field evaluations
F*°* need to be performed only at the larger outer time-step
At. In this context, note that, for biomolecular applications,
the computational complexity of the fast force field evalua-
tions scales linearly in the number of atoms N while it scales
quadratically in N for the slow force field evaluations. Fur-
thermore, while the short-ranged fast forces are easy to com-
pute in parallel, long-ranged slow forces require global data
communication and hence are more difficult to parallelize
efficiently.

[0063] However, the impulse MTS method (10) suffers
from resonance instabilities. For solvated biomolecular sys-
tems, one, for example, has to restrict the time step-ratio
p=At/dtto p=4 with an inner time-step of t=1 fs (Izaguirre et
al., 1999).

[0064] Another problem is that common time-stepping
methods do not exactly sample from the target temperature T
even if the simulations are stable and are subject to a thermo-
stat (Pastor et al., 1988; Bond and Leimkuhler, 2007). This
error can be controlled by making the step-size At sufficiently
small and, in particular, much smaller than required by sta-
bility considerations alone. However, reducing At also
reduces computational efficiency.

[0065] Recentresearch has partially resolved some ofthese
issues. On the one hand, resonance induced instabilities of
impulse MTS methods have been eliminated through the
introduction of mollified MTS methods (in which the “slow”
parts are effectively averaged) by Izaguirre et al., 1999. Fur-
ther improvements have been achieved by weak coupling to a
stochastic heat bath (Langevin dynamics) (Izaguirre et al.,
2001). However, accurate simulations still require a step-size
ratio p=At/dt in the range of p=6, . . . , 12 for solvated
biomolecular systems (Izaguirre et al., 1999, 2001).
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[0066] Here we have recognised that a different technique
can be of use for MTS methods and propose to apply and
extend the GHMC method such that a thermodynamically
consistent weak stochastic stabilization of mollified MTS
methods can be achieved. We will demonstrate that the com-
bined MTS-GHMC method results in an improved stability of
MTS methods, including mollified and statistically stabilised
methods.

[0067] In the following section, we summarize the
improved MTS methods of Izaguirre et al., 1999, 2001.

Mollified Multiple-Time-Stepping Methods

[0068] We first summarize the basic results of [zaguirre et
al., 1999 and suggest an improved force field mollification
based on the concept of soft constraints, as introduced by
Zhou et al., 2000.

[0069] Constant Energy Mollified MTS Method

[0070] Let r;Z0 denote the distance between atom i and
atom j. The switching function S serves to split non-bonded

interactions into slow and fast parts. It is defined by

0 if rij > Feutofr » (11
1 if rij < Fons
Sirij) =
(rgutojf - rizj)(rzmoﬁ + 2rizj - 3r§n)

) if Fon <75 < Feutoff»
cutoff on

for given cutoff radius r,,,, -and transition interval defined by
[£05T gl - Given a potential energy U with entries defined by
(2)-(4) we now define the “fast” potential by

[fast: l}bonded+l/nonbondeds (1 2)

and the slow contribution by

[/slow: [}nonbonded_ [}nonbondedS. (1 3)
[0071] Mollified MTS methods are now defined by an
operator

X=4(X) (14)

which assigns a filtered, averaged position X to an instanta-
neous collective atomic position vector X. The averaging
operator is then applied to the slow potential to yield a mol-
lified slow potential

Upory”™ (X)=U (4(X)). (15)

[0072] The mollified impulse MTS method of [zaguirre et
al., 1999 is now given by

d4? (16)
M= X0 =
L pL
Z I8 (1 - mADFSSY (X (1) + Z 816, (1 — ndDFFS' (X (1),
m=0 n=0

for te[0,t'=LAt] with the slow forces defined by
Froty” ™ X0 AU o, (XA f XY FI(A(X)), a7

where A (X) denotes the Jacobian matrix of partial deriva-
tives. The coefficient c,, and d,, take values as defined for (10).
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[0073] One notes that (16) can be viewed as a standard
impulse MTS method (10) applied to a “mollified” molecular
system defined by the energy functional

18)

_ l T -1 fast slow
Hypoiy (1) = 2P M 7P+ U (X)+ Umouy(X).

[0074] The assumption is, of course, that the difference
between (6) and (18) is small. Nevertheless the difference
between Hand H,,,;,, has to be kept in mind and we will come
back to this issue when putting (16) into the context of gen-
eralized hybrid Monte Carlo (GHMC) methods (Kennedy
and Pendleton, 2001; Horowitz, 1991; Akhmatskaya et al.,
2009).

