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Introduction by the Organisers

The Oberwolfach mini-workshop “Convergence of Adaptivg@ithms” originated from
a previous Oberwolfach meeting 16/2004 on the topic of “@dkptive Methods for Par-
tial Differential Equations” which took place in Spring 200 One motivation for the
mini-workshop was the resolution of the key issues of ‘ereauction’ in adaptive finite
element schemes and the necessity, or otherwise, for ®oiag strategies’ in adaptive
algorithms. While the former topic might be regarded as ntioeeretical, the latter has
important practical repercussions in the sense that ealgmvery practical numerical
example would indicate that coarsening is unnecessary.eMenyvthe existing proofs of
optimal complexity would seem to suggest that coarseniegsential if one is to control
discretisation error at an optimal computational cost.

Set against this background, the mini-workshop compridetBdeading experts on
the convergence of adaptive finite element methods repiageéhdifferent countries and
three continents, who identified and discussed the follgwjpecific open questions:

(1) Forwhich class of problems and adaptive finite elemeihogs can convergence
and error reduction properties be guaranteed?

(2) In what sense and for which classes of algorithm and mefgiement schemes
are adaptive algorithms optimal?

(3) Is coarsening necessary to guarantee the optimality aflaptive algorithm?

(4) Can the proofs of convergence for adaptive algorithmedvged over from the
bulk criterion to other more widespread criteria often usgatactice, such as the
maximum criterion?
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During the mini-workshop 11 talks were given concerningpisa finite element me-
thods and covering a range of new extensions to the claggioakrgence analysis were
presented. The talks directly addressed the importargsssgluding the role of coarsen-
ing, marking ruleshp-adaptive refinement strategies, discrete weighted rab{@WWR)
adaptive methods in addition to the convergence of nonaramfig and mixed methods.
The participants also presented very recent work on agjgitato new classes of equa-
tions, e.g. for rough and non-conforming obstacles, forltaplace—Beltrami operator
and the Stokes equations.

The presentations were complemented by several more \&ittgirrg discussion ses-
sions on open questions and future directions in the fielgahticular, it was widely felt
that in the case of the class of adaptive algorithms for wthiehe is a proof of optimality,
more numerical experiments are necessary to achieve ardeegerstanding of the in-
sights and issues highlighted by the abstract analysisedar, numerical experiments
were seen to be important in providing quantitative infotiotaon the generic constants
that appear in the abstract error bounds, where it appef@asible to derive realistic es-
timates of the constants that arise in the existing theama similar vein, it would also
be of considerable interest to quantify the saving in comiantal effort through the use
of different adaptive schemes and in comparison to unifafimement. Furthermore,
the theory may be used to identify specific examples whereseaing steps are really
needed to attain an optimal algorithm. More generally, tlemtification of a suite bench-
mark tests and comparisons with other adaptive stratefgiesyhich current theory is
lacking, was also suggested.

The importance of understanding the relationship betwleemumerical solution and
the best approximation in the pre-asymptotic range as oneceastruct problems for
which the cost of computations in the asymptotic range isibitively high.

Duality-based adaptive strategies compute a weightindvefrélevance of the data
in the course of the calculation. Starting with this aspéctyas also discussed how
the convergence analysis of adaptive algorithms can betketa a data analysis of the
problem. Participants proposed that the analysis of dublised strategies provides an
indication that after sufficiently many adaptive refinen&aps it may simply be the case
that the best strategy to continue the computation withaumfrefinement. The presence
of singularities in the solution may play a subtle role here.

Part of the session was dedicated to adaptive refinemetdgtra in three space di-
mensions, including the question of convergence of adaptiethods in this setting.

Another topic hotly discussed were outstandirggapproximation issues. Participants
agreed that automatic decision mechanisms whemd whenp-refinement is preferable
but that there is a definite need for further fundamental owements. The issue of the
development and analysis of reliable and efficient erramegors is less developed for
the p- and hp-version of the finite element method than for theersion. Similarly,
convergence proofs fdrp-adaptive finite element methods need to be addressed mefutu
in more detail.

MSC Classification: 65N12, 65N15, 65N30, 65N50
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Abstracts

Some Thoughts about Convergence of the DWR Method
ROLAND BECKER AND ROLF RANNACHER

1. INTRODUCTION

The convergence theory for adaptive finite elements hasitlgaeceived tremendous
improvements, which are reported on in this mini-worksh@pnvergence of the adap-
tively generated sequence of discrete solutions towaklsdlution of an elliptic partial
differential equation in the energy norm is proved [5, 6[J @awen the optimal complexity
can be shown in certain cases [4]. Unfortunately, thesdtsesannot directly be used to
prove that similar convergence properties also hold fodWéR method [1] for “goal-
oriented” mesh adaptation. In this talk we investigate stopes related to convergence
of this method.

Let Q c RY,d = 2,3, be a bounded domain with polygonal boundagy. For given
f € L?(Q), we consider the usual model problem

Q) —Au=f in Q, u=0 ondQ,

Let Vi, € H3(Q) be a conforming finite element space constructed from atjoart;, of
Q, andup € Vi, the Ritz projection of the solution € H}(Q), defined by

2) (Oun, Ovn) = (f,vh)  VVh € Vi

Here, (-,-) denotes th&? scalar product oif. The basic idea of goal-oriented a posteri-
ori error estimation is to bound the error with respect tovegifunctionald € H=1(Q).

In many interesting cases the functional is more singuldrlaas to be regularized. We
then introduce the adjoint solutiane H&(Q) by

(3) (Ov,02) = J(v) WeHHQ).
With this we find that, with an appropriate interpolation oger I,
JW) —JI(un) = (O(u—up),02) = (f,z—142) + (Oup, 0(z— 1n2))
(4) = Y {(f+8unz—1h2)k — 3([Ontn], 2~ 1h2)ox }
Ke

and the standard mesh adaptation procedures can be empldgectver, here the un-
known functionz has in general to be approximated, aridwer bound for the estimator
with respect to the error is generally impossible. Such &tdvound exists for estimation
with respect to the energy norm and is a key property for cayarece proofs.

2. SOME TECHNICAL PROBLEMS

The convergence analysis of the DWR method depends on twocatiingredients,
which are presented next. They can be formulated as indepéndestions concerning
the finite-element Ritz projection.
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2.1. Stability of second-order differences.The first hypothesis concerns the stability
of the finite element solution. Leéf denote the cells of the mest,, and E an edge of
the cell boundangK. Then, we conjecture that fare C?(Q)
(5) S hedll[onun][|E <C(u), Ke Fh, h>0.

ECoK
The left-hand side can be viewed as a second-order differgunctient which we denote
by Dﬁ and the inequality (5) resembles a local version of the ocootiis a priori esti-
mate ||J%ul| < C||f|. We further conjecture that (5) even holds true owith certain
singularities.

It is easy to prove that (5) holds on quasi-uniform mesheshvhre characterized
by the additional property that the ratio of maximal celB#hi to minimal cell-width is
bounded, i.e.hmax/hmin < C. The proof relies on a quasi-optimzf-error estimate and
the main idea is shortly given:

hic | Dfun Ik

hic | DR (Un—1hu) [ + b | DAl

che?[|0ellg + che [ O(u—Inu) | + hic Y DAlnulk
ch?10ellg + ch | D2ullg < cf| DUl

where K denotes a cell-patch neighborhood f Unfortunately, this argument only
works onquasi-uniforrmeshes, since tHecal error estimate (see [7])

| Dellesk < hicc(u)

|DAUn |

IN

IN N CIA

does not hold in this strong form on meshes Withx/hmin — .

2.2. Accuracy of averaging on locally refined meshesOur next assumption is again
well-established on quasi-uniform meshes. It is needethdorttically justify the ap-
proximation of the interpolation error of the adjoint sadurt, either by computation with
higher accuracy (finer mesh or high-order polynomials) diolegl post-processing of the
discrete solution computed on the same mesh.

