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Introduction by the Organisers

The Oberwolfach mini-workshop “Convergence of Adaptive Algorithms” originated from
a previous Oberwolfach meeting 16/2004 on the topic of “Self-adaptive Methods for Par-
tial Differential Equations” which took place in Spring 2004. One motivation for the
mini-workshop was the resolution of the key issues of ‘errorreduction’ in adaptive finite
element schemes and the necessity, or otherwise, for ’coarsening strategies’ in adaptive
algorithms. While the former topic might be regarded as moretheoretical, the latter has
important practical repercussions in the sense that essentially every practical numerical
example would indicate that coarsening is unnecessary. However, the existing proofs of
optimal complexity would seem to suggest that coarsening isessential if one is to control
discretisation error at an optimal computational cost.

Set against this background, the mini-workshop comprised of 18 leading experts on
the convergence of adaptive finite element methods representing 8 different countries and
three continents, who identified and discussed the following specific open questions:

(1) For which class of problems and adaptive finite element methods can convergence
and error reduction properties be guaranteed?

(2) In what sense and for which classes of algorithm and mesh refinement schemes
are adaptive algorithms optimal?

(3) Is coarsening necessary to guarantee the optimality of an adaptive algorithm?
(4) Can the proofs of convergence for adaptive algorithms becarried over from the

bulk criterion to other more widespread criteria often usedin practice, such as the
maximum criterion?
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During the mini-workshop 11 talks were given concerning adaptive finite element me-
thods and covering a range of new extensions to the classicalconvergence analysis were
presented. The talks directly addressed the important issues including the role of coarsen-
ing, marking rules,hp-adaptive refinement strategies, discrete weighted residual (DWR)
adaptive methods in addition to the convergence of non-conforming and mixed methods.
The participants also presented very recent work on applications to new classes of equa-
tions, e.g. for rough and non-conforming obstacles, for theLaplace–Beltrami operator
and the Stokes equations.

The presentations were complemented by several more wide-ranging discussion ses-
sions on open questions and future directions in the field. Inparticular, it was widely felt
that in the case of the class of adaptive algorithms for whichthere is a proof of optimality,
more numerical experiments are necessary to achieve a deeper understanding of the in-
sights and issues highlighted by the abstract analysis. Moreover, numerical experiments
were seen to be important in providing quantitative information on the generic constants
that appear in the abstract error bounds, where it appears infeasible to derive realistic es-
timates of the constants that arise in the existing theory. In a similar vein, it would also
be of considerable interest to quantify the saving in computational effort through the use
of different adaptive schemes and in comparison to uniform refinement. Furthermore,
the theory may be used to identify specific examples where coarsening steps are really
needed to attain an optimal algorithm. More generally, the identification of a suite bench-
mark tests and comparisons with other adaptive strategies,for which current theory is
lacking, was also suggested.

The importance of understanding the relationship between the numerical solution and
the best approximation in the pre-asymptotic range as one can construct problems for
which the cost of computations in the asymptotic range is prohibitively high.

Duality-based adaptive strategies compute a weighting of the relevance of the data
in the course of the calculation. Starting with this aspect,it was also discussed how
the convergence analysis of adaptive algorithms can be related to a data analysis of the
problem. Participants proposed that the analysis of duality-based strategies provides an
indication that after sufficiently many adaptive refinementsteps it may simply be the case
that the best strategy to continue the computation with uniform refinement. The presence
of singularities in the solution may play a subtle role here.

Part of the session was dedicated to adaptive refinement strategies in three space di-
mensions, including the question of convergence of adaptive methods in this setting.

Another topic hotly discussed were outstandinghp-approximation issues. Participants
agreed that automatic decision mechanisms whenh- and whenp-refinement is preferable
but that there is a definite need for further fundamental improvements. The issue of the
development and analysis of reliable and efficient error estimators is less developed for
the p- and hp-version of the finite element method than for theh-version. Similarly,
convergence proofs forhp-adaptive finite element methods need to be addressed in future
in more detail.

MSC Classification: 65N12, 65N15, 65N30, 65N50
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Abstracts

Some Thoughts about Convergence of the DWR Method
ROLAND BECKER AND ROLF RANNACHER

1. INTRODUCTION

The convergence theory for adaptive finite elements has recently received tremendous
improvements, which are reported on in this mini-workshop.Convergence of the adap-
tively generated sequence of discrete solutions towards the solution of an elliptic partial
differential equation in the energy norm is proved [5, 6], and even the optimal complexity
can be shown in certain cases [4]. Unfortunately, these results cannot directly be used to
prove that similar convergence properties also hold for theDWR method [1] for “goal-
oriented” mesh adaptation. In this talk we investigate sometopics related to convergence
of this method.

Let Ω ⊂ R
d,d = 2,3, be a bounded domain with polygonal boundary∂Ω. For given

f ∈ L2(Ω), we consider the usual model problem

(1) −∆u = f in Ω, u = 0 on∂Ω,

Let Vh ⊂ H1
0(Ω) be a conforming finite element space constructed from a partition Th of

Ω , anduh ∈Vh the Ritz projection of the solutionu∈ H1
0(Ω) , defined by

(2) (∇uh,∇vh) = ( f ,vh) ∀vh ∈Vh.

Here,(·, ·) denotes theL2 scalar product onΩ. The basic idea of goal-oriented a posteri-
ori error estimation is to bound the error with respect to a given functionalJ ∈ H−1(Ω).
In many interesting cases the functional is more singular and has to be regularized. We
then introduce the adjoint solutionz∈ H1

0(Ω) by

(3) (∇v,∇z) = J(v) ∀v∈ H1
0(Ω).

With this we find that, with an appropriate interpolation operator Ih ,

J(u)−J(uh) = (∇(u−uh),∇z) = ( f ,z− Ihz)+ (∇uh,∇(z− Ihz))

= ∑
K∈Th

{
( f + ∆uh,z− Ihz)K − 1

2([∂nuh],z− Ihz)∂K

}
,(4)

and the standard mesh adaptation procedures can be employed. However, here the un-
known functionz has in general to be approximated, and alowerbound for the estimator
with respect to the error is generally impossible. Such a lower bound exists for estimation
with respect to the energy norm and is a key property for convergence proofs.

2. SOME TECHNICAL PROBLEMS

The convergence analysis of the DWR method depends on two critical ingredients,
which are presented next. They can be formulated as independent questions concerning
the finite-element Ritz projection.
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2.1. Stability of second-order differences.The first hypothesis concerns the stability
of the finite element solution. LetK denote the cells of the meshTh, andE an edge of
the cell boundary∂K. Then, we conjecture that foru∈C2(Ω)

(5) ∑
E⊂∂K

h−3
E ‖[∂nuh]‖2

E ≤C(u), K ∈ Th, h > 0.

The left-hand side can be viewed as a second-order difference quotient which we denote
by D2

h and the inequality (5) resembles a local version of the continuous a priori esti-
mate‖∇2u‖ ≤ C‖ f‖. We further conjecture that (5) even holds true foru with certain
singularities.

It is easy to prove that (5) holds on quasi-uniform meshes which are characterized
by the additional property that the ratio of maximal cell-width to minimal cell-width is
bounded, i.e.,hmax/hmin ≤C. The proof relies on a quasi-optimalL∞-error estimate and
the main idea is shortly given:

|D2
huh|K | ≤ h−1

K ‖D2
huh‖K

≤ h−1
K ‖D2

h(uh−Ihu)‖K +h−1
K ‖D2

hIhu‖K

≤ ch−2
K ‖∇e‖K̃ +ch−2

K ‖∇(u−Ihu)‖K̃ +h−1
K ‖D2

hIhu‖K

≤ ch−2
K ‖∇e‖K̃ +ch−1

K ‖∇2u‖K̃ ≤ c‖∇2u‖∞

where K̃ denotes a cell-patch neighborhood ofK . Unfortunately, this argument only
works onquasi-uniformmeshes, since thelocal error estimate (see [7])

‖∇e‖∞;K ≤ hKc(u)

does not hold in this strong form on meshes withhmax/hmin → ∞ .

2.2. Accuracy of averaging on locally refined meshes.Our next assumption is again
well-established on quasi-uniform meshes. It is needed to theoretically justify the ap-
proximation of the interpolation error of the adjoint solution, either by computation with
higher accuracy (finer mesh or high-order polynomials) or bylocal post-processing of the
discrete solution computed on the same mesh.

If we suppose that the meshTh is strictly uniform with mesh-widthh, then, it is
known that in the nodal points, the errorz−zh allows an asymptotic expansion in powers
of h which can be expressed in the form (see [3])

(6) Ihz−zh = Ih(z−zh) = h2Ihw+h3τh,

with someh-independent functionw∈ H1
0(Ω) and a remainder‖τh‖ ≤ c‖∇3z‖ .

Our hypothesis is that a similar error expansion as (6) holdson locally refined meshes,
where the functionw depends on the mesh but this dependency can be localized. To be
more precise we assume that the domain can be decomposed intotwo mesh domainsΩh

andΩ\Ωh , such that

(7) Ihz−zh = h2Ihw+h3τh, x∈ Ωh, |Ω\Ωh| ≤Ch.

In order to see how assumption (7) might be used for estimating the error in approximation
of the dual solutionz we give a heuristic argument.
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Let Ĩh denote a post-processing operator, for example patch-wisequadratic interpola-
tion. The simplest error estimator of the DWR method uses approximation of z by Ĩhzh

wherezh is the dual solution on the same mesh. The error term introduced by this can be
written as (settinge := u−uh)

(∇e,∇(z− Ĩhzh)) = (∇e,∇(z− Ĩhz))+ (∇e,∇Ĩh(z−zh)).

We only need to estimate the last term, supposing enough regularity of z using the expan-
sion (7). The leading error term can now be estimated by

(∇e,∇Ĩh(Ihz−zh)) = h2(∇e,∇(Ĩhw− Ihw))Ωh +h.o.t

≤ Ch3‖∇2w‖+h.o.t.

Hence, (7) seems to be the key to prove that the proposed approximation is actually of
higher order.

3. A CONVERGENT ALGORITHM

In order to guarantee the convergence of the DWR method, we introduce at each step
of the mesh refinement iteration an additional finer mesh which is used to control the
accuracy of the dual solution. We call thesegendarme meshes. Reasoning for the corre-
sponding spaces, we have the following scheme:

. . . Ṽk−1 Ṽk Ṽk+1 . . .
∪ → ∪ →

. . . Vk−1 Vk Vk+1 . . .,

At each step of the iteration the meshes are refined by one of the two following rules. The
first rule is to refine the base meshVk according to the estimator obtained by approxima-
tion of the dual solution on the gendarme mesh:

ηk ≈ ∑
K∈Tk

‖R(uh)‖K‖z̃k− Ikz̃k‖K .