[0075] Two particular instances of averaging operators A
have been presented in Izaguirre at al., 1999. While both
operators can be used in the context of the newly proposed
MTS-GHMC method, we focus here on the Equilibrium
method, which has been shown to lead to the most stable
variant of (16) (Izaguirre at al., 1999, 2001). Let us write the
bond stretching and bond bending potentials as

ybord x4 pemete (x) = %g(X)TKg(X), (19)

where K is diagonal matrix of force constants and g(X) is a
vector of independent bond constraints (stretches and bends).
Let us denote the Jacobian matrix of partial derivatives g(X)
by G(X). The averaging operator X=A(X) for the method
Equilibrium is defined by the implicit system of equations

X=X-M"'G(X)Tp (20)

0=g(X) @D

in the vector of Lagrange multipliers p. Details of the imple-
mentation of Equilibrium can be found in Izaguirre at al.,
1999, which is incorporated herein by reference.

[0076] It has been demonstrated by Zhou et al., 2000 that
the averaged positions X are better characterized by soft
constraints, i.e., (21) should be replaced by

0=GX)M VU= (X). (22)

[0077] 1Inother words, X is now defined as the minimizing
state for the potential energy U along M™'G(X)”.

[0078] Langevin Stabilization

[0079] The stochastically stabilized and mollified MTS
methods of Izaguirre et al., 2001 are based on the regular
Langevin equations

AP==NV U, 1, (X)dt=YPdr+\ 2yl TMY2dW(D), dX=M"
1Pdt, (23)

applied to the mollified potential energy
Upnotn™ URsty. UmollySlow' (24)

[0080] Herey is the collision frequency, W(t) is a vector of
independent standard Wiener processes, kj is the Boltzmann
constant, and T is the target temperature.

[0081] Ofcourse (23) can also be applied for MTS methods
without mollification.

[0082] The collision frequency y should be chosen suffi-
ciently small to not alter dynamic properties of the molecular
system. It has been demonstrated in Izaguirre et al., 2001 that
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v=0.2 ps~! is suitable for simulations of solvated biomolecu-
lar systems. Further implementation details can be found in
Izaguirre et al., 2001. For our numerical experiments we use
aparticular implementation described in Section 4.2, which is
closely related to the newly proposed MTS-GHMC method.
[0083] The MTS-GHMC method is described in the next
section.

Multiple-Time-Stepping Generalized Hybrid Monte
Carlo Method

[0084] The proposed simulation method takes a hybrid
Monte Carlo (GHMC) method (Kennedy and Pendleton,
2001; Horowitz, 1991) as a starting point. GHMC is a rigor-
ous sampling tool for molecular systems. As such, GHMC
can be used, for example, to compute free energies and to find
molecular conformations with applications to drug design.
[0085] It has also been demonstrated (Akhmatskaya et al.,
2009) that GHMC can be implemented without a momentum
flip upon rejection of the molecular dynamics proposal step.
While the standard GHMC method with momentum flip is to
be preferred for sampling purposes, momentum flips interfere
strongly with the dynamics of the underlying LLangevin equa-
tions, as demonstrated in Akhmatskaya et al., 2009, and
dynamic properties need to be computed by other means.
Provided that the acceptance rate in a GHMC implementation
without momentum flip does not drop below a certain thresh-
old, GHMC without flip improves the accuracy as well as the
stability of a time-stepping method without Metropolis cor-
rection and can reproduce dynamical properties faithfully.
[0086] We now demonstrate how to combine GHMC with
amollified MTS method (but note that a combination with an
MTS method without mollified terms is also possible). To do
s0, we assume that a splitting of the potential energy function
U into a fast contribution (12) and a slow contribution (13) is
given. We also assume that an averaging operator (14) has
been defined, which implies a mollified slow potential (15)
and a mollified total energy (18).

MTS-GHMC: Algorithmic Summary of One Embodiment

[0087] The generalized hybrid Monte Carlo (GHMC) algo-
rithm of Horowitz, 1991 and Kennedy and Pendleton, 2001
for sampling from the canonical ensemble (5) is defined as the
concatenation of two MCMC (Markov chain Monte Carlo)
steps: a molecular dynamics Monte Carlo (MDMC) and a
partial momentum refreshment Monte Carlo (PMMC) step.
Two key novel steps of this proposed MTS-GHMC method
are the optional elimination of the momentum flip (Akh-
matskaya et al., 2009) and the implementation of an MTS
method in the MDMC step, provided here with mollified
terms. We now summarize the proposed MTS-GHMC
method.

[0088] The accepted states of the MTS-GHMC method are
denoted by Q1,7 t)%,i=0, ..., I, where I =(X,",P,/)", X, is
a collective vector of atomic positions, P, is a collective vector
of atomic momenta, and t, is time.