If we suppose that the meshs;, is strictly uniform with mesh-widthh, then, it is
known that in the nodal points, the ermr z, allows an asymptotic expansion in powers
of h which can be expressed in the form (see [3])

(6) Inz—2y = In(z—2n) = h2lyw+ 1y,

with someh-independent functiow € H3(Q) and a remaindej 1| < c||03z] .

Our hypothesis is that a similar error expansion as (6) hamidscally refined meshes,
where the functionv depends on the mesh but this dependency can be localizede To b
more precise we assume that the domain can be decomposédadmuesh domain§y,
and Q\ Qy,, such that

@) |hZ—Zh=h2|hW—|— h3Th, X € Qp, |Q\ Q| <Ch.

In order to see how assumption (7) might be used for estim#timerror in approximation
of the dual solutiorz we give a heuristic argument.
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Let I, denote a post-processing operator, for example patchewiaératic interpola-
tion. The simplest error estimator of the DWR method usesamation of z by 1z,
wherez, is the dual solution on the same mesh. The error term intedibyg this can be
written as (settinge:=u—up)

(e, 0(z— Inzy)) = (O&, 0(z— 1h2)) + (D&, Oin(2— 2y)).
We only need to estimate the last term, supposing enouglarggwf z using the expan-
sion (7). The leading error term can now be estimated by
(Oe,Oln(Inz—2z)) = h*(0e,0(Ihpw— Ihw))q, +h.o.t
Ch?||0?w|| + h.o.t

IN

Hence, (7) seems to be the key to prove that the proposedxamation is actually of
higher order.

3. A CONVERGENT ALGORITHM

In order to guarantee the convergence of the DWR method, tredince at each step
of the mesh refinement iteration an additional finer mesh igcused to control the
accuracy of the dual solution. We call thegendarme meshe&easoning for the corre-
sponding spaces, we have the following scheme:

\7k— 1 \7k \7k+1
@] - U —
V-1 Vk Vi1 P

At each step of the iteration the meshes are refined by one ¢fihfollowing rules. The
first rule is to refine the base mesh according to the estimator obtained by approxima-
tion of the dual solution on the gendarme mesh:

M~ Y IRk l|Z— Izl
Ke Ik

The same refinement procedure is performed for the gendamsh.nThe second rule
is to refine the gendarme mesh by an energy error estimattindaxdjoint equation. In
order to decide which of the two rules is used, we introduaogence of tolerances ),
g — 0. With this we define a sequence of subindi&esvhich are defined such th&t
is the first index for which the tolerane is satisfied,ny < & < ny—1. The description
of the algorithm is completed by asking for a global refinetwdithe gendarme mesh if
k=k; for somel, and refinement with the weighted estimator otherwise. Bystroiction,
the meshes are always nested, but the basic meshes do nabmeedain a sequence of
global refinement. Since this is however true for the genéarmash, we easily obtain the
following result.

Proposition 1. The “gendarme algorithm” ensures convergence in the sease t

lim J(u) = J(u).

k—o0
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4. COMPLEXITY ESTIMATE

For analyzing the algorithmical complexity of the DWR medihwe may try to adopt
the arguments presented in [2, 8] for energy-norm errorrobnMeshes are generated
by hierarchical refinement, which leads to a treeadimissiblemeshes. Letyy =
{V admissible dim(V) = N}. Suppose, we have an error measgreUnen " — R,
for example constructed from the error representationidich is quasi-monotone,

8) Vav = gV) <cpa(V).
For givene > 0, we define¥; := {V admissible ¢(V) < €}, and assume that
(9) supe~ S inf dim(V) < +oo,

>0 VeYe

for somes > 0. We make the following crucial assumption on the refinenadgarithm.
The spaced) are constructed such that, with a constant 1, there holds, with¥ :=
{VOVicr: o(V) < p*o(Va)},

(10) N = dim(Vi) < dim(V), V € %,

Proposition 2. Let the meshes be constructed such that (10) holds and fuatiseme
that (9) is satisfied. Let > 0 be given. Suppose that;, is the first mesh for which
p" < £. Then there exists a constanindependent o€ andn such that

(11) Ny — Ny < ce /s,

Of course, this gives an optimal complexity estimate ondpifidition (10) can be satisfied
with optimal complexity, which is a hard problem still to ba\sed.
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Adaptive Finite Element Methods with Optimal Complexity
PETERBINEV
(joint work with Wolfgang Dahmen and Ronald DeVore)

Adaptive methods are frequently used to numerically compuotutions to elliptic equa-
tions. While these methods have been shown to be very sticgtesmputationally, the
theory describing the advantages of such methods oventbeiadaptive counterparts is
still not complete. Recently, it was proven (see [14], [18Bp convergence of such meth-
ods. These proofs of convergence still do not show any gteedradvantage of these
adaptive methods since there is no analysis of ttat& of convergenci terms of the
number of degrees of freedom or the number of computatidms ofly known algorithm
with a proven rate of convergence was the one for the unieacese [3].

In our recent paper [2] we propose an Adaptive Finite Elenvethod (AFEM) and
prove convergence rates for this method using as a model@&dhe Poisson problem

(1) —Au=finQ,u=00n0Q,

whereQ is a polygonal domain iiR? anddQ is its boundary. As approximations of the
solutionuwe consider piecewise linear elements using a very spediiptave refinement
strategy (called newest vertex bisection) well-known i BEM literature. We show that
if the solutionu can be approximated (using complete knowledgd) @f the energy norm
by a piecewise linear function on the triangulation witfriangles to accurac@(n3),

n — oo, then the adaptive method will do the same usimyy knowledge ofu gained
through the adaptive iteration.

Our algorithm is not much different from existing adaptivethods based on bulk
chasing of a posteriori error estimators. The one main wdiffee is the utilization of
a coarsening strategy. The role of coarsening in the alguris to ensure that at any
iteration the approximated solution has near optimal iggration in terms of degrees of
freedom. We should mention that coarsening also played paritant role in the analysis
of adaptive wavelet methods (see [4],[5]).

In our analysis we rely on the theory of nonlinear approxioraby piecewise poly-
nomials. Since adaptive methods are a form of nonlinearcequpiation, this theory will
on the one hand help us to provide a benchmark for measuringutcess of adaptive
methods, and on the other hand, provide an effective impi¢atien for the coarsening.

As it was emphasized in [2], we consider our algorithm maasya contribution to the
theory of adaptive methods. However, the ideas suggesf@tiéan be useful in practice.
The goal of this presentation is to give an overview of therseaing strategy and its
possible implications in the development of practical didemlgorithms.

An important feature of the coarsening strategy is that agplicable practically to
any problem for which there exists an error reduction atbari In order to avoid com-
plications of the presentation we shall sometimes refet}olf this way, the essentials
of our arguments will be clear and we can also call on severahk results concerning
a-posteriori error estimates that can be found in the liteea In particular, we shall make
use of the error reduction property given in [18]. Howevsr,no means is the theory
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restricted to this particular problem. On the contrarytaslli be made clear in the text,
we expect the coarsening strategy to give higher payoffdarmicated problems.

An adaptive procedure can be related to a decision tree. ifisusatural to assume that
the space of finite element functioi§ is associated to an infinite master tt&e namely,
that every functiov € . corresponds to a trée(v) C .7. The trees that correspond to a
function from.~ are callecadmissibleand their set is denoted b¥,. To indicate that the
final leaves of a tred C 7 correspond to cells of some partition of the dom@inwe
shall call thentells Then the adaptive process can be described as follows.aeith
some initial tre€ly € .7, and mark a seitl; of certain cells for subdivision. After doing
these subdivisions we arrive at the tfBe This tree is not necessarily admissible and
so we shall make some additional subdivisions which eolinplete T to an admissible
partitionT; € Z5. We then repeat this process of marking and completing taiolsets
My and treedy, k= 1,....n. It will be important for us to see that the completion praces
does not seriously inflate(#,), the number cells if,. Namely, that there is a constant
Co > 0 depending only oilp such that

(@) #Tn) < #(To) + Co(#(Ma) +--- +#(Mn)) .