The same refinement procedure is performed for the gendarme mesh. The second rule
is to refine the gendarme mesh by an energy error estimator forthe adjoint equation. In
order to decide which of the two rules is used, we introduce a sequence of tolerances(εl ),
εl → 0. With this we define a sequence of subindiceskl which are defined such thatkl

is the first index for which the toleranceεl is satisfied,ηkl ≤ εl < ηkl−1. The description
of the algorithm is completed by asking for a global refinement of the gendarme mesh if
k= kl for somel , and refinement with the weighted estimator otherwise. By construction,
the meshes are always nested, but the basic meshes do not needto contain a sequence of
global refinement. Since this is however true for the gendarme mesh, we easily obtain the
following result.

Proposition 1. The “gendarme algorithm” ensures convergence in the sense that

lim
k→∞

J(uk) = J(u).
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4. COMPLEXITY ESTIMATE

For analyzing the algorithmical complexity of the DWR method, we may try to adopt
the arguments presented in [2, 8] for energy-norm error control. Meshes are generated
by hierarchical refinement, which leads to a tree ofadmissiblemeshes. LetVN :=
{V admissible, dim(V) = N}. Suppose, we have an error measureφ : ∪N∈NVN → R,
for example constructed from the error representation (4),which is quasi-monotone,

(8) V ⊂ Ṽ ⇒ φ(V) ≤ cφ φ(Ṽ).

For givenε > 0, we defineVε := {V admissible, φ(V) ≤ ε}, and assume that

(9) sup
ε>0

ε−1/s inf
V∈Vε

dim(V) < +∞,

for somes≥ 0. We make the following crucial assumption on the refinementalgorithm.
The spacesVk are constructed such that, with a constantρ < 1, there holds, withV̂k :=
{V ⊃Vk−1 : φ(V) ≤ ρkφ(V1)},

(10) Nk = dim(Vk) ≤ dim(V), V ∈ V̂k,

Proposition 2. Let the meshes be constructed such that (10) holds and further assume
that (9) is satisfied. Letε > 0 be given. Suppose thatTn is the first mesh for which
ρn ≤ ε . Then there exists a constantc independent ofε andn such that

(11) Nn−N1 ≤ cε−1/s.

Of course, this gives an optimal complexity estimate only ifcondition (10) can be satisfied
with optimal complexity, which is a hard problem still to be solved.
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Adaptive Finite Element Methods with Optimal Complexity
PETER BINEV

(joint work with Wolfgang Dahmen and Ronald DeVore)

Adaptive methods are frequently used to numerically compute solutions to elliptic equa-
tions. While these methods have been shown to be very successful computationally, the
theory describing the advantages of such methods over theirnon-adaptive counterparts is
still not complete. Recently, it was proven (see [14], [18])the convergence of such meth-
ods. These proofs of convergence still do not show any guaranteed advantage of these
adaptive methods since there is no analysis of theirrate of convergencein terms of the
number of degrees of freedom or the number of computations. The only known algorithm
with a proven rate of convergence was the one for the univariate case [3].

In our recent paper [2] we propose an Adaptive Finite ElementMethod (AFEM) and
prove convergence rates for this method using as a model example the Poisson problem

(1) −∆u = f in Ω, u = 0 on∂Ω,

whereΩ is a polygonal domain inR2 and∂Ω is its boundary. As approximations of the
solutionu we consider piecewise linear elements using a very specific adaptive refinement
strategy (called newest vertex bisection) well-known in the FEM literature. We show that
if the solutionu can be approximated (using complete knowledge ofu) in the energy norm
by a piecewise linear function on the triangulation withn triangles to accuracyO(n−s),
n → ∞, then the adaptive method will do the same usingonly knowledge ofu gained
through the adaptive iteration.

Our algorithm is not much different from existing adaptive methods based on bulk
chasing of a posteriori error estimators. The one main difference is the utilization of
a coarsening strategy. The role of coarsening in the algorithm is to ensure that at any
iteration the approximated solution has near optimal representation in terms of degrees of
freedom. We should mention that coarsening also played an important role in the analysis
of adaptive wavelet methods (see [4],[5]).

In our analysis we rely on the theory of nonlinear approximation by piecewise poly-
nomials. Since adaptive methods are a form of nonlinear approximation, this theory will
on the one hand help us to provide a benchmark for measuring the success of adaptive
methods, and on the other hand, provide an effective implementation for the coarsening.

As it was emphasized in [2], we consider our algorithm mainlyas a contribution to the
theory of adaptive methods. However, the ideas suggested in[2] can be useful in practice.
The goal of this presentation is to give an overview of the coarsening strategy and its
possible implications in the development of practical adaptive algorithms.

An important feature of the coarsening strategy is that it isapplicable practically to
any problem for which there exists an error reduction algorithm. In order to avoid com-
plications of the presentation we shall sometimes refer to (1). In this way, the essentials
of our arguments will be clear and we can also call on several known results concerning
a-posteriori error estimates that can be found in the literature. In particular, we shall make
use of the error reduction property given in [18]. However, by no means is the theory
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restricted to this particular problem. On the contrary, as it will be made clear in the text,
we expect the coarsening strategy to give higher payoff for complicated problems.

An adaptive procedure can be related to a decision tree. Thusit is natural to assume that
the space of finite element functionsS is associated to an infinite master treeT , namely,
that every functionv∈ S corresponds to a treeT(v) ⊂ T . The trees that correspond to a
function fromS are calledadmissibleand their set is denoted byTa. To indicate that the
final leaves of a treeT ⊂ T correspond to cells of some partition of the domainΩ, we
shall call themcells. Then the adaptive process can be described as follows. We start with
some initial treeT0 ∈ Ta and mark a setM1 of certain cells for subdivision. After doing
these subdivisions we arrive at the treeT ′

1. This tree is not necessarily admissible and
so we shall make some additional subdivisions which willcomplete T′1 to an admissible
partitionT1 ∈ Ta. We then repeat this process of marking and completing to obtain sets
Mk and treesTk, k = 1, ...,n. It will be important for us to see that the completion process
does not seriously inflate #(Tn), the number cells inTn. Namely, that there is a constant
C0 > 0 depending only onT0 such that

(2) #(Tn) ≤ #(T0)+C0(#(M1)+ · · ·+#(Mn)) .

In [2] we proved (2) for the newest vertex bisection procedure.
Given the functionsv from the finite element spaceS , we denote byΣN the set of all

of them for which #(T(v)) ≤ N. The best approximation of a functionu is defined by

σN(u) := inf
v∈ΣN

‖u−v‖ .

It is unreasonable to expect that any numerical procedure will result in finding the best
approximant tou. Usually, the goal is to find a procedure which exhibits the same rate
of convergence for the error asσN(u). Here we have higher standards requiring that for
everyN our procedure finds anear bestapproximationuN to u with #(T(uN)) ≤ N and
the property

(3) ‖u−uN‖ ≤C1σc2N(u)

with some absolute constantsC1 andc2. In [1] we consider atree approximationproce-
dure based upon special error functionals placed on the nodes ofT . In the case the norm
of the error‖u−uN‖ is equivalent to the discrete norm of these error functionals over the
leaves ofT(uN), we have shown that (3) is valid with constantsC1 andc2 relatively close
to 1. Moreover, the number of computations needed to finduN is O(N). In [2] we apply
these results to find a near best approximation inH−1-norm to the right hand sidef of
(1), as well as to find a near best approximation in the energy norm to the approximate
Galerkin solution in the coarsening step.

The decisions in standard AFEM are often based uponlocal error estimatorswhich
sumΦ(T) gives a reliable estimate of the square of the error in the energy norm for a given
treeT. This estimate is used as stopping criteria in different procedures. The knowledge
of Φ(T) is also important in the choice of the numerical precision ofthe algorithms in
AFEM.

A basic ingredient of AFEM is theerror reduction procedure. Given approximate
solutionuT with a treeT, it finds a refinementT+ of T and an approximate solution
uT+ which error is at leastC3 times smaller than the one foruT . In addition, we have
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that #(T+) ≤ C4#(T) and the number of calculations needed does not exceedC5#(T).
This procedure can be composed as several iterations of bulkchasing (see [14], [18]),
or could be just several consecutive uniform refinements of the current partition treeT.
We denote the result of the latter byR(T). It is important to note that for fixedC3 we
can design different algorithms that have different constants C4 andC5. Keeping the
optimality constantC4 low will increase the efficiency constantC5 and vice versa.

Finally, thecoarsening steptakes the current approximate solutionuT+ and finds a
sparse near best approximationuT∗ ∈ S to it using the tree algorithm with stopping cri-
terium based upon the estimate of the errorΦ(T+). This could eventually increase the
error by at mostC3/2 times but will keep the solution near optimal in terms of thecom-
plexity of T∗. In caseΦ(T+) is equivalent to the square of the error in the energy norm,
the approximationuT∗ to u is near best in terms of (3). Theoretically, the algorithm con-
tinues with the error reduction procedure settingT := T∗. However, in practice we may
use a certain refinement ofT∗ instead.

Algorithmically, the biggest advantage of the coarsening strategy is the possibility to
use error reduction with a small constantC5 and by this increasing the efficiency of the
algorithm. In comparison, the algorithms without coarsening should keep the constantC4

low (in a hope that the optimal convergence rates will be preserved) which could result in
an enormous number of iterations with a very small bulk.

The utilization of coarsening strategy could take different forms. The coarsening step
could be used as an inexpensive test for the optimality of thesolution. In case #(T+)
is not much higher than #(T∗), we can continue withT := T+ instead ofT := T∗. It
should be also clear that using coarsening strategy does notalways mean that the partition
should be coarsen. For example, we can immediately setT+ := R(T∗) and calculate
the local error estimators only to useΦ(T+) as a threshold in the tree algorithm. In this
case the adaptivity of the procedure comes from near optimality properties of the tree
approximation. Blending this approach with bulk chasing could be very beneficial for
solving complicated problems which require heavy calculations to find the local error
estimators and/or do not have lower estimates to the error ofthe approximate solution.
Some ideas from the tree algorithms can also be used in the design of the error reduction
procedure in practice, although the theory for this is stillunder development.