[0089] Partial Momentum Refreshment Monte Carlo
(PMMC)
[0090] Given an accepted (or starting) state Q,~(I"/%,t,)%,

=X P57, its collective atomic momentum vector P, is
now mixed with an independent and identically distributed
normal (Gaussian) noise vector =, of dimension 3N and the
partial momentum refreshment step is given by

Pcos(¢p)Pr+sin(9)Z; (25)
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where 0<¢=n/2 is a given angle and E~N pM™']. Here
N B'] denotes the (3N)-dimensional normal distribution
with zero mean and covariance matrix fM™!, M is the diago-
nal mass matrix of the molecular system, f=1/k;T is the
inverse temperature. Denote the new state vector by Q,"=(
T7t), T~X,5P,5HT and introduce Q, =T, %t)%, T, =(X,5,-
P,5)%. The skilled person will appreciate that the dynamic is
only weakly affected and that no acceptance/rejection step is
required.
[0091] Molecular Dynamics Monte Carlo (MDMC) Pro-
posed Step
[0092] This step consists of the following two sub-steps.
[0093] Molecular dynamics (MD). We apply the molli-
fied impulse MTS method (16) to the current state ©Q,. As
shown in Appendix A, (16) gives rise to atime-reversible
and volume conserving mapping W, T=LAt, in T=(X7,
P%) and a proposal state is defined by

éi:(fiTxl‘H)Ta fi:lyx(fi)a (26)

[0094] where L.>0 is a given integer.

[0095] Monte Carlo (MC). The next accepted state 2,
is found through a Metropolis accept/reject criterion

a ) with probability min(1, exp(— BAHe)) @n
e o otherwise,
with
AHpotty 2= Huotty (1) = Hpotty (T5), (28)
[0096] the energy H,,,;, is defined by (18). Depending

on the implementation—either without flip or with
flip—C,* or Q; are used in (27) respectively.
[0097] Remarks
[0098] We wish to point out that the collective vector of
atomic positions X, as well as time t, remain unchanged from
Q, to Q,,, in case of rejection of the MDMC proposal step.
[0099] The free parameters of the MTS-GHMC scheme
include the angle ¢ in (25), the outer step-size At and the
number of outer time-steps L. We will always assume that

=V 2ye<<L. (29)
[0100] Here y>0 is the collision frequency of an underlying

Langevin model (23) and t=AtL. Throughout this section we
will use L=1.

[0101] We note that (25) and (26) without the single
Metropolis accept/reject step after the MD sub-step (i.e., with
all MD proposal steps being accepted) yield a standard mul-
tiple time-stepping method for the underlying Langevin
equations (23). Other related methods have been discussed in
Izaguirre et al., 2001. The Metropolis test (27) turns (25)-(26)
into a thermodynamically consistent implementation of sto-
chastically stabilized and mollified MTS methods. See also
Akhmatskaya et al., 2009 for a more detailed discussion on
the relation between Langevin dynamics (23) and GHMC
without momentum flip.

Data Analysis

[0102] Let {Q,},_,” denote a sequence of accepted states
from a MTS-GHMC simulation with Q=T %,t)" and I',=
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X,5.P,5)T. Expectation values of a function f(I') with respect
to the canonical density (5) are computed according to the
formula

! (30)
Z wi f([;)
=2

wi

T~

with weight factors
0=exp(=BHT )~H,,,011,(T1)). €29)

[0103] Provided the MTS-GHMC method generates an
ergodic Markov chain for the given molecular system, we
have

Lim (f) = E[f] (32

independent of the specific parameter values of the imple-
mented MTS-GHMC method (Liu, 2001).
[0104] In our numerical experiments we will compute
expectation value forkinetic and total energy as well as veloc-
ity autocorrelation functions (ACF).
[0105] Expectation values of the latter are defined as fol-
lows. Given a fixed time t>0, solutions of (1) introduce a map
from initial states 1'(0) to the evolved states I'(t) at time t. This
map is called the time—t—flow map and we denote it by @,
ie.

L= (0). (33)

[0106] Given the flow map, we can, for example, consider
the expectation value

(B4

1 T
E[Cc] = o | V'V (D)peanon (D)dT

T 3N

fort=0 and with the collective atomic velocity vectors V=M~
1P and V(t)=M~'P(t) defined through (X7 ,P¥)"=T and (X(t)
TP()"Y'=I'(1)=®,_(I') respectively. We recall that N
denotes the number of atoms. In practice the velocity ACF
E[C,] is computed along trajectories of (23) using

1 . (35)
—f Vi)' Vie+ndr
0

E[C] = 5 Jim

(Allen and Tildesley, 1987).