In [2] we proved (2) for the newest vertex bisection procedur
Given the functions from the finite element spac#’, we denote by the set of all
of them for which #T (v)) < N. The best approximation of a functioris defined by

on(u) = VieanN [lu—v|| .

It is unreasonable to expect that any numerical proceduteegult in finding the best
approximant tau. Usually, the goal is to find a procedure which exhibits thmsaate

of convergence for the error @& (u). Here we have higher standards requiring that for
everyN our procedure finds mear bestapproximatioruy to u with #(T (uy)) < N and
the property

3) [Ju—un| < C1e,n(u)

with some absolute constar@g andc,. In [1] we consider dree approximatiorproce-
dure based upon special error functionals placed on thesrmfd#. In the case the norm
of the error||u— un|| is equivalent to the discrete norm of these error functi®pakr the
leaves ofT (uy), we have shown that (3) is valid with consta@isandc; relatively close
to 1. Moreover, the number of computations needed toding &'(N). In [2] we apply
these results to find a near best approximatioH irt-norm to the right hand sidé of
(1), as well as to find a near best approximation in the eneoggnrio the approximate
Galerkin solution in the coarsening step.

The decisions in standard AFEM are often based upoal error estimatorawvhich
sumd(T) gives a reliable estimate of the square of the error in theggmmerm for a given
treeT. This estimate is used as stopping criteria in differentpdures. The knowledge
of ®(T) is also important in the choice of the numerical precisiorthef algorithms in
AFEM.

A basic ingredient of AFEM is therror reduction procedure Given approximate
solutionur with a treeT, it finds a refinemenT ™ of T and an approximate solution
ur+ which error is at leastz times smaller than the one for. In addition, we have
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that #T1) < C4#(T) and the number of calculations needed does not exCed ).
This procedure can be composed as several iterations ofchaking (see [14], [18]),
or could be just several consecutive uniform refinements®fcurrent partition tre@.
We denote the result of the latter 5§(T). It is important to note that for fixe@s we
can design different algorithms that have different camist€, andCs. Keeping the
optimality constan€, low will increase the efficiency consta@t and vice versa.

Finally, the coarsening stepakes the current approximate solutiopr and finds a
sparse near best approximation € .7 to it using the tree algorithm with stopping cri-
terium based upon the estimate of the el ™). This could eventually increase the
error by at mos€Cz/2 times but will keep the solution near optimal in terms of toen-
plexity of T*. In cased(T ™) is equivalent to the square of the error in the energy norm,
the approximatiomr« to u is near best in terms of (3). Theoretically, the algorithm-co
tinues with the error reduction procedure setfing= T*. However, in practice we may
use a certain refinement ®f instead.

Algorithmically, the biggest advantage of the coarsentngtsgy is the possibility to
use error reduction with a small const&atand by this increasing the efficiency of the
algorithm. In comparison, the algorithms without coaragrihould keep the constaty
low (in a hope that the optimal convergence rates will begmesd) which could result in
an enormous number of iterations with a very small bulk.

The utilization of coarsening strategy could take difféfenms. The coarsening step
could be used as an inexpensive test for the optimality ofstietion. In case ™)
is not much higher than(F*), we can continue witll := T instead ofT :=T*. It
should be also clear that using coarsening strategy doedways mean that the partition
should be coarsen. For example, we can immediatelff $et= % (T*) and calculate
the local error estimators only to uggT*) as a threshold in the tree algorithm. In this
case the adaptivity of the procedure comes from near optyraloperties of the tree
approximation. Blending this approach with bulk chasinglddoe very beneficial for
solving complicated problems which require heavy caléoret to find the local error
estimators and/or do not have lower estimates to the errtreohpproximate solution.
Some ideas from the tree algorithms can also be used in tigndefsthe error reduction
procedure in practice, although the theory for this is stiller development.

In conclusion, the coarsening strategy not only provideABEBM with best perfor-
mance rates and a near best approximation of the solutiatsdtcan give new opportu-
nities of improving the existing practical algorithms esjpdly for problems with compli-
cated solutions.
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Survey on the Convergence of Adaptive Finite Element Methosl
CARSTEN CARSTENSEN

State of the art simulations in computational mechanicsraimability and efficiency
via adaptive finite element methods (AFEMSs) with a posteégoor control. The a priori
convergence of finite element methods is justified by theitlepsoperty of the sequence
of finite element spaces which essentially assumes a qudsrm mesh-refining. The
advantage is guaranteed convergence for a large classacdiddisolutions; the disadvan-
tage is a global mesh refinement everywhere accompaniedds/damputational costs.

AFEMs automatically refine exclusively wherever the refieatrindication suggests
to do so and so violate the density property on purpose. Tthera priori convergence
of AFEMs is not guaranteed automatically and, in fact, allgidepends on algorithmic
details. The advantage of AFEMs is a more effective meshrapaaied by smaller com-
putational costs in many practical examples; the disadpmis that the desirable error
reduction property isot alwaysguaranteed a priori. Efficient error estimators can justify
a numerical approximation a posteriori and so achievelriitia But it is notclear from
the start that the adaptive mesh-refinement will generateanrate solution at all.

This paper discusses particular versions of an AFEMs anid dmalyses for error
reduction, energy reduction, and convergence resultéfeat and nonlinear problems.

1. INTRODUCTION

This paper discusses limitations and generalisationseofébent convergence theory
of adaptive finite element methods (AFEMs) so far mainly legthed for the Laplacian
and thep-Laplacian in [4, 14, 18, 24]. Therein and below, AFEMs cshsif recursive
loops of the form

1) SOLVE — ESTIMATE — MARK — REFINE.

There exists a vast literature on a posteriori error comdrdtep ESTIMATE and we refer
to the books [1, 3, 15, 23] and the reference included thegrleisisome select references
[2, 6, 11, 17, 20, 21] for elastoplasticity.

A typical reliable error estimator, such as the explicibemstimator, results in local
contributionsny associated with an edge, face, or elemidnin the current mesh and
their sumn? := s, ng over all such objectd!. Frequently in the literature, a maximum
criterion marks a subse# according to

M € . if and only if ny > © maxn,

where max) denotes the maximum of all of thpy and 0< © < 1 is a parameter. Even
though the titles of corresponding articles and books ssigggaptive algorithms, those
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mesh-refinement strategies are considered therein wittmyunathematical analysis. The
numerical experiments reported in those references appdar extremely successful.
This success, however,i®tunderstood in theory and heneetguaranteed in the forth-
coming refinement loops.

This papers follows [14, 4, 18] and adopts the bulk-criteiiothe step MARK which
defines a seZ, the marked objects, by

> nia=0en?
Me.#
with a parameter & © < 1. Section 2 introduces the adaptive algorithm and the mesh-
refinement strategy for an edge-oriented explicit erranegtbr. Section 3 discusses the
error reduction property and some counter example. Sedtimdies the main arguments
for energy reduction. Further details, proofs, and soféwaill appear elsewhere [9, 10,
12].

2. ADAPTIVE MESH-REFINING

A typical adaptive algorithm is sketched below where, orhdagel/ =0,1,2,3, ...,
the discrete stressy is piecewise constant with respect to the triangulatigrwith the
setéy of edges and faces in 2D and 3D, respectively. Then, for edgh er faceE € &,
of diametemhg := diam(E) and with unit normabg, the contribution

() ._ 12 21 Y2
@ nd =g ( [ llorlvel2as)

accounts for the jumf,|ve of the discrete stresses across the interior étlgethe nor-
mal direction.