In conclusion, the coarsening strategy not only provides anAFEM with best perfor-
mance rates and a near best approximation of the solution, italso can give new opportu-
nities of improving the existing practical algorithms especially for problems with compli-
cated solutions.
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Survey on the Convergence of Adaptive Finite Element Methods
CARSTEN CARSTENSEN

State of the art simulations in computational mechanics aimreliability and efficiency
via adaptive finite element methods (AFEMs) with a posteriori error control. The a priori
convergence of finite element methods is justified by the density property of the sequence
of finite element spaces which essentially assumes a quasi-uniform mesh-refining. The
advantage is guaranteed convergence for a large class of data and solutions; the disadvan-
tage is a global mesh refinement everywhere accompanied by large computational costs.

AFEMs automatically refine exclusively wherever the refinement indication suggests
to do so and so violate the density property on purpose. Then,the a priori convergence
of AFEMs is not guaranteed automatically and, in fact, crucially depends on algorithmic
details. The advantage of AFEMs is a more effective mesh accompanied by smaller com-
putational costs in many practical examples; the disadvantage is that the desirable error
reduction property isnot alwaysguaranteed a priori. Efficient error estimators can justify
a numerical approximation a posteriori and so achieve reliability. But it is not clear from
the start that the adaptive mesh-refinement will generate anaccurate solution at all.

This paper discusses particular versions of an AFEMs and their analyses for error
reduction, energy reduction, and convergence results for linear and nonlinear problems.

1. INTRODUCTION

This paper discusses limitations and generalisations of the recent convergence theory
of adaptive finite element methods (AFEMs) so far mainly established for the Laplacian
and thep-Laplacian in [4, 14, 18, 24]. Therein and below, AFEMs consist of recursive
loops of the form

(1) SOLVE → ESTIMATE → MARK → REFINE.

There exists a vast literature on a posteriori error controlfor step ESTIMATE and we refer
to the books [1, 3, 15, 23] and the reference included thereinplus some select references
[2, 6, 11, 17, 20, 21] for elastoplasticity.

A typical reliable error estimator, such as the explicit error estimator, results in local
contributionsηM associated with an edge, face, or elementM in the current mesh and
their sumη2 := ∑M η2

M over all such objectsM. Frequently in the literature, a maximum
criterion marks a subsetM according to

M ∈ M if and only if ηM ≥ Θ maxη ,

where maxη denotes the maximum of all of theηM and 0≤ Θ < 1 is a parameter. Even
though the titles of corresponding articles and books suggest adaptive algorithms, those
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mesh-refinement strategies are considered therein withoutany mathematical analysis. The
numerical experiments reported in those references appearto be extremely successful.
This success, however, isnotunderstood in theory and hencenotguaranteed in the forth-
coming refinement loops.

This papers follows [14, 4, 18] and adopts the bulk-criterion in the step MARK which
defines a setM , the marked objects, by

∑
M∈M

η2
M ≥ Θη2

with a parameter 0< Θ ≤ 1. Section 2 introduces the adaptive algorithm and the mesh-
refinement strategy for an edge-oriented explicit error estimator. Section 3 discusses the
error reduction property and some counter example. Section4 studies the main arguments
for energy reduction. Further details, proofs, and software will appear elsewhere [9, 10,
12].

2. ADAPTIVE MESH-REFINING

A typical adaptive algorithm is sketched below where, on each levelℓ = 0,1,2,3, . . . ,
the discrete stressσℓ is piecewise constant with respect to the triangulationTℓ with the
setEℓ of edges and faces in 2D and 3D, respectively. Then, for each edge or faceE ∈ Eℓ

of diameterhE := diam(E) and with unit normalνE, the contribution

(2) η(ℓ)
E := h1/2

E

(∫

E
|[σℓ]νE|2ds

)1/2

accounts for the jump[σℓ]νE of the discrete stresses across the interior edgeE in the nor-
mal direction.

Adaptive Algorithm (AFEM)
Input: Coarse shape-regular triangulationT0 of Ω into triangles with set of edgesE0;
0 < Θ < 1.
For ℓ = 0,1,2,3. . . do (a)—(e):
(a) Solve the discrete problem with respect to the actual meshTℓ and corresponding FE
spaces. Letuℓ denote the FE displacement and letσℓ denote the discrete stress field.

(b) Computeη(ℓ)
E for all edges or facesE ∈ Eℓ andηℓ := (∑E∈Eℓ

(η(ℓ)
E )2)1/2 as stress-error

estimator.
(c) Generate a setMℓ of edges or faces inEℓ such that

(3) Θη2
ℓ ≤ ∑

E∈Mℓ

(η(ℓ)
E )2.

(d) Control oscillations OSCℓ and (possibly) add further edges toMℓ to decrease OSCℓ+1≤
Θ OSCℓ.
(e)Run closure algorithm to avoid handing nodes; refine all trianglesT with some edge or
faceE in Mℓ with bisc5(T) and all other elements with red-green-blue ornewest-vertex
bisection refinement after Figure 1. LetTℓ+1 denote the resulting shape-regular triangu-
lation.
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Output: Sequence of discrete stress fieldsσ0,σ1,σ2, . . . in L2(Ω;Rd×d
sym).
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FIGURE 1. Possible refinements of a triangle for red-green-blue and
newest-vertex bisection refinement [4, 8, 12].

This algorithm yields a strongly convergent stress field in linear and nonlinear elasticity
as well as in elastoplasticity [10].

3. ERROR REDUCTION PROPERTY

The error reduction property is frequently also called saturation assumption when it is
used as a hypothesis. However, this property has to be guaranteed by the mesh-design.
To fix ideas, suppose thatσℓ is the finite element stress approximation to the exact stress
field σ in level ℓ as in Algorithm 2. Then, consider the error reduction property in the
form

(4) |‖σ −σℓ+1|‖2 ≤ ρ |‖σ −σℓ|‖2 +C OSC2
ℓ for all ℓ = 0,1,2, . . . .

Here, |‖ · |‖ denotes the energy norm andρ < 1 is the reduction factor. The last term
C OSC2

ℓ accounts for oscillations of the data, i.e. inf when we suppose an equilibrium of
the (strong) form

f +divσ = 0 in Ω
and suppose Dirichlet boundary conditions on the entire boundaryΓD := Γ := ∂Ω of
the domainΩ such that no traction conditions appear (which would arise further data
oscillations [10]). Then,

(5) OSCℓ( f ) :=
(

∑
z∈Kℓ

h2
z

∫

ωz

| f (x)− fωz|2dx
)1/2

,

where fωz :=
∫

ωz
f (x)dx/|ωz| abbreviates the integral mean off over the patch

ωz := {x∈ Ω : 0 < ϕ(x)} and soωz = ∪T (z) whereT (z) = {T ∈ Tℓ : z∈ T}.
This ωz is the interior of the union of the setT (z) of neighbouring elements of a free
nodez∈ Kℓ := Nℓ \ΓD and has volume|ωz| and sizehz := diam(ωz).

The first observation on error reduction (4) is that the oscillations cannot be omitted.
In fact, given a sequence of (even successive e.g. uniform refinements and associated)
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discrete spacesV0 ⊂V1 ⊂V2 ⊂ ·· · ⊂V there exists a problem with some exact solutionu
and with discrete solutionsuℓ and

|‖u−uℓ|‖ = dist|‖·|‖(u;Vℓ) → 0 as slow as we want.

This is a general fact from approximation theory in separable Hilbert spaces. The point is
that the regularity of the exact solution could be as bad as wewant and so the convergence
could be as poor as possible and this contradicts a linear convergence implied by (4) for
C = 0. The good news is that the additional term is given in terms of the data and not
completely in terms of the unknown regularity of the unknownexact solution.

The second observation is that there exist good and bad refinements. A simple Pois-
son problem with constant right-hand sidef ≡ 1 and homogeneous Dirichlet boundary
conditions on the unit square forP1 finite element methods on the meshesT0 andT1 of
Figure 2 allows no error reduction in this refinement step.
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FIGURE 2. Counter example for error reduction: Two meshes with fi-
nite element solutionsu0 = u1 and so withρ = 1 and OSCℓ( f ) = 0 in
(4).

4. ENERGY REDUCTION PROPERTY

For nonlinear elasticity such as Hencky elastoplasticity with hardening letE(v) denote
the elastic energy andδℓ := E(uℓ)−E(u) the difference of the discrete energyE(uℓ) to
the minimal energyE(u). Assume that the energyE is uniformly convex and its deriv-
ativeDE is Lipschitz continuous. A typical example is the nonlinearHencky material or
nonlinear Hooke’s law of [19, Sect. 3.3] and [25, Sect. 62.8].

The energy reduction property reads, with some 0< ρ < 1,

(6) δℓ+1 ≤ ρ δℓ +C OSC2
ℓ for all ℓ = 0,1,2, . . .

The energy reduction is equivalent to the error reduction inlinear problems (e.g. for Pois-
son or Lamé equations). Observe in the general case that theenergy reduction property
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implies an error decrease and the R-order of convergence (upto higher-order terms) in the
form

(7) |‖σ −σℓ|‖2 ≤ ρℓ δ0 +
ℓ−1

∑
k=0

Cρℓ−1−kOSC2
k for ℓ = 1,2,3, . . .

The remaining part of this section is devoted to arguments sufficient for energy re-
duction (6). Under the present assumptions on the energy functional, one may define a
computable residualRℓ(v) := −DE(uℓ;v) with a norm

‖Rℓ‖V∗ = sup
v∈V\{0}

Rℓ(v)/‖v‖V .

A first key argument is equivalence of‖Rℓ‖V∗ to the error or the energy differences [9, 10],
e.g.

(8) δℓ + α|‖u−uℓ|‖2 ≤ Rℓ(u−uℓ).

A similar consequence of uniform convexity reads

(9) α|‖uℓ+1−uℓ|‖2 ≤ δℓ− δℓ+1.

A second key argument is refined reliability of the error estimator [13, 10] which reads in
terms of the residual as

(10) ‖Rℓ‖V∗ ≤C1 ηℓ +C2 OSCℓ( f ).

A third key argument is the residual coverage [9] which leadsto a discrete efficiency in
the form

(11) ηℓ ≤C3|‖uℓ+1−uℓ|‖+C4 OSCℓ .

The proof of (11) follows as in the linear case from the designof a local trial function
bE ∈Vℓ+1 with

(η(ℓ)
E )2 =

∫

Ω
σℓ : DbE dx

followed by the equilibrium condition (with respect to the refined mesh and induced finite
element space) ∫

Ω
σℓ+1 : DbE dx=

∫

Ω
f ·bE dx

plus the extra mean property ∫

Ω
bE dx= 0.