[0107] In the context of MTS-GHMC, approximations to
the velocity ACF (35) are computed using the following
approach. Assume that T in (35) is a multiple of LAt. Then,
givenindicesi=1 . ..,I', we denote by j(i) the smallest integer
j>isuchthatt~t=t. Here I'<I is chosen such that j(i) exists for
alli=1, ..., I The approximate velocity ACF is now defined

by
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v (36)
>owivl Vi
) o 13
< r) = m I .
2w
i=1
[0108] Note that we do not have
lim (Cr) = E[Cr] 37
>0

since the MTS-GHMC method provides only approximations
to the exact flow map (33) unless we also let At—0. The effect
of finite step-sizes needs to be assessed by numerical experi-
ments.

Model System and Numerical Results

[0109] Description of Model System in One Embodiment
We consider a one-dimensional chain of diatomic molecules
interacting through Lennard-Jones potentials. One-dimen-
sional test problems such as the one considered here have
been widely used to test MTS algorithms (see, for example,
Hairer et al., 2002).

[0110] We now describe the model system in more detail.
All quantities are treated as dimensionless. Each particle/
atom has mass m=0.5, position y,€[0,1] and velocity v,eR. We
assume periodic boundary conditions over a domain of length
1=20 and set the number of particles to N=20 (i.e., we consider
10 diatomic molecules). The potential energy of the system is
given by

UX) = (38)

N2

N
K o 12 o 6
3;”““_xz"'_l)2+222[(|xi—xj|] _(|x;—xj|] }

=1 jen()

where n(i) contains the indices of the (N-3) nearest non-
bonded neighbors of particle i, 0°=Y5, and K=1.5421e+05.
[0111] Note that the frequency of the fast diatomic bond
vibrations is given by

0=V 2K/m~785.3982. (39)

[0112] This frequency has been chosen such that the linear
stability limit of the standard Stoérmer-Verlet method is At=2/
®=~0.0025 and the first numerical resonance of the standard
MTS method occurs at At=qt/=0.004 (Izaguirre et al., 1999).
Hence our model system qualitatively mimics the stability
limits found for MTS methods applied to solvated biomo-
lecular systems (Izaguirre et al., 1999) with one dimension-
less time unit corresponding to one picosecond. We will use
this (formal) association of dimensionless “model” time with
“real” time throughout this section.

[0113] Furthermore, the stability limit of the Stérmer-Ver-
let method applied to the Lennard-Jones interactions alone
was found numerically to be around At=0.015 ps. We note that
this stability limit is of the same order of magnitude as the
achievable outer step-sizes reported by Izaguirre et al., 2001
for Langevin stabilized and mollified MTS methods. It
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should, however, be kept in mind that the large time-step
behavior of biomolecular simulations is much more complex
than what our model system can represent.

[0114] We perform constant NVT simulations at p=1/
kzT=1 using the proposed embodiment of the MTS-GHMC
method implemented without momentum flip and compare
the results to Langevin stabilized MTS simulations (MTS-
LD). Following Izaguirre et al., 2001, the collision frequency
is y=0.2 ps~* in all cases. The slow and fast potential energy
contributions are defined by the stift bonded interactions and
the Lennard-Jones interactions, respectively. We monitor the
mean kinetic and total energies as well as the velocity ACF for
the center of mass motion of the diatomic molecules. In case
of MTS-GHMC we also collect the acceptance rates (AR) in
the Metropolis accept/reject criterion (27).

TABLE 1
outer step- numerical numerical

Method size <H> temperature AR
MTS- 10 fs 29.1690 1.0045 96%
GHMC

MTS-GHMC 12 fs 29.2516 1.0001 95%
MTS-GHMC 14 fs 29.1168 0.9998 90%
MTS-GHMC 16 fs 29.6510 1.0097 85%
MTS-GHMC 18 fs 29.7806 1.0203 76%
MTS-GHMC 20 fs 30.1491 1.0270 66%
MTS-GHMC 22 fs 30.9180 1.0533 55%
MTS-LD 10 fs 29.3044 1.0041 NA

[0115] InTable 1 we compare averages of total energy and
computed temperatures (from the mean kinetic energy) for
MTS-GHMC and MTS-LD simulations as a function of the
outer time-step. The inner time-step is 8t=0.25 fs for all
simulations. We also report Metropolis acceptance rates (AR)
in case of MTS-GHMC. The target temperature is T=1 and
the reference simulation LD gave an averaged total energy of
(H)=29.4121. All reported results are within 5% of these
reference value except for MTS-GHMC with an outer time-
step of At=22 fs. All outer time-steps equal or less than 22 fs
lead to an acceptance rate above 50%.