Adaptive Algorithm (AFEM)
Input: Coarse shape-regular triangulatigg of Q into triangles with set of edge%;
0<0O<1.
For ¢=0,1,2,3... do (a)—(e):
(a) Solve the discrete problem with respect to the actual mBséind corresponding FE
spaces. Let; denote the FE displacement anddetdenote the discrete stress field.
(b) Computeng) for all edges or faceg € & andn, := (Jeeg, (ng))z)l/2 as stress-error
estimator. '
(c) Generate a sew7; of edges or faces i#f; such that

¢

3) on?< 3 ()2
Ec.,

(d) Control oscillations OSgCand (possibly) add further edges#, to decrease OSG; <
©0SG.
(e)Run closure algorithm to avoid handing nodes; refine alhggiasT with some edge or
faceE in ., with bisc5(T) and all other elements with red-green-blue@west-vertex
bisection refinement after Figure 1. L&t,1 denote the resulting shape-regular triangu-
lation.
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Output: Sequence of discrete stress fietdlso1, 0z, ... in L2(Q; RY:S).

bisedT) (green) bisecZ(T) (blue) bisec2(T) (blue)

redT) (red) bisec3T) bisecqT)

FIGURE 1. Possible refinements of a triangle for red-green-blue and
newest-vertex bisection refinement [4, 8, 12].

This algorithm yields a strongly convergent stress fieldiadr and nonlinear elasticity
as well as in elastoplasticity [10].

3. ERRORREDUCTION PROPERTY

The error reduction property is frequently also called isitan assumption when it is
used as a hypothesis. However, this property has to be geathhy the mesh-design.
To fix ideas, suppose that is the finite element stress approximation to the exactstres
field o in level £ as in Algorithm 2. Then, consider the error reduction propar the
form

(4) llo—oral|>?<pllo—ol|>+COSCG  forall{=0,1,2,....

Here, ||| - ||| denotes the energy norm apd< 1 is the reduction factor. The last term
C OSC}Z accounts for oscillations of the data, i.e.finvhen we suppose an equilibrium of
the (strong) form

f+divo=0inQ
and suppose Dirichlet boundary conditions on the entirendatyI'p ;=T := 9dQ of
the domainQ such that no traction conditions appear (which would arnis¢hér data
oscillations [10]). Then,

®) osG(t) = (3 h%/wl|f(x)_ fwz|2dx)1/2’
zexy

wherefy, := [, f(x)dx/|w;| abbreviates the integral mean obver the patch

w,={x€eQ:0< ¢(x)} and so, =U.7(z) where7(z2)={T € 7,:z€T}.

This wy is the interior of the union of the sef (z) of neighbouring elements of a free
nodez € ¢, := .4, \ I'p and has voluméw,| and sizeh, := diam(wy).

The first observation on error reduction (4) is that the ¢tetidiins cannot be omitted.
In fact, given a sequence of (even successive e.g. unifofimeraents and associated)
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discrete spaceg Cc V, C Vo C --- CV there exists a problem with some exact solution
and with discrete solutiong and

[[[u— ||| = disty. (u;V,) — 0  as slow as we want.

This is a general fact from approximation theory in sepa&blbert spaces. The pointis
that the regularity of the exact solution could be as bad asave and so the convergence
could be as poor as possible and this contradicts a lineaecgance implied by (4) for
C = 0. The good news is that the additional term is given in terfrth® data and not
completely in terms of the unknown regularity of the unknawact solution.

The second observation is that there exist good and bad medints. A simple Pois-
son problem with constant right-hand sifles 1 and homogeneous Dirichlet boundary
conditions on the unit square & finite element methods on the mesh#&sand.7; of
Figure 2 allows no error reduction in this refinement step.

D J1=bisec3(p)

FIGURE 2. Counter example for error reduction: Two meshes with fi-
nite element solutiongy = u; and so withp =1 and OSE(f) =0 in

(4).

4. ENERGY REDUCTION PROPERTY

For nonlinear elasticity such as Hencky elastoplasticith Wwardening leE(v) denote
the elastic energy and := E(u;) — E(u) the difference of the discrete enerByu,) to
the minimal energy¥e(u). Assume that the enerdyis uniformly convex and its deriv-
ative DE is Lipschitz continuous. A typical example is the nonlinel@ncky material or
nonlinear Hooke's law of [19, Sect. 3.3] and [25, Sect. 62.8]

The energy reduction property reads, with some 8 < 1,

(6) S 1<pd+COSC  foralll=0,12,...

The energy reduction is equivalent to the error reductidmear problems (e.g. for Pois-
son or Lamé equations). Observe in the general case thantrgy reduction property
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implies an error decrease and the R-order of convergende fugher-order terms) in the
form

(-1
7 llo—orl?<p‘&+ Y Cp' 1 k0SG fort=123,...
k=0

The remaining part of this section is devoted to argumerfficant for energy re-
duction (6). Under the present assumptions on the energyifunal, one may define a

computable residud®,(v) := —DE(u,; v) with a norm
IRellv+ = sup Ry(v)/[|V]v-
vev\{0}

Afirst key argument is equivalence|fiR;||v+ to the error or the energy differences [9, 10],
e.g.
(8) &+ af|u—ugl[|* < Re(u—uy).
A similar consequence of uniform convexity reads
() alflurya— uel|® < & — &rpa.
A second key argument is refined reliability of the errorrastior [13, 10] which reads in
terms of the residual as
(10) [Rellv+ < C1ne+Cp OSG(T).
A third key argument is the residual coverage [9] which letada discrete efficiency in
the form
(11) Ne < Calflug1 — ull| +C4 0SG.
The proof of (11) follows as in the linear case from the desifa local trial function
be € V1 with

(N2 :/ oy : Db dx

Q

followed by the equilibrium condition (with respect to thefined mesh and induced finite
element space)

/ 07+1 : Db dx= / f.bedx
Jo Q
plus the extra mean property
/ b dx= 0.
Q

For this extra property, one needs an inner-node propetheahesh-refining. Thatis, for

each marked edge, either one of the neighbouring elemesiges a bisec5-refinement
or one complete patch is refined in an appropriate way. Thateoexample of Figure 2

clearly implies that one needs at least one red-refinemeatperturbation of the config-

uration in that the newest-vertex must not be the mid-painafl the triangles] in a patch

[9].

The combination of the foregoing three identities, nameligh( a proper mearfg of
f)
(ng))zz/g(ag—aul):Dbde+/Q(f— fe) - bedx
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plus the bulk criterion eventually lead to (10) [9, 10].
To finish the proof of the energy reduction (6), one employs(&l (10) to obtain

&+ alllu—uel|> < (CLne+Cz OSG(f))llu—uellv < o [[Ju—ue[|*+Cs N7 +Cs OSC()>.
The immediate estimate @f combines first with (11) and second with (9) to

& < Crl|ugp1— ugll|*+Cg OSG(F)* < C7/a(& — &+1) +Cs OSG( )2,
This implies (6) witho = (1— a/C;) andC = aCg/C;.
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Automatic hp-Adaptivity. A Progress Report
LESzEKDEMKOWICZ
(joint work with Jason Kurtz, David Pardo)

With appropriately selected element sizand order of approximatiop, hp-Adaptive
Finite Element Methods should deliver exponential conerog, both for regular and
singular solutions, [13]. The first fully automatip-adaptive strategy for elliptic prob-
lems was proposed and verified for 1D and 2D elliptic probleni8]. The method was
further developed and generalized to 2D Maxwell equation®], and for 3D elliptic
problems in [12]. For a comprehensive presentation of thelevtechnology and details
of the method, we refer to [4].

The lecture presented a further development of the mettmgsiing on two directions:

e a new implementation of the method for 3D elliptic problehsyen by a class
of acoustics scattering problems,

o a fully automatic, goal-orienteldp-adaptive method, with applications to simu-
lations of EM logging.