For this extra property, one needs an inner-node property ofthe mesh-refining. That is, for
each marked edge, either one of the neighbouring elements requires a bisec5-refinement
or one complete patch is refined in an appropriate way. The counter example of Figure 2
clearly implies that one needs at least one red-refinement [or a perturbation of the config-
uration in that the newest-vertex must not be the mid-point for all the triangles] in a patch
[9].

The combination of the foregoing three identities, namely (with a proper meanfE of
f )

(η(ℓ)
E )2 =

∫

Ω
(σℓ −σℓ+1) : DbE dx+

∫

Ω
( f − fE) ·bE dx,
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plus the bulk criterion eventually lead to (10) [9, 10].
To finish the proof of the energy reduction (6), one employs (8) and (10) to obtain

δℓ+α|‖u−uℓ|‖2≤ (C1 ηℓ+C2 OSCℓ( f ))‖u−uℓ‖V ≤α |‖u−uℓ|‖2+C5η2
ℓ +C6 OSCℓ( f )2.

The immediate estimate ofδℓ combines first with (11) and second with (9) to

δℓ ≤C7 |‖uℓ+1−uℓ|‖2 +C8 OSCℓ( f )2 ≤C7/α(δℓ− δℓ+1)+C8 OSCℓ( f )2.

This implies (6) withρ = (1−α/C7) andC = αC8/C7.
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Automatic hp-Adaptivity. A Progress Report
LESZEK DEMKOWICZ

(joint work with Jason Kurtz, David Pardo)

With appropriately selected element sizeh and order of approximationp, hp-Adaptive
Finite Element Methods should deliver exponential convergence, both for regular and
singular solutions, [13]. The first fully automatichp-adaptive strategy for elliptic prob-
lems was proposed and verified for 1D and 2D elliptic problemsin [8]. The method was
further developed and generalized to 2D Maxwell equations in [5], and for 3D elliptic
problems in [12]. For a comprehensive presentation of the whole technology and details
of the method, we refer to [4].

The lecture presented a further development of the method focusing on two directions:

• a new implementation of the method for 3D elliptic problems,driven by a class
of acoustics scattering problems,

• a fully automatic, goal-orientedhp-adaptive method, with applications to simu-
lations of EM logging.

Automatic hp-Adaptivity for 3D Elliptic Problems. Referring to [9] for details, we shall
review quickly the main idea of the method and discuss the accomplishments of the new
implementation. The main idea of the method is based on the notion of theProjection
Based Interpolation, see [6, 3, 7, 2, 4]. Given a hexahedral finite elementK, possibly
refined into two, four, or eight element-sons, and a functionu∈ H3/2+ε(K), we define the
corresponding projection-based interpolantup as a sum of vertex, edge, face, and interior
contributions,

Πu = up = u1 +∑
e

up
2,e

︸ ︷︷ ︸
up

2

+∑
f

up
3, f

︸ ︷︷ ︸
up

3

+u4 .

Here u1 is the standard trilinear vertex interpolant ofu. The edge contributionup
2 is

obtained by summing up contributionsup
2,e from individual edges obtained by projecting



Mini-Workshop: Convergence of Adaptive Algorithms 19

the differenceu−u1 onto the “edge bubbles”,

‖up
2,e− (u−u1)‖L2(e) → min .

By the edge bubbles we mean the traces of the element shape functions on the particular
edge, vanishing at the edge endpoints. For an unrefined element and edge of orderpe,
these will be simply polynomials of orderpe, vanishing at the end points. For a refined
edge, we mean piece-wise polynomials. The edge contribution is extended to the rest
of the element using the element shape functions. Similarly, functionup

3 is obtained by
summing up contributionsup

3, f obtained by projecting differenceu− u1 − up
2 onto face

bubbles,
|up

3, f − (u−u1−up
2)|H1/2( f ) → min .

Finally, the element interior contribution is obtained by projecting the differenceu−u1−
up

2 −up
3 onto the element bubbles,

|up
4 − (u−u1−up

2 −up
3)|H1(K) → min .

It has been shown (for the latest versions of the theory, see [7, 2]) that the projection-based
interpolation delivers optimalp andh convergence rates. The energy-driven automatic
hp-adaptivity produces a sequence of coarse/finehp meshes where the fine mesh is ob-
tained from the coarse one by a globalhp-refinement, i.e. each hexa in the coarse mesh
is broken into eight element-sons, and the order is raised uniformly by one. Both meshes
may be very non-uniform, including possible strong anisotropies (both inh andp). The
two meshes paradigm is essentially different from standardadaptive methods working
only with a single mesh and an error indicator (estimator). The problem is solved on the
fine mesh. The fine mesh solutionu= uh/2,p+1 is then interpolated on the coarse mesh and
a sequence of meshes obtained from the coarse mesh with varioush andp refinements, to
determine the mesh that maximizes the rate with which the interpolation error decreases,

|u−Πhpu|H1(K) −|u−Πhpoptu|H1(K)

Nhp−Nhpopt

→ max.

HereΠhpu denotes the interpolant on the coarse mesh, andΠhpoptu denotes the interpolant
on a optimally refined coarse mesh to be determined.

The algorithm explores the logic of the projection-based interpolation by determining
first optimal refinements of the coarse element edges, then faces and, finally, the coarse
element interiors. The result of each of the steps determines initial conditions for the
next (discrete) optimization problem. Acompetitionbetween various types of refinement
determines not only whether an edge, face or element is to beh- or p-refinement but also
a proper kind of (possibly) anisotropic refinement (recall that a face can beh-refined in
three different ways, and an element can beh-refined in seven different ways. Enabling
the competitions on face and element levels is probably the most significant departure
from the earlier implementations that staged the competition at the edge levels only, and
explored the (possibly anisotropic) structure of the errorto choose between the anisotropic
and isotropich-refinements.

We list shortly other significant advancements of the new implementation and differ-
ences with the previous work.
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FIGURE 1. Fichera’s problem. Optimal coarse grid and convergence
history for the coarse (green) and fine (red) meshes

• The new code has been written as a stand alone package.
• Consistently with [5], the method ignores constrained nodes in the projections.

This restores a full locality of the interpolation and commutativity of de Rham
diagram.

• Two enabling technologies: orderO(p7) integration (with theO(p2) speed-up
fully realized in practice), and a telescopic solver for a sequence of dynamically
determined nestedhpmeshes, make the competition on all levels feasible.

• A special version of 1-irregular meshes algorithm (based on“virtual refinements”)
enforces the optimalh-refinements with the final meshindependentof order in
which the refinements have been performed, and elements refined only in one
shotinto two, four or eight elements.

• Upon communicating the unwantedh-refinements to the mesh optimization pack-
age, an optimal distribution of ordersp is returned.

• Due to the algorithmical improvements, the size of the package has been reduced
to 15k lines.

• The complexity of the algorithm is of the same order as the complexity of a
multifrontal linear equations solver. In performed numerical experiments the time
spent to determine optimal refinements has always been smaller that the time
needed by the fine grid solver (MUMPS [10]).

Fig. 1 presents an optimal (coarse)hpmesh for the Fichera problem, and the correspond-
ing exponential convergence of the coarse and fine grid errors. The results were obtained
on a four-year-old Dell laptop with 512Mb memory and Intel 3 processor in less than 20
minutes.
Automatic Goal-oriented hp-Adaptivity. Simulations of EM waves in the borehole en-
vironment presents a class of challenging problems that arenot solvable not only with
classical discretization methods but also withh-adaptive schemes. In presence of casing,
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the modeling involves the solution of an elliptic or Maxwellproblem (only axisymmetric
simulations are reported here) with a material contrast up to 10-12 orders of magnitude,
and a dynamic range (ratio of signal at the radiating antennato the signal at the receiving
antenna) of up to 8-10 orders of magnitude. The problem is outof range for the energy
driven hp algorithm discussed above, but also for a goal-drivenh-adaptivity paradigm
[1]. Only a combination of the goal-driven adaptivity with the automatichp-adaptivity
has made the solution of the problem possible.

Let {
u∈V

b(u,v) = l(v), ∀v∈V ,

be the usual (abstract) variational boundary-value formulation corresponding to an elliptic
or Maxwell problem. The main idea of the goal-driven adaptivity is to introduce the dual
problem, {

v∈V

b(u,v) = g(u), ∀u∈V ,

whereg(u) represents agoal functional. Standard derivation based on Galerkin orthogo-
nality property leads then to a representation of the error in goal,

|g(u−uhp)| = inf
whp∈Vhp

|b(u−uhp,v−whp)| ≤ inf
whp∈Vhp

∑
K

|bK(u−uhp,v−whp)| .

Hereuhp is the discrete solution for anhp mesh,Vhp denotes the corresponding finite
element space, andbK stands for elementK contribution to the global bilinear form.
The representation holds also for exact solutionsu,v replaced withfine grid solutions
u = uh/2,p+1 andv = vh/2,p+1. Replacing the coarse grid solution with the coarse grid
interpolant, we obtain,

|g(u−uhp)| = inf
whp∈Vhp

|b(u−uhp,v−whp)|

≤ |b(u−uhp,v−Πhpv)|

= |b(u−Πhpu,v−Πhpv)+b(Πhpu−uhp,v−Πhpv)︸ ︷︷ ︸
neglected

| .

We use the error representationnot for an error estimate but for the mesh optimization.
We redefine then our mesh optimization problem as,

∑K |bK(u−Πhpu,v−Πhpv)|−∑K |bK(u−Πhpoptu,v−Πhpoptv)|
Nhp−Nhpopt

→ max .

The goal-orientedhp algorithm is then a generalization of the energy driven algorithm.
Referring to [11] for details, we point to only to essential differences of the new imple-
mentation when compared with the original version of the algorithm presented in [14].

• In presence of strong material contrast, the use of energy norms rather than
generic Sobolev norms is very essential. The same comment applies to indefi-
nite wave propagation problems where the norm has to includein particular the
wave number.
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FIGURE 2. Trough Casing Resistivity Login Problem (DC). Material
data and a final log obtained using goal-orientedhp-adaptivity. The log
represents a second difference of the potential corresponding to three
receiving antennas as a function of the position of the tool

• The “edge norms” have to be derived from the element energy norms using an
approximation to minimum energy extensions.

Fig. 2 represents a fully reproduced log corresponding to 80positions of an inductive EM
tool with the relative error varying in the range 0.01−0.1 percent and the problem size
not exceeding 14k unknowns. The result was obtained in 20 minutes on a laptop. We
mention that, in case of Maxwell problems, the problem can besolved using bothH1-
andH(curl)-conforming elements, with the two formulations delivering results that are
identical in first 8 digits in the quantity of interest !
Conclusions. The hp-adaptive finite elements not only can deliver solutions with an
accuracy not accessible for other versions of finite elements 1 in finite time and on small
platforms, but enable solutions of challenging problems with strong material contrasts
and large dynamic range.