[0116] FIG. 4 shows the effective outer step size (taking the
acceptance rate into account for the MTS-GHMC method)
plotted against mean energy as Numerical (N) for MTS LD
and MTS GHMC. The largest achievable outer step-size for
MTS-LD is At=10 fs whereas for MTS-GHMC it can be
increased to 20 fs. Due to non-100% acceptance rate this
corresponds to an effective outer step-size of 12.7 fs. MTS-
GHMC reproduces the mean energy and temperatures within
5% of the reference values for outer step-sizes of up to 20 fs.
[0117] FIG. 5 shows the Autocorrelation functions (ACFs)
of diatomic center of mass velocities for MTS-GHMC as a
function of the outer time-step At. Given the fact that we cover
a relative large range of time-steps beyond the stability limit
of MTS-LD, the computed ACFs agree remarkably well. The
corresponding ACF for MTS-LD with At=10 fs and the ACF
from the small time-step reference simulation LD are also
provided for comparison.

[0118] Numerical Results

[0119] We first implemented the standard Stérmer-Verlet
method (Allen and Tildesley, 1987; Hairer et al., 2002) and
verified numerically that the method is stable for At=2 fs
while being unstable for At=3 fs. A numerical reference solu-
tion was then computed using a Langevin dynamics imple-
mentation of Stormer-Verlet with At=0.25 fs, collision fre-
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quency y=0.2 ps~!, and inverse temperature f=1. We will use

the abbreviation LD to refer to this reference simulation.
[0120] Next we implemented the standard M TS method of
Grubmiiller et al., 1991 and Humphreys et al., 1994 with an
inner time-step of 3t=0.25 fs. Simulations were run over a
time-interval of ten microseconds. A significant (but
bounded) drift in energy was observed for an outer time-step
of At=4 fs. Even worse, an unbounded increase in energy was
observed at the second numerical resonance, i.e., for At=8 fs.
This resonance instability could not be overcome by Lan-
gevin stabilization. We also implemented MTS-GHMC with
anon-mollified force field and observed an acceptance rate as
low as 2% in the Metropolis test (27) for an outer time-step of
At=8 fs. This confirms the findings of Izaguirre et al. (1999,
2001) that the achievable outer step-sizes of standard MTS
implementations are limited by numerical resonances (and
not by accuracy considerations).

[0121] We finally implemented the mollified MTS method
Equilibrium, as described in Section 3.1, with the switching
function S being set identical equal to zero, i.e., all Lennard-
Jones interactions are treated as slow. Again an inner time-
step of 8t=0.25 fs has been used, the number L. of MTS-MD
steps within a single MTS-GHMC step was set equal to =1,
the inverse temperature was =1, and the collision frequency

was y=0.2 ps~!, i.e., 9=V 0.4At in (25). For numerical com-
parison, we also implemented a Langevin stabilized and mol-
lified MTS method using identical parameter settings (see
Remarks section, above). We will use the abbreviations MTS-
GHMC and MTS-LD to refer to the corresponding numerical
results. The number of outer time-steps/samples for MTS-
LD/MTS-GHMC was set equal to the integer closest to 10
microseconds divided by the outer step-size At.

[0122] We found that the largest achievable outer time-step
for MTS-LD is At=10 fs. This might be surprising at the first
glance since constant energy simulations with L.ennard-Jones
interactions alone allowed for a larger time-step of At=15 fs.
However, one has to keep in mind that thermostatted MD
simulations lead to relatively large fluctuations in instanta-
neous values of total energy which allow for rare high energy
Lennard-Jones collisions. These collisions can destabilize
MTS-LD. Hence the achievable outer step-size of MTS-LD is
determined by stability and not by accuracy of the method.
MTS-GHMC, on the contrary, was found to be stable for all
implemented outer step-sizes. Given that errors in mean total
energy and in the computational temperature should not
exceed 5% of the reference values and that the acceptance rate
should stay above 50%, we found that the largest acceptable
outer time-step of MTS-GHMC is At=20 fs. See Table 1 for
the computed values of mean total energy, temperature and
acceptance rates of MD proposal steps. Note that the com-
puted mean energy and temperature converge to the exact
values as the number of MTS-GHMC steps is increased (as-
suming ergodicity of the induced Markov chain (Liu, 2001)).
To get a better impression on the accuracy of MTS-GHMC as
a function of the outer time-step we also computed the center
of' mass velocity ACFs. See FIG. 5. We find excellent agree-
ment between MTS-LD and MTS-GHMC for At=10 fs. For
values larger than At=16 fs, the computed ACFs for MTS-
GHMC become increasingly inaccurate. In summary, we
may conclude that the achievable outer time-step of MTS-
GHMC is determined by accuracy considerations alone.