Automatic hp-Adaptivity for 3D Elliptic Problems. Referring to [9] for details, we shall
review quickly the main idea of the method and discuss theraptishments of the new
implementation. The main idea of the method is based on thiemof the Projection
Based Interpolationsee [6, 3, 7, 2, 4]. Given a hexahedral finite elent€npossibly
refined into two, four, or eight element-sons, and a funatierH%2+¢(K), we define the
corresponding projection-based interpolahfis a sum of vertex, edge, face, and interior
contributions,

Mu=uP= u1+2u§‘e+Zu§‘f+u4.
2 %2 :

M ——
P
Uz ub

Here u; is the standard trilinear vertex interpolant wf The edge contributioug is
obtained by summing up contributiou%e from individual edges obtained by projecting
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the differences — u; onto the “edge bubbles”,
Hug,e_ (U— ul)|||_2(e) — min.

By the edge bubbles we mean the traces of the element shagiehaon the particular
edge, vanishing at the edge endpoints. For an unrefined steand edge of ordepe,
these will be simply polynomials of ordex, vanishing at the end points. For a refined
edge, we mean piece-wise polynomials. The edge contribbigi@xtended to the rest
of the element using the element shape functions. Simjlarhction ug is obtained by
summing up contributiontagif obtained by projecting differenag— u; — u’z3 onto face
bubbles, '

U5 ¢ — (U—Ur — UY)| /2 — min.

Finally, the element interior contribution is obtained bgjecting the differenca —u; —
ub — ub onto the element bubbles,

|uj — (U— Uz — U§ — Ug) |42y — Min.

It has been shown (for the latest versions of the theory, &) that the projection-based
interpolation delivers optimagb andh convergence rates. The energy-driven automatic
hp-adaptivity produces a sequence of coarseffipeneshes where the fine mesh is ob-
tained from the coarse one by a globagtrefinement, i.e. each hexa in the coarse mesh
is broken into eight element-sons, and the order is raisédramy by one. Both meshes
may be very non-uniform, including possible strong anigoies (both irh andp). The

two meshes paradigm is essentially different from standaiaptive methods working
only with a single mesh and an error indicator (estimatohe problem is solved on the
fine mesh. The fine mesh solutios= up, 5 ;1 is then interpolated on the coarse mesh and
a sequence of meshes obtained from the coarse mesh withishaaod p refinements, to
determine the mesh that maximizes the rate with which tregpoiation error decreases,

U= MhpUlpr ) — U= MUl
Nhp — Nnpop

— max.

Herelpu denotes the interpolant on the coarse mesh[ang, u denotes the interpolant
on a optimally refined coarse mesh to be determined.

The algorithm explores the logic of the projection-basedripolation by determining
first optimal refinements of the coarse element edges, thes fand, finally, the coarse
element interiors. The result of each of the steps detesnim#al conditions for the
next (discrete) optimization problem. @mpetitiorbetween various types of refinement
determines not only whether an edge, face or element is e bep-refinement but also
a proper kind of (possibly) anisotropic refinement (redaditta face can bl-refined in
three different ways, and an element carhbrefined in seven different ways. Enabling
the competitions on face and element levels is probably tbst significant departure
from the earlier implementations that staged the compatét the edge levels only, and
explored the (possibly anisotropic) structure of the élw@hoose between the anisotropic
and isotropidh-refinements.

We list shortly other significant advancements of the newl@mentation and differ-
ences with the previous work.
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FIGURE 1. Fichera’s problem. Optimal coarse grid and convergence
history for the coarse (green) and fine (red) meshes

e The new code has been written as a stand alone package.

e Consistently with [5], the method ignores constrained ddehe projections.
This restores a full locality of the interpolation and comativity of de Rham
diagram.

e Two enabling technologies: ord@(p’) integration (with theO(p?) speed-up
fully realized in practicg and a telescopic solver for a sequence of dynamically
determined nesteldp meshes, make the competition on all levels feasible.

e A special version of 1-irregular meshes algorithm (basetlistual refinements”)
enforces the optimdi-refinements with the final meshdependenof order in
which the refinements have been performed, and elementgdefily in one
shotinto two, four or eight elements.

e Upon communicating the unwanthadefinements to the mesh optimization pack-
age, an optimal distribution of ordepss returned.

¢ Due to the algorithmical improvements, the size of the pgeleas been reduced
to 15k lines.

e The complexity of the algorithm is of the same order as the pilerity of a
multifrontal linear equations solver. In performed nurnatexperiments the time
spent to determine optimal refinements has always beenesnhadit the time
needed by the fine grid solver (MUMPS [10]).

Fig. 1 presents an optimal (coar$g) mesh for the Fichera problem, and the correspond-
ing exponential convergence of the coarse and fine gridseridre results were obtained
on a four-year-old Dell laptop with 512Mb memory and Intelr®gessor in less than 20
minutes.

Automatic Goal-oriented hp-Adaptivity. Simulations of EM waves in the borehole en-
vironment presents a class of challenging problems thahairsolvable not only with
classical discretization methods but also witadaptive schemes. In presence of casing,



Mini-Workshop: Convergence of Adaptive Algorithms 21

the modeling involves the solution of an elliptic or Maxwetbblem (only axisymmetric
simulations are reported here) with a material contrasbulOt12 orders of magnitude,
and a dynamic range (ratio of signal at the radiating antémtize signal at the receiving
antenna) of up to 8-10 orders of magnitude. The problem iobrange for the energy
driven hp algorithm discussed above, but also for a goal-drikeadaptivity paradigm
[1]. Only a combination of the goal-driven adaptivity withet automatid p-adaptivity
has made the solution of the problem possible.
Let

ueV
b(u,v)=1(v), WweV,
be the usual (abstract) variational boundary-value foatih corresponding to an elliptic

or Maxwell problem. The main idea of the goal-driven adaptiis to introduce the dual
problem,

veV

b(uv) =g(u), VueV,
whereg(u) represents goal functional Standard derivation based on Galerkin orthogo-
nality property leads then to a representation of the errgoal,
U—Unp)|= inf |b(u—unp,V—Whp)| < inf bk (U—Unhp, V—Whp)]| .
l9( p)l WhpGVhp| ( p p)l Wi |bx ( p p)l
Here unp is the discrete solution for ahp mesh, Vi, denotes the corresponding finite
element space, anlok stands for elemeriK contribution to the global bilinear form.
The representation holds also for exact solutiansreplaced withfine grid solutions
U= Up/2pi1 andv=Vy 1. Replacing the coarse grid solution with the coarse grid
interpolant, we obtain,

u—u = inf |b(u—uphpv—Ww
lo( hp)| WhpEVhpl ( hp hp)|

< |b(U—Unp,V—Thpv)|

= |b(u—Mppu, v —hpv) + b(MhpU — Unp, V—Thpv) | .

neglected

We use the error representatioat for an error estimate but for the mesh optimization.
We redefine then our mesh optimization problem as,

3K [P (U= hpu, v =) = Sk [ (U= Mot V= Mhpg V)|
Nhp — Nnpop
The goal-orientedhp algorithm is then a generalization of the energy driven a@iigo.
Referring to [11] for details, we point to only to essentidfetences of the new imple-
mentation when compared with the original version of th@atgm presented in [14].
e In presence of strong material contrast, the use of energnsoather than
generic Sobolev norms is very essential. The same commefiegpo indefi-

nite wave propagation problems where the norm has to indglugarticular the
wave number.

— max.
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FIGURE 2. Trough Casing Resistivity Login Problem (DC). Material
data and a final log obtained using goal-oriertipendaptivity. The log
represents a second difference of the potential correspona three
receiving antennas as a function of the position of the tool

e The “edge norms” have to be derived from the element energnsaising an
approximation to minimum energy extensions.

Fig. 2 represents a fully reproduced log corresponding tpc&tions of an inductive EM
tool with the relative error varying in the rangedQ — 0.1 percent and the problem size
not exceeding 14k unknowns. The result was obtained in 2Quitesnon a laptop. We
mention that, in case of Maxwell problems, the problem casdieed using both -
andH (curl)-conforming elements, with the two formulations deliveriresults that are
identical in first 8 digits in the quantity of interest !