REFERENCES

[1] R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In Hans Georg et al.
Bock, editor,ENUMAT 97. Proceedings of the 2nd European Conference on Numerical Mathematics
and Advanced Applications, Heidelberg, Sep. 28 - Oct. 3, 1997, pages 621–637, Singapore, 1998. World
Scientific.

[2] W. Cao and L. Demkowicz. Optimal error estimate for the projection based interpolation in three dimen-
sions.Computers and Mathematics with Applications, 2005. accepted.

[3] L. Demkowicz. Projection based interpolation. InTransactions on Structural Mechanics and Materials.
Cracow University of Technology Publications, Cracow, 2004. Monograph 302, A special issue in honor
of 70th Birthday of Prof. Gwidon Szefer, see alsoICES Report04-03.

10.1 percent error is typical



Mini-Workshop: Convergence of Adaptive Algorithms 23

[4] L. Demkowicz.Computing with hp Finite Elements. I.One- and Two-Dimensional Elliptic and Maxwell
Problems. in review, 2005. A copy of manuscript available from the author.

[5] L. Demkowicz. Fully automatichp-adaptivity for Maxwell’s equations.Comput. Methods Appl. Mech.
Engrg., 194:605–624, 2005.
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Convergence of an AdaptivehpFinite Element Method
WILLY DÖRFLER, V INCENT HEUVELINE

Aim. We consider finite element methods with varying meshsize as well as varying poly-
nomial degree. Such methods have been proven to show exponentially fast convergence
in some classes of partial differential equations if an adequate distribution ofh– andp–
refinement is chosen [10, Ch. 4.5]. In order to findhp–refinement strategies that show up
automatically with optimal complexity, it is a first step to establish convergent adaptive
algorithms.

To be specific, we will refer to the model problem
∫

Ω
u′v′ =

∫

Ω

{
f v−gv′

}
for all v∈ H1

0(Ω)(1)

for Ω := (0,1). We develop a strategy that automatically constructs a solution adapted
approximation space by combining localh– andp–refinement and can be proven to be
convergent at a linear rate.

For this we need an a posteriori error estimate that gives rigorous bounds to the error
in the energy norm from above and below, both uniformly inh andp. Such a result is so
far open in the case of more than one space dimension [7].

Theorem 1 (A posteriori error estimate). [10, Ch. 3.5] LetVN ⊂ H1
0(Ω) be the finite

element space over the discretisationK of Ω = (0,1), Ω =
⋃

K∈K K =
⋃n

k=1[xk−1,xk],
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with polynomial degreepK on K. Let u ∈ H1
0(Ω) a solution of (1) anduN ∈ VN be a

solution of the discrete problem
∫

Ω
u′Nv′N =

∫

Ω

{
f vN −gv′N

}
for all vN ∈VN.(2)

Then, we have the a posteriori bound

‖(u−uN)′‖L2(Ω)2≤ ∑
K∈K

{
η2

K + δ 2
K

}
(3)

for the error in the energy norm. Here,

η2
K :=

1
pK(pK +1)

‖√ωK(u′′N + fqK
+g′qK

)‖L2(K)2,(4)

δ 2
K :=

1
4

h2
K

p2
K

‖ f − fqK
‖L2(K)2+‖g−gqK

‖L2(K)2(5)

with ωK(x) := (xk− x)(x− xk−1) for all x∈ K = [xk−1,xk] and fqK
,gqK

∈ PqK
, for some

qK ∈ N with qK ≥ pK , being arbitrary approximations tof ⌊K andg⌊K , respectively. Fur-
thermore, we have the lower bound

2c0 ηK ≤ ‖(u−uN)′‖L2(K) +
1
2

hK

pK
‖ f − fqK

‖L2(K) +‖g−gqK
‖L2(K).(6)

The constantc0 is a number in(0,1) that depends on maxK∈K {qK/pK}.

The adaptive algorithm.

0. Initialization. We usually start with a (coarse) uniform decompositionK (0) and poly-
nomial degree 1.

1. Error estimation.On the given gridK ( j), j ≥ 0, we solve for the discrete solution
u( j) ∈ V( j), the finite element space onK ( j). It is assumed here, thatu( j) is the exact
solution of the resulting linear system. Now compute and store the values[ηK ]K and stop

the loop if
(

∑K∈K {η2
K +δ 2

K}
)1/2

is below a prescribed tolerance. Compute and store the

valuesβ (ℓ)
K for ℓ = 1, . . . , r that are described below.

2. Marking elements.Let the numbersηK andβ (ℓ)
K be given forℓ = 1, . . . , r andK ∈ K .

We seekA ⊂ K and[ℓK ]K∈K to be the solution of the following minimization problem

∑
K∈K

w(ℓK)
K

β (ℓK)
K

−→ min,

under the constraint

∑
K∈A

(β (ℓK)
K ηK)2 ≥ θ 2 ∑

K∈K

η2
K
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FIGURE 1. Refinement pattern onK = [xk−1,xk]. Left: Increase poly-
nomial degree by 1 (ℓ = 1). Right: Bisection ofK into K′, K′′ with
pK′ = pK′′ = pK (ℓ = 2).

for someθ ∈ (0,1). The weighting factorsw(ℓK)
K are here set to the number of degrees of

freedom that the local finite element space would have after having followed the refine-
ment patternℓ. In practice we proceed as follows: first we defineℓK by

w(ℓK)
K

β (ℓK)
K

= min
ℓ=1,...,r

{w(ℓ)
K

β (ℓ)
K

}

and then we construct a minimal possibleA fulfilling the constraint in the usual way [3].
In case the constraint cannot be fulfilled, we setA := K and letℓK := 2 for all K ∈ K .

3. Element refinement.RefineV( j) onK according to the refinement patternℓK .

If necessary (e.g., when using iterative solvers),u( j) has to be interpolated onto the
new spaceV( j+1). After having established the new decomposition, one sets up the new
linear system and continues with step 1.

Refinement pattern and computation ofβ (ℓ)
K . We consider for example the following two

possible refinements of the finite element space on the interval K (see Figure 1): we keep
K but increase the polynomial degree by 1 (ℓ := 1) or we bisectK into halves while
maintaining the polynomial degree in both the new intervals(ℓ := 2). Other refinements,
like graded bisection with fixed and optimized grading may also be added to get a list of
pattern indexed byℓ = 1, . . . , r with r ≥ 2. Applying the refinement patternℓ on K will
lead to a locally refined new finite element spaceṼℓ

N;K of functions compactly supported

in K. We now define a numberβ (ℓ)
K through the optimization problem

β (ℓ)
K

1
pK

‖√ωK resK‖L2(K) = sup
w̃N∈Ṽℓ

N;K

{ ∫
K resKw̃N

‖w̃′
N‖L2(K)

}
.(7)

If z̃(ℓ)
N ∈ Ṽℓ

N;K is the solution of
∫

K
z̃(ℓ)
N

′w̃′
N =

∫

K
resKw̃N for all w̃N ∈ Ṽℓ

N;K ,(8)

then the right hand side of (7) is given by‖z̃(ℓ)
N

′‖L2(K).
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Theorem 2 (Convergence of an adaptive method).Assume in addition to Theorem 1
that fqK

is theL2–projection to f ⌊K onto PqK
for someqK ≥ pK and that∑K∈K δ 2

K ≤
µ2 ∑K∈K η2

K holds for some sufficiently smallµ > 0. Construct the refined spaceVÑ
from VN using the strategies either (I) or (II) presented before. IfuÑ is the solution in the
finite element spaceVÑ, we have decrease of the energy error

‖(u−uÑ)′‖L2(Ω) ≤ ρ ‖(u−uN)′‖L2(Ω)

for someρ < 1. ρ andµ depend both onc0,θ ,β0 in case (I), andc0,θ in case (II).

Bibliographical notes. Convergence and optimal complexity proofs for theh–method
have been published in [3] [6] [2] [12]. Other automatichp refinement strategies have
been proposed in [4] [8] [9] [1] [11] [7] [5].

Open questions.

• Extend proof to higher space dimensions.
• Optimal complexity for an automatichp-method.
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Convergence Analysis of Adaptive Mixed and Nonconforming Finite Element
Methods

RONALD H.W. HOPPE

(joint work with Carsten Carstensen)

We are concerned with a convergence analysis of adaptive mixed and nonconforming fi-
nite element methods for second order elliptic boundary value problems. We note that in
case of standard conforming Lagrangian type finite element approximations, such meth-
ods have been considered in [4, 5]. The methods presented in this contribution provide
a guaranteed error reduction and thus imply convergence of the adaptive loop which
consists of the essential steps ’SOLVE’, ’ESTIMATE’, ’MARK’, and ’REFINE’. Here,
’SOLVE’ means the efficient solution of the finite element discretized problems with re-
spect to a given coarse shape-regular triangulationTH(Ω) of the computational domain
Ω. The following step ’ESTIMATE’ is devoted to the a posteriori error estimation of the
global discretization error. A greedy algorithm is the basic tool of the step ’MARK’ to in-
dicate selected elements for refinement. The final step ’REFINE’ deals with the technical
realization of the refinement process resulting in a refined triangulationTh(Ω).
The analysis is carried out for a model problem, namely the 2DPoisson equation in a
bounded polygonal domainΩ under homogeneous Dirichlet boundary conditions. Dis-
cretization by the lowest order Raviart-Thomas elements with respect to the triangulation
TH(Ω) amounts to the computation of(pM

H ,uM
H ) ∈ RT0(Ω;TH(Ω)×P0(Ω;TH(Ω) such

that

(pM
H ,qH)L2(Ω) +(uM

H ,∇ ·qH)L2(Ω) = 0 for all qH ∈ RT0(Ω;TH(Ω)) ,

(∇ · pH ,vH)L2(Ω) = −( f ,vH)L2(Ω) for all vH ∈ P0(Ω;TH(Ω)) ,

whereRT0(Ω;TH(Ω) stands for the associated Raviart-Thomas space andP0(Ω;TH(Ω)
refers to the linear space of elementwise constants.
The residual-type a posteriori error estimatorηH consists of edge residuals

ηH := ( ∑
E∈EH(Ω)

η2
E)1/2 with η2

E := hE‖τE · [pM
H ]E‖2

L2(E) .