CONCLUSIONS

[0123] Here we summarize the main findings from our
numerical experiments for this particular embodiment. We
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have found that both MTS-LD and MTS-GHMC successfully
avoid resonance induced instabilities of standard MTS imple-
mentations. The achievable outer-step size of MTS-LD is
limited by rare but strong Lennard-Jones collisions which
induce numerical blow-up. For our model system the largest
achievable outer step-size for MTS-LD is At=10 fs. Stable
MTS-LD simulations reproduced the mean energy and the
target temperature remarkably well. On the other hand, MTS-
GHMC always resulted in bounded (i.e., stable) simulations
even for very large outer step-sizes. However, the acceptance
rate drops below 70% for step-sizes larger than 18 fs and
below 50% for step-sizes larger than 22 fs. We also computed
the ACFs for the center of mass velocities of the diatomic
molecules and found good agreement with the reference solu-
tion. The agreement deteriorates somewhat for outer step-
sizes larger than 16 fs.

[0124] In conclusion, the key advantages of this embodi-
ment of MTS-GHMC over MTS-LD are as follows (ordered
by importance):

[0125] Stability: MTS-GHMC is always stable while
MTS-LD encounters blow-ups due to rare events involv-
ing very strong Lennard-Jones interactions.

[0126] Accuracy: Assuming ergodicity, MTS-GHMC
converges rigorously to the NVT ensemble as the num-
ber of samples increases. Accurate computations of
time-dependent quantities such as ACF place an upper
bound on the achievable outer time-step. Those upper
bounds are larger than the stability bound on MTS-LD.

[0127] Efficiency: The outer time-step of MTS-GHMC
can be increased by a factor of about 1.6-2.0 over MTS-
LD. However, an increase of step-sizes leads to an
increase in Metropolis rejection rates. Hence the effec-
tive (sampling) efficiency gain is lower than the gain
determined by step-size ratios alone. A natural measure
for efficiency is given by the ratio of an effective step-
size At ~AtxAR/100 for MTS-GHMC to the largest
achievable outer step-size for MTS-L.D, which is 10 fs
for our model system. Here AR is a Metropolis accep-
tance rate. Using the data from Table 1, we find At,~14
fs and, hence, an efficiency gain is about of 1.4. There are
limitations of our model system compared to biomo-
lecular simulations that need to be pointed out clearly. In
particular, numerical evidence suggests that the achiev-
able outer step-size of mollified MTS methods is limited
by resonance instabilities at about 8 fs for explicit water
simulations (Izaguirre et al.,, 1999). Additional reso-
nance instabilities are found for even larger outer step-
sizes (Izaguirre et al., 2001). These instabilities can be
masked by using Langevin dynamics with increasingly
large values of the collision frequencies vy (Izaguirre et
al., 2001). On the other hand, the achievable outer step-
size for our model system is limited by the stability of
Stormer-Verlet with respect to Lennard-Jones interac-
tions rather than resonance instabilities. This instability
cannot be overcome by Langevin dynamics even with
increasingly large values of'y. This (non-resonance) sta-
bility barrier also limits the possible efficiency gains for
MTS-GHMC. Finally, note that short-range contribu-
tions of the Lennard-Jones interactions have been
treated as part of the fast forces in Izaguirre et al. (1999,
2001).

[0128] Inany of'the above aspects, the various features may
be implemented in hardware, or as software modules running
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on one or more processors. Features of one aspect may be
applied to any of the other aspects.

[0129] The invention also provides a computer program or
a computer program product for carrying out any of the meth-
ods described herein, and a computer readable medium hav-
ing stored thereon a program for carrying out any of the
methods described herein. A computer program embodying
the invention may be stored on a computer-readable medium,
or it could, for example, be in the form of a signal such as a
downloadable data signal provided from an Internet website,
or it could be in any other form.

APPENDIX A

Impulse Time-Stepping Methods In this appendix,
we outline how (16) can be solved exactly to give
rise to a numerical approximation for the differential
equation

[0130]

40
X = AU (X) - AUSEY (X). @

dZ
M s ‘motly
[0131] We note that equation (40) is conservative with
energy (18).

[0132] We recall that the ratio between the inner time-step
At and the outer time-step At is denoted by p=At/dtand L. is the
number of outer time-steps. We introduce the notation P(t'+e€)
and P(t'-€) to denote the left and right hand side, respectively,
limits of a time-dependent collective atomic momentum vec-
tor P(t) with a discontinuity at t=t'. We also introduce t,=ndt,
n=0,...,pL.