Conclusions. The hp-adaptive finite elements not only can deliver solutionshvah
accuracy not accessible for other versions of finite eleseintfinite time and on small
platforms, but enable solutions of challenging problemihwirong material contrasts
and large dynamic range.
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Convergence of an Adaptivehp Finite Element Method
WIiLLY DORFLER, VINCENT HEUVELINE

Aim. We consider finite element methods with varying meshsizeadisas varying poly-
nomial degree. Such methods have been proven to show exjallydiast convergence
in some classes of partial differential equations if an adég distribution oh— andp—
refinementis chosen [10, Ch. 4.5]. In order to fing-refinement strategies that show up
automatically with optimal complexity, it is a first step tetablish convergent adaptive
algorithms.

To be specific, we will refer to the model problem

(1) /Qu/\/:/Q{fv—g\/} for all ve H3 (Q)

for Q :=(0,1). We develop a strategy that automatically constructs aisoladapted
approximation space by combining lodat and p—refinement and can be proven to be
convergent at a linear rate.

For this we need an a posteriori error estimate that givesoigs bounds to the error
in the energy norm from above and below, both uniformljpiandp. Such a result is so
far open in the case of more than one space dimension [7].

Theorem 1 (A posteriori error estimate). [10, Ch. 3.5] LetWy C Hol(Q) be the finite
element space over the discretisatig of Q = (0,1), Q = Uker K = Ure1 X1, %]
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with polynomial degregox on K. Letu e H&(Q) a solution of (1) andiy € Wy be a
solution of the discrete problem

(2) / UV = / {fwn —agw} for all vy € W.
Q Ja
Then, we have the a posteriori bound
3) Hu=—un)llz@2< H {nk+ o}
Kext
for the error in the energy norm. Here,
1
(4) ng == mﬂvﬁk(uﬁ‘F fo + 94202,
(5) X = é_lp_ﬁH — fo iz 2+ 19— 9o llzk) 2

with o (X) 1= (X% — X)(X—X1) for all x € K = [%1,%] and fg,,gq, € Pq,, for some
gk € N with gk > pk, being arbitrary approximations th andgLK, respectively. Fur-
thermore, we have the lower bound

1 hg
(6) 2co Nk < [|(u—un)'lli2) + 5&”“ — fo Iz + 119 — Yo iz (k-

The constantp is a number in(0, 1) that depends on max_» {0k /px }-
The adaptive algorithm.

0. Initialization. We usually start with a (coarse) uniform decompositigt® and poly-
nomial degree 1.

1. Error estimation.On the given grid# ()), j > 0, we solve for the discrete solution
ul) e v, the finite element space o)), It is assumed here, that!) is the exact
solution of the resulting linear system. Now compute ancdestioe values$nk ] and stop

the loop if([Ke%{nﬁ + 6,%})1/2 is below a prescribed tolerance. Compute and store the
valuesﬁ,ié) for/=1,...,r that are described below.

2. Marking elementsLet the numbergg andﬁg) be givenfort =1,...,r andK € %",
We seekes C % and[lk]ke.» to be the solution of the following minimization problem

(k)
>

WK .
—lg — min,
ke By

under the constraint

S B2 =62 Y ng

Keo/ Kex
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K, p K, p
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FIGURE 1. Refinement pattern df = [X«_1,%]. Left: Increase poly-
nomial degree by 1/(= 1). Right: Bisection ofK into K’, K” with
P = P = Pk (€= 2).
for somef € (0,1). The weighting factorwff") are here set to the number of degrees of

freedom that the local finite element space would have atteinly followed the refine-
ment patterrf. In practice we proceed as follows: first we defiireby

G0 — M %0
By =1,..r L g!

and then we construct a minimal possibiefulfilling the constraint in the usual way [3].
In case the constraint cannot be fulfilled, we gét= 7 and let/x ;=2 forallK € 7.

3. Element refinemenRefineV () onK according to the refinement pattefin

If necessary (e.g., when using iterative solvets), has to be interpolated onto the
new spac&/iI*1 After having established the new decomposition, one setae new
linear system and continues with step 1.

Refinement pattern and computatiorﬁ&). We consider for example the following two
possible refinements of the finite element space on the aitrisee Figure 1): we keep
K but increase the polynomial degree by/L:-€ 1) or we bisecK into halves while
maintaining the polynomial degree in both the new intergéls- 2). Other refinements,
like graded bisection with fixed and optimized grading mapdle added to get a list of
pattern indexed by = 1,...,r with r > 2. Applying the refinement patterthon K will
lead to a locally refined new finite element spgcf@( of functions compactly supported

in K. We now define a numbéf,g) through the optimization problem

n 1 L resc Wiy
) B Ll Vaxrescuzy = sup {ICKML
Pk WNEV e | N||L2(K)

If 2. € Vi is the solution of
(8) /I<“z§f>/vT/N :/KresKvT/N for all Wy € Vi

then the right hand side of (7) is given tﬁq‘f)’HLz(K).
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Theorem 2 (Convergence of an adaptive method)Assume in addition to Theorem 1
that fq, is the L>—projection tof | onto P, for someqx > pk and thaty e 4 6% <

U2 ke NE holds for some sufficiently smaji > 0. Construct the refined spavg
from Wy using the strategies either (1) or (1) presented beforeglfs the solution in the
finite element spacéy, we have decrease of the energy error

[[(u=ug) 2@y < PII(U—un)ll2(q)

for somep < 1. p andu depend both ong, 8, 3y in case (1), andy, 0 in case (11).

Bibliographical notes. Convergence and optimal complexity proofs for themethod
have been published in [3] [6] [2] [12]. Other automahip refinement strategies have
been proposed in [4] [8] [9] [1] [11] [7] [5].

Open questions.

e Extend proof to higher space dimensions.
e Optimal complexity for an automattep-method.
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Convergence Analysis of Adaptive Mixed and Nonconforming ite Element
Methods

RONALD H.W. HoPPE
(joint work with Carsten Carstensen)

We are concerned with a convergence analysis of adaptived@rd nonconforming fi-
nite element methods for second order elliptic boundanyergroblems. We note that in
case of standard conforming Lagrangian type finite elemgmitaximations, such meth-
ods have been considered in [4, 5]. The methods presentédsindntribution provide
a guaranteed error reduction and thus imply convergenchefitlaptive loop which
consists of the essential steps 'SOLVE’, 'ESTIMATE’, '’MARKand 'REFINE’. Here,
'SOLVE’ means the efficient solution of the finite elementalétized problems with re-
spect to a given coarse shape-regular triangulaéig(Q) of the computational domain
Q. The following step 'ESTIMATE’ is devoted to the a posterierror estimation of the
global discretization error. A greedy algorithm is the basbl of the step '"MARK’ to in-
dicate selected elements for refinement. The final step 'RERdeals with the technical
realization of the refinement process resulting in a refinedgulation,(Q).

The analysis is carried out for a model problem, namely theP2i3son equation in a
bounded polygonal domai@ under homogeneous Dirichlet boundary conditions. Dis-
cretization by the lowest order Raviart-Thomas elementis m@ispect to the triangulation
Z4(Q) amounts to the computation ep¥,uM) € RTo(Q; T (Q) x Po(Q; Z1(Q) such
that

(P AH)2(0) + (U, O AH)12(q) = 0 for all g € RTo(Q; 71 (Q))
(0 PH,VH)2(q) = —(F,VH)12(q)  forall vy € Po(Q; Fh(Q)) ,

whereRTy(Q; %4 (Q) stands for the associated Raviart-Thomas spacégiy 74 (Q)
refers to the linear space of elementwise constants.
The residual-type a posteriori error estimafgr consists of edge residuals

nwi=( Y n@)Y? with ng = he|re- [plle|Z -
Ecéq(Q)
Here, &4 (Q) is the set of interior edges ard - [p)] denotes the jump of the tangential
component of the discrete flux across an interior delg€he convergence analysis further
invokes the data terrH fi||0,o and the data oscillationsgy as given by

1/2
IHfllon:=( 3 Rl [ FO0ex?)™2 . osgri= (§ RRIF— faelBx) 2,
TeIH T Ecéh

wherewr := Ty UT; is the patch consisting of the two trianglBs T, € %4 (Q) sharinge
as a common edge arfg. is the integral mean of with respect to the patcto:.