Here,EH(Ω) is the set of interior edges andτE · [pM
H ] denotes the jump of the tangential

component of the discrete flux across an interior edgeE. The convergence analysis further
invokes the data term‖H fH‖0,Ω and the data oscillationoscH as given by

‖H fH‖0,Ω :=
(

∑
T∈TH

h2
T |

∫

T

f (x)dx|2
)1/2

, oscH := ( ∑
E∈EH

h2
E‖ f − fωE‖2

0,ωE
)1/2 ,

whereωE := T1∪T2 is the patch consisting of the two trianglesT1,T2 ∈TH(Ω) sharingE
as a common edge andfωE is the integral mean off with respect to the patchωE.
In the step ’MARK’, we select a setME of edgesE ∈ EH(Ω) such that for some universal
constant 0< θ < 1

θη2
H ≤ ∑

E∈ME

η2
E .
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We can show the following error reduction property which implies R-linear convergence
of the mixed flux approximations:

Theorem 1.Let p be the flux and assume thatpM
h andpM

H are the mixed finite element ap-
proximations top with respect toTh(Ω) andTH(Ω). Then, there exist positive constants
ρ < 1 andC depending only onθ and on the shape regularity ofTh(Ω) andTH(Ω) such
that

‖p− pM
h ‖2

0,Ω ≤ ρ‖p− pM
H‖2

0,Ω + C
(
‖H fH‖0,Ω + oscH

)
oscH .

On the other hand, discretizing the model problem by the lowest order Crouzeix-Raviart
finite elements and denoting byCR1

0(Ω;TH(Ω) the associated nonconforming finite ele-
ment space, we are looking foruN

H ∈CR1,0(Ω;TH(Ω) such that

∑
T∈TH

(∇HuN
H ,∇HvH)0,T = ( f ,vH)0,Ω for all vH ∈CR1,0(Ω;TH(Ω) .

A novel residual-type a posteriori error estimatorηH is derived in terms of edge residuals
involving the jump of the tangential derivatives across interior edges

ηH := ( ∑
E∈EH(Ω)

η2
E)1/2 with η2

E := hE‖[∂uN
H/∂s]‖2

0,E .

Moreover, the convergence analysis requires the consideration of the data term

µH := ( ∑
T∈TH (Ω)

|T|‖ f‖2
0,T)1/2.

and the data oscillationoscH . Again, in ’MARK’ we selectME ⊂ EH(Ω) such that for
some 0< θ1 < 1

θ1 ∑
E∈EH(Ω)

hE‖[∂uN
H/∂s]‖2

0,E ≤ ∑
E∈ME

hE‖[∂uN
H/∂s]‖2

0,E .

We further assume that the refined regular triangulationTh(Ω) from ’REFINE’ satisfies

µ2
h ≤ ρ2µ2

H , osc2h ≤ ρ3osc2H ,

for some 0< ρν < 1,2 ≤ ν ≤ 3, which can always be achieved by including the data
terms and data oscillations in the selection step ’MARK’.
Under these assumptions, the following error reduction property can be verified:

Theorem 2.Let p= ∇u and denote byuN
h ∈CR1,0(Ω;Th(Ω)) anduN

H ∈CR1,0(Ω;TH(Ω))

the nonconforming finite element approximations tou and bypN
H = ∇HuN

H andpN
h = ∇huN

h
the associated discrete fluxes. Then, there exist positive constantsρ1 < 1, andC1,C2

depending only onθ1 and on the shape regularity of the triangulations such that



‖p − pN
h ‖2

0,Ω
µ2

h
osc2h


 ≤




ρ1 C1 C2

0 ρ2 0
0 0 ρ3







‖p − pN
H‖2

0,Ω
µ2

H
osc2H


 .

The essential steps in the proofs of Theorem 1 and Theorem 2 are the reliability of the es-
timator, a discrete local efficiency, and quasi-orthogonality properties. Also, we strongly
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utilize the following fundamental relationship between the discrete mixed and noncon-
forming fluxes

pM
H (x) = pN

H(x) − 1
2

fT(x−xT) , x∈ T , T ∈ TH(Ω) ,

where fT is the integral mean off onT andxT refers to the center of gravity.
In contrast to the convergence analysis of standard Lagrangian finite element discretiza-
tions, there are no special assumptions with regard to the refinement process. In particular,
we do not need an internal node property. The convergence proofs do not require any reg-
ularity of the solution nor do they make use of duality arguments.
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On Adaptivity in hp-FEM
MARKUS MELENK

(joint work with Tino Eibner, Barbara Wohlmuth)

In the hp-version of the finite element method (FEM) convergence can be achieved by
refining the mesh or by increasing the approximation order orby a combination of both.
In fact, suitable combinations of both techniques can lead,for a large class of problems,
to very fast, exponential, convergence. The adaptive algorithm presented aim at realizing
this exponential convergence.

We consider the elliptic model problem

−∆u = f on Ω ⊂ R
2, u|∂Ω = 0.

The hp-FEM space used isSp(T ) := {u ∈ H1
0(Ω) |u|K ∈ PpK}, whereT is a shape-

regular triangulation of the polygonΩ and a polynomial degreepK ∈ N is associated with
each elementK ∈ T . The FE-solutionuFE ∈ Sp(T ) is then given by the projection ofu
ontoSp(T ) in the energy norm‖v‖2

E :=
∫

Ω |∇v|2.
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1. RESIDUAL BASED ERROR ESTIMATION

In a first step, the adaptive algorithm identifies elements with large errors. This is done
with the aid of the error indicators

η2
K :=

h2
K

p2
K

‖ f + ∆uFE‖2
L2(K) +

hK

pK
∑

e:e⊂ Ω is edge ofK

‖[∂nuFE]‖2
L2(e),

whereK denotes an element of the mesh and[∂nuFE] denotes the jump of the normal
derivative of the FE-solutionuFE across the edgee. These error indicatorsηK have the
following properties, [2]:

‖u−uFE‖2
E ≤C ∑

K∈T

η2
K , ∑

K∈T

η2
K ≤Cp2+ε{‖u−uFE‖2

E +osc( f )},

where osc( f ) is typically of higher order andp = maxK∈T pK ; the constantε > 0 is arbi-
trary. The presence of the factorp2+ε points to a reliability-efficiency gap. This gap is not
entirely an artefact of the method of proof as the following numerical example illustrates.
Example: We consider thep-version FEM (i.e., the mesh is fixed as depicted below
and the polynomial degreepK = p for all K ∈ T ) on anL-shaped domain with exact
solution (given in polar coordinates where the origin is located at the reentrant corner)
u = r2/3sin(2/3ϕ)χ , whereχ is a smooth cut-off function. We note that the singularity
of u is located at a mesh point.
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Example: In order to get more insight into thep-dependence of the error estimator,
we performed calculations where the exact solution (in polar coordinates) has the form
u(r,ϕ) = rα sin(αϕ)χ for a smooth cut-off functionχ and different choices of the param-
eterα. Neumann boundary conditions are prescribed on the bottom part of the compu-
tational domain (shown below) and the error indicatorsηK for the elementsK touching
the Neumann part of the boundary are appropriately adjusted. Again the mesh is fixed (as
shown below) and the polynomial degree is uniformly raised.We note that the singularity
(marked by a dot in the geometry below) is not at a mesh point. The effectivity index√

∑K∈T η2
K

‖u−uFE‖E
is plotted versus the polynomial degreep in the following graph. We note that

the dependence on the polynomial degreep is significantly reduced as compared with the
preceding example.
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2. ADAPTIVE ALGORITHMS

We present an algorithm that is based on locally testing for analyticity; details and ref-
erences to related work can be found in [1]. For an intervalI = (−1,1), it is well-known
that a functionu∈ L2(I) is analytic onI if and only if the coefficientsun of the expansion

u = ∑n∈N0
unP(0,0)

n , where the functionsP(0,0)
n are the classical Legendre polynomials,

decay exponentially inn. Tensor product arguments extend this result to domains with
product structure (squares, hexahedra, etc.). The following result generalizes this obser-
vation to triangles and tetrahedra:

Theorem: Let T = {(ξ1,ξ2)|−1 < ξ1 < 1,−1 < ξ2 < ξ1} be the reference triangle
and define theL2(T)-orthogonal polynomials

ψi, j(ξ1,ξ2) := P(0,0)
i (2

1+ ξ1

1− ξ2
−1)

(
1− ξ2

2

)i

P(2i+1,0)
j (ξ2),

where the polynomialsP(α ,β )
i are the standard Jacobi polynomials. Then anyu∈ L2(T)

can be expanded asu = ∑i, j∈N0
ui, jψi, j , and we have the following characterization of

analyticity:u is analytic onT if and only if there existC, b > 0 such that

|ui, j | ≤Ce−b(i+ j) ∀i, j ∈ N0.

An analogous statement holds for tetrahedra as well, [1].
With this characterization in hand, one can formulate anhp-adaptive algorithm whose

inner loop is as follows:

(1) based on the error indicatorsηK identify the elements with large error (in the
numerical example below:η2

K ≥ ση2, whereη2 = 1
#T ∑K∈T η2

K andσ = 0.75)
(2) for each elementK that has a large error do:

(a) expand̂uK := uFE|K ◦FK (here,FK : T → K is the element map) aŝuK =

∑i+ j≤pK
ui, jψi, j

(b) determineCK , bK by fitting (in a least squares sense) the coefficientsui, j to
the lawui, j = CKe−bK(i+ j)
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(c) If bK ≥ b (in the numerical example:b = 0.9), then increase the polynomial
degreepK of elementK by 1. If bK < b, then split the elementK into 4 ele-
ments (”red” refinement) and perform the appropriate mesh closure (remove
hanging nodes).

The following numerical example illustrates the performance of the algorithm.
Example:

We consider theL-shaped domain as depicted below with an exact solutionu of the
form u(r,ϕ) = r2/3sin(2/3ϕ)χ , where the cut-off function is smooth and the origin is
located at the reentrant corner. In order to ensure that a sufficient number of coefficients
in the expansion is available for all elements, the initial polynomial degree ispK = 3
for all elements. We depict the meshes and polynomial degreedistributions for steps 15
and 25 of the adaptive algorithm. Additionally, we show for step 25 of the algorithm the
polynomial degree distribution along the line connecting the origin with the point(1/2,1);
furthermore, we plot the error versusN1/3, whereN is the problem size. We observe that

the algorithm yields a convergence behavior of the form‖u−uFE‖E ≤Ce−bN1/3
.
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A Convergent Adaptive Algorithm for the Laplace-Beltrami O perator
PEDRO MORIN

(joint work with Khamron Mekchay, Ricardo H. Nochetto)

We consider a surfaceΓ ⊂ R
d as a graph of a functionz(x) defined on a bounded polyg-

onal regionΩ ⊂ R
d−1, d ≥ 2, namely,

Γ :=
{

(x,z(x)) ∈ R
d | x ∈ Ω ⊂ R

d−1
}

,

wherez : Ω → R is aC1 function. In general we may also include the case whenz is C0,1

where discontinuities of∇zalign with polygonal lines onΩ.
We consider a Dirichlet boundary value problem for Poisson’s equation onΓ

−∆Γu = f on Γ,(1)

u = 0 on∂Γ,(2)

where f ∈ L2(Γ). Here,∆Γ denotes the Laplace-Beltrami operator on the surfaceΓ. In
weak form this problem reads

u∈ H1
0(Γ) :

∫

Γ
∇Γu ·∇Γϕ =

∫

Γ
f ϕ ∀ ϕ ∈ H1

0(Γ),(3)

where∇Γu∈ R
d denotes the tangential gradient ofu computed onΓ.