[0133] Integration of (16) once with respect to time reveals
that P(t)=const. whenever t=t,, which implies

X(t,, =Xt )+OtMP(t +€), P(t,,, ,—€)=P(t +€). 1)

[0134] For all t=t,, n=0, . . ., pL, an “impulse/kick” is
applied to the velocities while the positions remain constant,
ie., X(t,+€)=X(t,—e)=X(t,) since X(t) is continuous. The
magnitude of the impulse/kick depends on whether there is an
integer m, m=0, . . ., L, such that n=mp (outer time-step) or
not (inner time-step). In case of an outer time-step we have

Pl €) =P (G €V N o™ (X1, (X

(@), (n=pm) “2)
while an inner time-step leads to
P(t,4€)=P(t,-€)+d S (X(z,)). (43)

[0135] The constant coefficients ¢, and d,, take values as
defined for (10).

[0136] Given an initial molecular state 1'(0), we formally
set P(—e)=P(0) to initiate the algorithm. Similarly, at final
time t=Atl, we formally set P(t)=P(t+e) to define the
molecular state vector I'(t) at t=t. Hence we have constructed
a mapping W_:I'(0)—I'(t) which maps an initial molecular
state I'(0) into the desired numerical approximation I'(t) at
time T=L.At=pL.0t. The mapping W, is time-reversible, sym-
plectic and volume conserving (Izaguirre et al., 1999).

1. A computer-implemented method of simulating behav-
iour of a thermodynamic system over time, the thermody-
namic system having potential energy that can be split into
more quickly varying parts and more slowly varying parts and
having a state described by collective vectors of position and
momentum at any given time, the method comprising a
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momentum refreshment process, a conservative dynamics
process, and an acceptance/rejection process, wherein

the momentum refreshment process comprises mixing the

collective momentum vector with a noise vector;
the conservative dynamics process comprises applying a
mollified impulse multiple time stepping conservative
dynamics method to a current state, in which process
calculations for forces corresponding to more slowly
varying energy parts in the thermodynamic system
undergo an averaging procedure and are carried out at a
larger time step than calculations for forces correspond-
ing to more quickly varying energy parts; and wherein

the acceptance/rejection process is based on the system
energy and comprises accepting a current state or return-
ing a replacement state.

2. A method according to claim 1, wherein either the
momentum refreshment or the conservative dynamics pro-
cess is the first process of the method, and the resulting state
of'any process in the method provides the current state for the
next process in the method.

3. A method according to claim 1, wherein the method
includes a single acceptance/rejection process, wherein the
momentum refreshment is the first process of the method, and
the acceptance/rejection process follows the conservative
dynamics process and wherein if the current state is rejected
in the acceptance/rejection process, the state vector resulting
from the momentum refreshment process is either returned as
the replacement state or undergoes a momentum flip to pro-
vide the replacement state.

4. A method according to claim 1, wherein the momentum
refreshment process and/or the conservative dynamics pro-
cess constitutes a multiple iteration process, in which the
entire process is repeated a selected number of times consecu-
tively, to provide a final resulting state, which may be used as
a current state for the next process.

5. A method according to claim 1, wherein the states in the
method are denoted by Q,=(T',%,t)7,i=0, . . ., I, where I is a
given integer, I'=(X,%, P,/)", X, is a collective vector of
atomic positions, P, is a collective vector of atomic momenta,
and t, is time and the momentum refreshment process com-
prises: given a current state Q~(T,%t)%, I',=X,7, P,")” mix-
ing its collective atomic momentum vector P, with an inde-
pendent and identically distributed normal noise vector E; of
dimension 3N, so that

P=cos(¢p)P+sin(p)E;

where iis a given integer, N is the number of particles in the
system, O<¢p=r/2 is a given angle and Z,~N pM~'],
N BM™'] denotes the (3N)-dimensional normal distri-
bution with zero mean and covariance matrix f~*, M is
the diagonal mass matrix of the molecular system, and
B=1/kzT is the inverse temperature, the resulting state
vector being denoted by Q,~T 7 ,t)%, T~X, . P57
6. A method according to claim 1, wherein the states in the
method are denoted by Q=T %t,)%,i=0, . .., [, where T is a
giveninteger, T,=(X,7,P,")”, X, is a collective vector of atomic
positions, P, is a collective vector of atomic momenta, and t, is
time and wherein the conservative dynamics process com-
prises: applying the mollified multiple time stepping method
to the current state Q, using a time-reversible and volume
conserving mapping ¥, T=LAt, in T=X*P%)” and a result-
ing state defined by