In the step 'MARK’, we select a se#¢ of edge< € 64 (Q) such that for some universal
constant< 6 < 1
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We can show the following error reduction property which liep R-linear convergence
of the mixed flux approximations:

Theorem 1. Let p be the flux and assume tha{if andpM are the mixed finite element ap-
proximations top with respect to%,(Q) and % (Q). Then, there exist positive constants
p < 1 andC depending only o and on the shape regularity 6§,(Q) and %4 (Q) such
that

Ip—pNl5a < pllp—pHlIGa + C(IH frlloq + 0SG1)0SG .

On the other hand, discretizing the model problem by the $ébweder Crouzeix-Raviart
finite elements and denoting IG;F%(Q; 1 (Q) the associated nonconforming finite ele-
ment space, we are looking foﬂ € CRy0(Q; F14(Q) such that

% (DH UH7DHVH)O,T = (f,VH )O,Q forall vy € CRl,o(Q; T (Q) .
TeES

A novel residual-type a posteriori error estimatgy is derived in terms of edge residuals
involving the jump of the tangential derivatives acrossgiitr edges

nwi=( Y n@)Y? with né = he|[oul/od3e -
E€éh(Q)
Moreover, the convergence analysis requires the conside@t the data term
peo= (Y [TIIFIEYA
TeR(Q)
and the data oscillatioosgy. Again, in 'MARK’ we select.Zg C 4(Q) such that for
some < 6; < 1
6 Y hef[oui/odife< S hellloul/os|lGe -
Ecéh(Q) Ee.zE
We further assume that the refined regular triangulaf@f©2) from 'REFINE’ satisfies

HE < popf . OSG < ps0sd
for some 0< py < 1,2 < v < 3, which can always be achieved by including the data

terms and data oscillations in the selection step 'MARK'.
Under these assumptions, the following error reductioperty can be verified:

Theorem 2.Let p=Juand denote byl € CRy o(Q; Z1(Q)) andul} € CRy0(Q; Fh (Q))
the nonconforming finite element approximationsand byp} = Oy ul andpl = Opull

the associated discrete fluxes. Then, there exist positimstantsp; < 1, andCy,Cp
depending only o®; and on the shape regularity of the triangulations such that

Ip = PhlIga pp G C Ip— PNlEa
HE <| 0 p O M :
0s@ 0 0 p3 0SE

The essential steps in the proofs of Theorem 1 and TheoremtBareliability of the es-
timator, a discrete local efficiency, and quasi-orthogityaloperties. Also, we strongly
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utilize the following fundamental relationship betwees tiiscrete mixed and noncon-
forming fluxes

1
P () = PN — SFr(x—xr) . X€T,TeMm(Q),

wherefy is the integral mean of on T andxt refers to the center of gravity.

In contrast to the convergence analysis of standard Lagrarfigite element discretiza-
tions, there are no special assumptions with regard to flrereent process. In particular,
we do not need an internal node property. The convergencégao not require any reg-
ularity of the solution nor do they make use of duality argatse
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On Adaptivity in hp-FEM
MARKUS MELENK
(joint work with Tino Eibner, Barbara WohIimuth)

In the hp-version of the finite element method (FEM) convergence aaadhieved by
refining the mesh or by increasing the approximation orddaryos combination of both.
In fact, suitable combinations of both techniques can léadh large class of problems,
to very fast, exponential, convergence. The adaptive glgoipresented aim at realizing
this exponential convergence.

We consider the elliptic model problem

—Au= fonQ c R?, Ulgg = 0.

The hp-FEM space used iSP(.7) := {u€ H}(Q) |ulk € Zp,}, where 7 is a shape-
regular triangulation of the polygdd and a polynomial degreax € N is associated with
each elemerit € 7. The FE-solutionuge € SP(.7) is then given by the projection of
ontoSP(.7) in the energy nornijv||z := [, |0v|2.
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1. RESIDUAL BASED ERROR ESTIMATION

In a first step, the adaptive algorithm identifies elementk large errors. This is done
with the aid of the error indicators

2 hk

h2
1% i= S+ Bz + Ol IE2(e)-
K

Pk eeC Qis edge oK
whereK denotes an element of the mesh ddguee| denotes the jump of the normal
derivative of the FE-solutiongg across the edge These error indicatorgg have the
following properties, [2]:

lu—uelg <C 5 ng, Y ng <CP{|u—ure|g +osqf)},

KeZ KeZ

where os¢f) is typically of higher order ang = maxc s pk; the constant > 0 is arbi-
trary. The presence of the factp?¢ points to a reliability-efficiency gap. This gap is not
entirely an artefact of the method of proof as the followingnerical example illustrates.
Example: We consider thep-version FEM (i.e., the mesh is fixed as depicted below
and the polynomial degregx = p for all K € .7) on anL-shaped domain with exact
solution (given in polar coordinates where the origin isaled at the reentrant corner)
u=r?3sin(2/3¢)x, wherey is a smooth cut-off function. We note that the singularity
of uis located at a mesh point.

L-shaped domain, p—dependence of error indicator

10"

100 \

10 F

—e—true error
—o—estimated error
—4/3,
O(p™)
—2/3,
O(pP™™)

10°F

10°

10° 10"
polynomial degree

Example: In order to get more insight into thp-dependence of the error estimator,
we performed calculations where the exact solution (in poterdinates) has the form
u(r,@) =rsin(a¢)x for a smooth cut-off functiory and different choices of the param-
etera. Neumann boundary conditions are prescribed on the botemtopthe compu-
tational domain (shown below) and the error indicatggsfor the element touching
the Neumann part of the boundary are appropriately adjugigain the mesh is fixed (as
shown below) and the polynomial degree is uniformly raid&d.note that the singularity
(marked by a dot in the geometry below) is not at a mesh poihe fffectivity index

VKT K g plotted versus the polynomial degrpé the following graph. We note that

lu—urelle
the dependence on the polynomial degpée significantly reduced as compared with the

preceding example.
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2. ADAPTIVE ALGORITHMS

We present an algorithm that is based on locally testingriahdicity; details and ref-
erences to related work can be found in [1]. For an intelrval(—1,1), it is well-known
that a functioru € L%(1) is analytic orl if and only if the coefficientsi, of the expansion

U= 3nen, unprﬁ""’), where the functionﬁ’rgo’0> are the classical Legendre polynomials,
decay exponentially im. Tensor product arguments extend this result to domairts wit
product structure (squares, hexahedra, etc.). The fallgwasult generalizes this obser-
vation to triangles and tetrahedra:

Theorem: Let T = {(&1,&2)| —1 < & < 1,—-1< & < &1} be the reference triangle
and define th&?(T)-orthogonal polynomials

W) = ROV RIS 1 (1_ 52) PGy,

1-& 2

where the polynomiaIE’i(a’B> are the standard Jacobi polynomials. Then aryL?(T)
can be expanded as= 3; jcn, Ui,j¥i j, and we have the following characterization of
analyticity: u is analytic onT if and only if there exisC, b > 0 such that

|uij| < CePi+D) i, j € No.

An analogous statement holds for tetrahedra as well, [1].
With this characterization in hand, one can formulatépradaptive algorithm whose
inner loop is as follows:

(1) based on the error indicatorg identify the elements with large error (in the
numerical example below)2 > o7, wheren = ;% Y« 7 n2 ando = 0.75)
(2) for each elemerK that has a large error do:
(a) expandlik := Urg|k o Fk (here,Fx : T — K is the element map) a& =
Zivj<pe Ui
(b) determineCy, bk by fitting (in a least squares sense) the coefficienfdo
the lawu; j = Cxe Px(+D)
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(c) If bx > b (in the numerical examplda = 0.9), then increase the polynomial
degreepk of element by 1. If by < b, then split the elemenx into 4 ele-
ments ("red” refinement) and perform the appropriate mes$uck (remove
hanging nodes).