To find a discrete approximation we consider a polyhedral approximationΓk of Γ, a
finite element spaceVk, and define

uk ∈ Vk :
∫

Γ
∇Γuk ·∇Γϕk =

∫

Γ
Fkϕk ∀ ϕk ∈ Vk.(4)

ForT ∈ Tk, we define theenergy error indicatorηk(T) by

η2(T)
k := h2

T ‖RT(uk)‖2
L2(T) + ∑

S∈S o
k ;S⊂∂T

hS‖JS(uk)‖2
L2(S) ,

where

RT(uk) := (∆Γkuk +Fk)|T ,(5)

JS(uk) := (∇Γuk
)+ ·n+

S +(∇Γuk
)− ·n−S ,(6)

and theenergy error estimatorηk := (∑T∈Tk
η2

k (T))1/2.
Similarly, for T ∈ Tk we definethe geometric error indicatorζk(T) by

ζk(T) := ‖ν −νk‖L∞(T) ‖∇Γuk‖L2(T̃) ,

and thegeometric error estimatorζk := (∑T∈Tk
ζ 2

k (T))1/2. Hereν and νk denote the
normals toΓ, Γk respectively. We also define thegeometric oscillation

λk(T) := ‖ν −νk‖L∞(T) and λk := max
T∈Tk

λk(T).

With this definition we prove the followingUpper Bound
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There exist constantsC1 andC2 depending only on shape regularity and
the surfaceΓ such that

‖∇Γ(u−uk)‖2
L2(Γ) ≤C1η2

k +C2ζ 2
k .(7)

We also prove the followinglower bound

There exist constantsc3,c4 andc5 depending on shape regularity and the
surfaceΓ such that forT ∈ Tk

η2
k (T) ≤ c3‖∇Γ(u−uk)‖2

L2(ωk(T)) +c4osc2
k(ωk(T))+c5ζ 2

k (ωk(T)),(8)

whereωk(T) region consists all elements inTk that share at least a side
with T.

ForT ∈ Tk the oscillation term is defined by

osc2
k(T) := h2

T

∥∥RT(uk)−RT
∥∥2

L2(T)
+hT ∑

S⊂∂T

∥∥JS(uk)−J S

∥∥2
L2(S)

,

whereRT andJ S areL2-projections ofRT(uk) andJS(uk) onto Pm(T) andPm(S),
respectively, the spaces of polynomial functions of degree≤ m onT, andS, respectively.

For ωk(T) ⊂ Γk we defineosc2
k(ωk(T)) := ∑T⊂ωk(T) osc2

k(T) and denoteosck :=
osck(Γk); and analogously we defineζ 2

k (ωk(T)).
The final ingredient for convergence is given by a quasi-orthogonality relation:

The exist constantsC6,C7 > 0 and a numberk∗ ≥ 0 such thatΛ0 :=
(1

2 −ρ2C6λ 2
k∗) ∈ [1

4, 1
2), and for anyk≥ k∗

(9) ‖∇Γ(u−uk+1)‖2
L2(Γ)

≤ ‖∇Γ(u−uk)‖2
L2(Γ) −Λ0‖∇Γ(uk−uk+1)‖2

L2(Γ) +C7ζ 2
k ,

providedλk is decreasing.

This is aconditionalquasi-orthogonality relation between∇Γ(u−uk) and∇Γ(uk−uk+1),
which is valid only ifλk is small enough. But this does not matter. Our algorithm ensures
a monotone reduction ofλk which in turn will lead to convergence. To be more specific,
we define the following:

Marking Strategy: Given parameters 0 < θe,θg,θo < 1, construct a
subset T̂k of Tk such that the followings hold:

(M1) : ∑
T∈T̂k

η2
h(T) ≥ θ 2

e η2
h ,(10)

(M2) : ∑
T∈T̂k

ζ 2
h (T) ≥ θ 2

g ζ 2
h ,(11)

(M3) : ∑
T∈T̂k

osc2
h(T) ≥ θ 2

o osc2
h.(12)
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Interior Node Property: Refine each marked element T ∈ T̂k to obtain
a new mesh Tk+1 compatible with Tk such that

T and the adjacent elements T ′ ∈ Tk of T, as well as their
common sides, contain a node of the finer mesh Tk+1 in their
interior.

Reduction of geometric oscillation: Given a reduction factor
θλ < 1, refine all T ∈ T̂k such that for all T ′ ∈ Tk+1(T) we have

λk+1(T
′) ≤ θλ λk(T),

where Tk+1(T) := {T ′ ∈ Tk+1 | T ′ is obtained by refining T}.

The procedure REFINE is performed in several steps as follow:

Refining Strategy: Given a sequence {ak}ց 0, a marked set T̂k, geo-
metric oscillations {λk(T)}T∈Tk

, and a fixed reduction rate of element size
0 < γr < 1;

(1) Refine all T ∈ T̂k according to Interior Node Property;
(2) Refine more according to Reduction of geometric

oscillation;
(3) Refine more if needed so that for any T ∈ Tk

∀T ′ ∈ Tk+1(T) : λk+1(T
′) ≤ min{ak,λk(T)} ;

(4) Refine more if needed so that for any T ′ ∈ Tk+1(T), T ∈ Tk,

(13)
|T ′

k |
|T ′| ≤ γT

( |T|
|T ′|

) 2
d−1

where γT :=

{
γr if T ∈ T̂k

1 if T /∈ T̂k
,

and T ′
k ⊂ T is the projection of T ′ back to T.

This algorithm ensures thatλk → 0 in a monotonic way, which implies that eventually
the orthogonality relationship (9) will eventually start to hold and will continue to hold
thereof. Consequently, following similar ideas to those in[1], we can prove the following
error reductionformula:

There exists a numberk0 ≥ 0 and constantsξ < 1, γ, C > 0 such that
for anyk ≥ k0 the sequence generated by a repeated application of the
refinement procedure above satisfies

(14) (‖∇Γ(u−uk+1)‖2 + γζ 2
k+1) ≤ ξ (‖∇Γ(u−uk)‖2 + γζ 2

k )+Cosc2
k.

Since this holds for allk≥ k0 we haveconvergenceof the adaptive loop.

A full version of this result, together with all the details and the missing proofs will be
published in a forthcoming article.
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Convergence of the Equidistribution Strategy
KUNIBERT G. SIEBERT

(joint work with Andreas Veeser)

We consider linear symmetric elliptic boundary value problems with homogeneous Dirich-
let boundary values in two space dimensions. For theadaptive approximationof the exact
solutionu we use a discretization bypiecewise linear finite elementsover a sequence of
conforming and shape-regular triangulations{Tk}k∈N0. Here, we start with an initial
triangulationT0 and triangulationTk+1 is generated by (local) refinement ofTk usingbi-
sectioningof selected elements. This in turn leads to a sequence ofnestedfinite element
spaces{V̊k}k∈N0. For estimating the true error we use the standard residual type error
estimator where the error indicator on a single element splits into theelementand jump
residual [1, 9].

The convergence analysis of adaptive finite element discretizations in higher space
dimensions was initiated by Dörfler in [3]. Involving a notion of data oscillation, Morin,
Nochetto and Siebert could avoid the assumption of Dörfler,that given data on the initial
grid is sufficiently resolved [5, 6, 7]. The ingredients for the convergence proof are

• Orthogonality of the error relating the actual error to the error on the next grid
and error reduction due to the nesting of the finite element spaces.

• A refinement rule for single elements, which guarantees thatfor all marked ele-
ments in each of its sides and in its interior a new node in the next triangulation
is created.

• A strict error reduction property up to data oscillation using the fixed fraction
marking for the estimator proposed by Dörfler [3].

• A strict oscillation reduction up to error reduction using afixed fraction marking
for data oscillation by Morin et al. [5], generalized by [2] and [4].

However, adaptive algorithms used in practice, like the equidistribution strategy de-
vised by Babuška and Rheinboldt e.g. [1], seem to converge without an interior node
property, without a fixed fraction marking strategy, and without treating data oscillation.
An adaptive algorithm using the equidistribution strategyis given by:

Given tolerance TOL > 0 and safety parameter θ ∈ (0,1):

(1) Choose an initial mesh T0, set k := 0.
(2) Compute the discrete solution uk on Tk.
(3) Compute the local indicators Ek(T) and the total

error estimate Ek(Tk). If Ek(Tk) ≤ TOL stop.
(4) Define

T̂k :=
{

T ∈ Tk | Ek(T) ≥ θ TOL |Tk|−1/2
}

.

(5) Refine Tk into Tk+1 by refining all elements in T̂k

by two bisections.
(6) Set k := k+1 and goto (2).
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In this talk, we prove the convergence of the above algorithm. To be more precise, we
prove that any given toleranceTOL > 0 is reached in a finite number of steps. Note, that
no special marking for data oscillation is applied and the refinement rule does not require
the creation of new nodes in the interior of marked elements.The convergence proof is
based on the following results:

• The sequence of mesh-size functions{hk}k∈N0 converges to some limiting func-
tion h∞ in L∞(Ω). Note, that in generalh∞ 6≡ 0 holds.

• For any sequence of tolerancesTOLk > 0 in thekth iteration of an adaptive pro-
cedure with limk→∞ TOLk we prove that the limit of the element residual is 0. The
proof is based on an idea used by Siebert and Veeser for controling the element
residual in a convergent algorithm for the elliptic obstacle problem [8].

• Using the equidistribution strategy, the contribution of non-marked elements to
the total estimateEk(Tk) satisfiesEk(Tk\ T̂k) < θTOL. Contributions of marked
elements are controled via discrete local efficiency by the error reduction and the
element residual [3] which both converge to 0.