éi:(fiT:li"'T)Ta fi:lyx(fi)a
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where >0 is a given integer and At is the larger time step.
7. A method according to claim 1, wherein the mollified
multiple time stepping method applies an averaging operator
A to acollective position vector X and derives slowly varying
mollified potential energy U, ,. " related to the slowly

molly
varying potential energy and yields F,,_,, > wherein pref-

molly
erably:
dZ
Moz X0 =
L pL
Z 6 (1 — mADFS (X (1) + Z 618, (1 — nSOFF (X (1)),
m=0 n=0

for te[0,'=LAt] with the slow forces defined by
Frnotty ™ ) ==AU, 00" (X)=AX) F(A(X)),

where M is a diagonal mass matrix of atomic masses, A,
(X) denotes the Jacobian matrix of partial derivatives,
the larger time-step for more slowly varying forces F<**
is At, the smaller time-step for more quickly varying
forces is P/ is dt, 8, is the Dirac delta function,
¢,.=d,=1 except when m=n=0 or m=L, n=pL, respec-
tively, in which case c,,=d, =", and integer p>1.

8. A method according to claim 2, wherein the acceptance/
rejection process comprises testing a current state to find the
next accepted state €2, using a Metropolis accept/reject cri-
terion

with probability min(1, exp(—BAH,,.q))

&
Q=9 _,

with

2

otherwise,

AHpotty 2= Huotty (1) = Hpotty (T5),

in which Q,* denotes either Q,;” or Q,*

Q,” indicating applying a momentum flip to the state €2, and
Q,"=0, indicates that no momentum flip has been applied.

9. A method according to claim 1, wherein calculated prop-
erties are re-weighted at the end of the entire method, to allow
for the use of mollified terms.

10. A method according to claim 1, further comprising a
step of initially accepting input of simulation conditions,
wherein the simulation conditions include at least one of
volume, mass, temperature, pressure, number of particles,
and total energy; and/or further comprising a step of initially
accepting input of simulation parameters, wherein the simu-
lation parameters include at least one of a number of repeti-
tions of the momentum refreshment process and a number of
repetitions of the conservative dynamics process, the larger
and smaller time steps in conservative dynamics, the number
of iterations of the entire method, the current state for the first
step in the method, the force field parameters, a time-revers-
ible and volume conserving mapping ¥_, and a constant angle
¢, where 0<¢p=mn/2.

11. A method according to claim 1, including the step of
displaying the results on a screen or printout.
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12. A method of molecular simulation of a system over
time comprising:

modelling the system using an atomistic model;

carrying out the method of simulating behaviour of a ther-

modynamic system according to any of the preceding
claims; and

analysing the results obtained from the simulation and

relating them to macroscopic level properties.

13. A method according to claim 12, further comprising
using the relationship of the results to the macroscopic prop-
erties to assess and optionally modify the system at the mac-
roscopic level, before repeating the method on the modified
system.

14. An apparatus which simulates behaviour of a thermo-
dynamic system over time, the thermodynamic system hav-
ing potential energy that can be split into more quickly vary-
ing parts and more slowly varying parts and having a state
described by collective vectors of position and momentum at
any given time, the apparatus comprising a momentum
refreshment processing part, a conservative dynamics pro-
cessing part, and an acceptance/rejection processing part,
wherein

the momentum refreshment processing part comprises

functionality for mixing the collective momentum vec-
tor with a noise vector;

the conservative dynamics processing part comprises func-

tionality for applying a mollified impulse multiple time
stepping conservative dynamics method to a current
state, in which calculations for forces corresponding to
more slowly varying energy parts in the thermodynamic
system undergo an averaging procedure and are carried
out at a larger time step than calculations for forces
corresponding to more quickly varying energy parts; and
wherein

the acceptance/rejection processing part comprises func-

tionality based on the system energy for accepting a
current state or returning a replacement state.

15. A computer-readable medium storing a computer pro-
gram which, when executed on a processor, carries out a
computer-implemented method of simulating behaviour of a
thermodynamic system over time, the thermodynamic system
having potential energy that can be split into more quickly
varying parts and more slowly varying parts and having a
state described by collective vectors of position and momen-
tum at any given time, the method comprising a momentum
refreshment process, a conservative dynamics process, and an
acceptance/rejection process, wherein

the momentum refreshment process comprises mixing the

collective momentum vector with a noise vector;
the conservative dynamics process comprises applying a
mollified impulse multiple time stepping conservative
dynamics method to a current state, in which process
calculations for forces corresponding to more slowly
varying energy parts in the thermodynamic system
undergo an averaging procedure and are carried out at a
larger time step than calculations for forces correspond-
ing to more quickly varying energy parts; and wherein

the acceptance/rejection process is based on the system
energy and comprises accepting a current state or return-
ing a replacement state.
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