The presentation is part of ongoing research and it seems that the presented ideas can
also be used for proving convergence of other practical marking strategies, like the popular
maximum strategy [1].

REFERENCES
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Optimal Adaptive Finite Element Methods without Coarsening
ROB STEVENSON

Adaptive finite element methods for solving elliptic boundary value problems have the
potential to produce a sequence of approximations to the solution that converges with a
rate that is optimal in view of the polynomial order that is applied, also in the, common,
situation that finite element approximations with respect to uniformly refined partitions
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exhibit a reduced rate due to a lacking (Sobolev) regularityof the solution. The basic idea
of an adaptive finite element method is, given some finite element approximation, to create
a refined partition by subdividing those elements where local error estimators indicate that
the error is large, and then, on this refined partition, to compute the next approximation,
after which the process can be repeated. Although, because of their success in practice,
during the last 25 years the use of these adaptive methods became more and more widely
spread, apart from results in the one-dimensional case by Babuška and Vogelius ([1]),
their convergence was not shown before the work by Dörfler ([6]), that was later extended
by Morin, Nochetto and Siebert ([7]).

Although these results meant a break through in the theoretical understanding of adap-
tive methods, they do not tell anything about the rate of convergence, and so, in particular,
they do not show that adaptive methods are more effective than, or even competitive with
non-adaptive ones in the situation that the solution has a lacking regularity.

Recently, in [2], Binev, Dahmen and DeVore developed an adaptive finite element
method which they showed to be of optimal computational complexity. Whenever for
somes > 0, the solution is in the approximation classA s, meaning that there exists a
sequence of partitions of the domain inton elements such that the best finite element ap-
proximation with respect to this partition has an error in energy norm of ordern−s, then
the adaptive method produces a sequence of approximations that converge with the same
rate, where, moreover, the cost of computing such an approximation is of the order of
the number of elements in the underlying partition. A combination of the (near) charac-
terization ofA s in terms of Besov spaces from [3], and Besov regularity theorems from
[5, 4], indicate that under very mild conditions the value ofs is indeed only restricted by
the polynomial order. An additional condition was requiredon the right-hand side, the
discussion of which we postpone to the end of this abstract.

The key to obtain the optimal computational complexity result was the addition of a
so-called coarsening or derefinement routine to the method from [7], that has to be applied
after each fixed number of iterations, as well as, in view of the cost, to replace the exact
Galerkin solvers by inexact ones. Thanks to the linear convergence of the method from
[7], and the fact that after this coarsening, the underlyingpartition can be shown to have,
up to some constant factor, the smallest possible cardinality in relation to the current error,
optimal computational complexity could be shown.

The result of [2] is of great theoretical importance, but theadaptive method may not
be very practical. The implementation of the coarsening procedure is not trivial, whereas,
moreover, numerical results indicate that coarsening is not needed for obtaining an opti-
mal method. In this talk, we will present a proof of this fact (see [8]). We construct an
adaptive finite element method, that, except that we solve the Galerkin systems inexactly,
is very similar to the one from [7], and show that it has optimal computational complexity.

As in [2, 7], we restrict ourselves to the model case of the Poisson equation in two
space dimensions, linear finite elements, and partitions that are created by newest vertex
bisection. Our results, however, rely on three ingredientsonly, two dealing with residual
based a posteriori error estimators, and one dealing with bounding the number of bisec-
tions needed to find the smallest conforming refinement of a partition. The two results on a
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posteriori error estimators extend to more general second order elliptic differential opera-
tors, to more space dimensions, and to higher order finite elements. It can be expected that
also the result about newest vertex bisection extends to more space dimensions, which,
however, has to be investigated.

To solve a boundary value problem on a computer, it is indispensable to be able to
approximate the right-hand side by some finite representation within a given tolerance.
As (implicitly) in [7, 2], we use piecewise constant approximations, but, in particular for
higher order elements, by a modification of the adaptive refinement routine, piecewise
polynomial approximations of higher order can be applied aswell. Our aforementioned
result concerning optimal computational complexity is valid only under the additional
assumption that if the solutionu ∈ A s, then for anyn we know how to approximate
the right-hand sidef by a piecewise constant function with respect to a partitionof n
elements such that the error in the dual norm is of ordern−s. For s∈ (0, 1

2], which is
the relevant range for piecewise linear elements, we conjecture that ifu∈ A s, then such
approximations for the corresponding right-hand side exist, which, however, is something
different than knowing how to construct them. Forf ∈ L2(Ω), however, the additional
assumption is always satisfied, where for constructing the approximations of the right-
hand side we may even rely on uniform refinements.

The adaptive methods from [7, 2] apply only tof ∈ L2(Ω). Our additional assumption
on the right-hand side is weaker than that of [2], but forf ∈ H−1(Ω) not in L2(Ω), it has
to be verified for the right-hand side at hand.

At the end of the talk we discuss some work in progress. We present an extension of
our results for solving the Stokes equations, and discuss a possible application for goal
oriented adaptivity.
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Convergent Adaptive Finite Elements for Rough and Conforming Obstacles
ANDREAS VEESER

(joint work with Kunibert G. Siebert)

There has been recent progress in the analysis of adaptive finite element methods for
linear elliptic problems, addressing also the issues of optimality, convergence rates, and
complexity. For an overview of these results, we refer to theother contributions of this
report and the references therein.

This contribution concerns adaptive finite elements and their convergence for the ellip-
tic variant of the obstacle problem. The obstacle problem may be considered as a model
case for variational inequalities – a problem class that is ubiquitous and includes, e.g.,
contact and phase transition problems. Important featuresof the obstacle problem are
described by the following properties of its resolution operator: nonlinearity, nondiffer-
entiability, and loos of information.

Let Ω ⊂ R
d, d = 2,3, be a polyhedral Lipschitz domain andf ∈ L2(Ω) a load term.

The lower obstacle is given by a finite sequence of pairs{(Ki ,ψi)}n
i=1 such that

(1) eachKi ⊂ Ω is a nondegeneratem-simplex,m∈ {d−1,d},
(2) their interiors (with respect to the induced topology) are pairwise disjoint,
(3) eachψi is an affine function overKi satisfyingψi ≤ 0 on∂Ω∩Ki .

Notice that this covers continuous, piecewise affine obstacles but allows also for (combi-
nations of) discontinuous and ‘singular’ obstacles.

Let u be the typically unknown minimizer of the ‘inhomogeneous Dirichlet energy’

I [v] :=
∫

Ω
1
2|∇v|2− f v

in the set
F := {v∈ H1

0(Ω) | v≥ ψi onKi for i = 1, . . . ,n},
which is nonempty, convex, and closed thanks to the trace theorem. Such minimizer
exists, is unique, and is characterized by the variational inequality

∀v∈ F 〈∇u,∇(v−u)〉 ≥ 〈 f ,v−u〉,
where〈·, ·〉 indicates theL2-scalar product. We are interested in both the computational
approximation of the minimum pointu and the minimum valueI [u].

To this end, we design an adaptive algorithm with continuouslinear finite elements.
The algorithm is based upon an iteration of the following main steps:

solve→ estimate→ mark→ refine,

i.e., solve for the minimumuk of I in the current finite element subsetFk of F and
estimate its error to test if it already meets a prescribed tolerance. If not, mark certain
elements and refine them in order to obtain a new, enlarged discrete feasible setFk+1.

The realization of the steps ‘estimate’ and ‘mark’ involve anew a posteriori estimator
Ek for the error in the energy minimumI [uk]− I [u]. Although it is somehow related to the
hierarchical estimator (see, e.g., [2]), it differs from other previous ones in various aspects,
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e.g. error notion, accumulation of indicators, and range ofcovered obstacles. Our main
result about the estimatorEk is as follows.

Theorem 1(Upper bound). The estimatorEk bounds the error in the energy minimum,

I [uk]− I [u] 4 max{ 1
2E 2

k ,Ek}.
The hidden constant depends ond, the shape regularity of the initial mesh, and, only if
there are isolated contact nodes, in addition on the load term f and the lower obstacle.

The proof is based upon the inequality

(1) ρk(−Dk) 4 Ek

where the quantity

ρk(−Dk) := sup{〈−Dk,ϕ〉 | ϕ ∈ H1
0(Ω) s.th.‖∇ϕ‖ ≤ 1, uk + ϕ ∈ F}

is a modification of theH−1(Ω)-norm of the residual or the derivativeDk of I in the
current approximate minimizeruk, i.e.

∀ϕ ∈ H1
0(Ω) 〈Dk,ϕ〉 = 〈∇uk,∇ϕ〉− 〈 f ,ϕ〉.

Notice thatρk(−Dk) combines the usualL2-constraint for the gradient of the test function
with a constraint of pointwise nature. The special form of the upper bound arises from
the relationshipI [uk]− I [u] ≤ max{ 1

2ρk(−Dk)
2,ρk(−Dk)}, which is a generalization of

the unconstrained case.
Important ingredients of the proof of (1) are the concept of full contact introduced in

[1] and an adaptation of the projection operators on stars in[3].

The upper bound in Theorem 1 is accompanied by appropriate lower bounds such that,
exploiting the technique in [5], one can derive the following result.

Theorem 2 (Convergence). Suppose that the initial triangulation is subordinated to the
lower obstacle.

Then the indicated algorithm converges in a finite number of steps or produces an
infinite sequence of approximate minima{uk}k∈N such that

I [uk] → I [u] and uk → u in H1(Ω) (k→ ∞).

The algorithm has been implemented within the framework of the finite element tool-
box ALBERTA [4]. Our numerical results corroborate and complement the theoretical
results. In particular, they indicate that typicallyI [uk]− I [u] ≈ 1

2E 2
k and that the con-

vergence rate in terms of the number of unknowns coincide with the one of nonlinear
approximation ofu.

As an illustration, we present an example with a discontinuous and ‘singular’ ob-
stacle, the exact solution of which has singularities that are related to reentrant corner
singularities for the linear Poisson equation. Figure 1 depicts a corresponding finite
element minimizer on the left and the decay ofEk versus the number of degrees of
freedom in a log-log scale on the right. In this particular example, our theory ensures
1
2‖∇(uk−u)‖2 ≤ I [uk]− I [u]≈ 1

2Ek and so the shown estimator decay rate implies an al-
most maximum decay rate for linear finite elements in theH1-norm, which here cannot
be reached by uniform refinement.
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FIGURE 1. Example with a discontinuous and singular obstacle: a
finite element minimizer (left) and estimator versus numberof degrees
of freedom with maximum decay rate for linear finite elementsin log-
log scale (right).
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