The following numerical example illustrates the perforwanf the algorithm.
Example:

We consider thé.-shaped domain as depicted below with an exact solutiohthe
form u(r,¢) = r%/3sin(2/3¢)x, where the cut-off function is smooth and the origin is
located at the reentrant corner. In order to ensure thatfizisat number of coefficients
in the expansion is available for all elements, the initialypomial degree ik = 3
for all elements. We depict the meshes and polynomial dedjstgbutions for steps 15
and 25 of the adaptive algorithm. Additionally, we show ftaps25 of the algorithm the
polynomial degree distribution along the line connecthrgdrigin with the point1/2,1);
furthermore, we plot the error versi§/3, whereN is the problem size. We observe that

the algorithm yields a convergence behavior of the ftm- ugg ||e < Ce ONY?,
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A Convergent Adaptive Algorithm for the Laplace-Beltrami O perator
PEDRO MORIN
(joint work with Khamron Mekchay, Ricardo H. Nochetto)

We consider a surfade c RY as a graph of a functior(x) defined on a bounded polyg-
onal regionQ c R4-1, d > 2, namely,

= {(x,z(x)) cRY|xeQ CRdfl},

wherez: Q — R is aC! function. In general we may also include the case whierC®*
where discontinuities dfiz align with polygonal lines of.
We consider a Dirichlet boundary value problem for Poiss@gofuation o

Q) —Aru=fonTl,
2) u=0ondr,

wheref € L?(I"). Here,Ar denotes the Laplace-Beltrami operator on the surfacn
weak form this problem reads

3) ue H3(r): /I_.Dru-Dr(P:'/r.f‘p V¢ € H(r),

whereru € RY denotes the tangential gradientiofomputed orf .
To find a discrete approximation we consider a polyhedrat@pmationl"y, of I', a
finite element spac¥y, and define

(4) Ug € Vi : /I_Druk'DF¢k:/l_Fk¢k V @i € Vi.

ForT € %, we define thenergy error indicatomy(T) by

neT =R Wl + S hsll AUl
seofscaT
where
(5) 271 (U) = (br U+ RdlT,
(6) As(u) = (Or, )" -ng +(Ory, )~ Ng,

and theenergy error estimatony := (31c 5 n2(T))Y/2.
Similarly, for T € J we definethe geometric error indicatogy(T) by

&(T) = [[v = Vil ooy 10 Ukl 2 -

and thegeometric error estimatoy := (Y7¢ 4 {2(T))Y/2. Herev and v denote the
normals tol, 'k respectively. We also define thgeometric oscillation

MA(T)i=lv— w d A= Ak(T).
K(T)=1[V=Vl ey and A max k(T)

With this definition we prove the followingpper Bound
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There exist constant; andC, depending only on shape regularity and
the surfacé” such that

() 10r (u—u) 12y < Cané +Cal.

We also prove the followintpwer bound

There exist constants, ¢4 andcs depending on shape regularity and the
surfacd™ such that fofT €

®) NE(T) < €3]|0r (U— o) [Pz (g 7)) + Ca0SCE(6X(T)) +€sGZ (ax(T)),
wherew(T) region consists all elements i# that share at least a side
with T.

ForT € J the oscillation term is defined by

osc(T) = ht || % (u) _@THiZ(T) +hr Y [ 7s(u) _jSHiZ(S)’
sar

whereZt and _# g are L?-projections of%r (ux) and _Zs(ux) onto Pm(T) andPm(S),
respectively, the spaces of polynomial functions of degt@eon T, andS, respectively.
For ax(T) C Ik we defineosc(w(T)) := Frcqr)0sci(T) and denotevscy :=
osck(Ik); and analogously we defirg (a(T)).
The final ingredient for convergence is given by a quasiagtmality relation:

The exist constant€g,C; > 0 and a numbek, > 0 such that\g :=
(3 —P2CeA?) €[3,3), and for anyk > k.

(9) [Or(u- Uk+1)||52(r)
<107 (U= | Z2(ry = Ao 10 (U= Uiy ) Iz +Crde,

providedA is decreasing.

This is aconditionalquasi-orthogonality relation betweél (u— uyx) andOr (Ux — Ux+ 1),
which is valid only if A is small enough. But this does not matter. Our algorithm exssu
a monotone reduction df which in turn will lead to convergence. To be more specific,
we define the following:

Mar ki ng Strategy: Given parameters 0 < 8e,6y,6, < 1, construct a
subset Z of Jk such that the followings hold:
(10) (M1): > né(T) = 6zng,
Teq
(11) (M2) : > GR(T) = 6547,
Ted
(12) (M3): > osci(T) > BZoscy.
TeZ
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Interior Node Property: Refine each markedelementT € ﬁto obtain
a new mesh .1 compatible with 7 such that

T and the adjacent elements T’ € 9 of T, as well as their

common sides, contain a node of the finer mesh .1 in their
interior.

Reducti on of geonetric oscillation: Given a reduction factor
6, < 1, refine all T € 9 such that for all T € 4, 1(T) we have

A1 (T') < B A(T),
where J.1(T):={T’ € 1| T’ is obtained by refining T }.

The procedure REFINE is performed in several steps as follow

Refining Strategy: Given asequence {ac} \, 0, a marked set :7; geo-
metric oscillations {A(T)}rc 4, and a fixed reduction rate of element size
O<y<l,

(1) Refineall T € ﬁaccording tolnteri or Node Property;
(2) Refine more according to Reduction of geonetric
oscillation;
(3) Refine more if needed so that for any T € 9
VT’ € Figa(T) : Akr1(T") < min{a, A(T)};
(4) Refine more if needed so that for any T' € %1(T), T € %,

2 o~

Tyl (ITI )“ v ifTe %

13 — < — where = —,
(13) NI "= 1 iTe s

and T, C T is the projection of T’ back to T.

This algorithm ensures that — 0 in a monotonic way, which implies that eventually
the orthogonality relationship (9) will eventually staothold and will continue to hold
thereof. Consequently, following similar ideas to thosflipwe can prove the following
error reductionformula:

There exists a numbég > 0 and constant§ < 1, y, C > 0 such that
for anyk > kg the sequence generated by a repeated application of the
refinement procedure above satisfies
(14) (10r (u =tk 2) |2+ ¥&211) < &(II0r (u—wy)||*+ vZ2) +Coscy.
Since this holds for ak > ko we haveconvergencef the adaptive loop.
A full version of this result, together with all the detailscathe missing proofs will be

published in a forthcoming article.
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Convergence of the Equidistribution Strategy
KUNIBERT G. SEBERT
(joint work with Andreas Veeser)

We consider linear symmetric elliptic boundary value peohé with homogeneous Dirich-
let boundary values in two space dimensions. Foatteptive approximatioof the exact
solutionu we use a discretization hyyiecewise linear finite elementser a sequence of
conforming and shape-regular triangulationS }ken,. Here, we start with an initial
triangulation% and triangulatiory, 1 is generated by (local) refinement.g§ usingbi-
sectionirlgof selected elements. This in turn leads to a sequennesiédinite element
spaces{Vy}ken,. For estimating the true error we use the standard resigipal érror
estimator where the error indicator on a single elementsspito theelementandjump
residual [1, 9].

The convergence analysis of adaptive finite element digat&ins in higher space
dimensions was initiated by Dorfler in [3]. Involving a nmti of data oscillation, Morin,
Nochetto and Siebert could avoid the assumption of Dottt given data on the initial
grid is sufficiently resolved [5, 6, 7]. The ingredients fobetconvergence proof are

e Orthogonality of the error relating the actual error to theeon the next grid
and error reduction due to the nesting of the finite elemesmteap.

¢ A refinement rule for single elements, which guaranteesftrall marked ele-
ments in each of its sides and in its interior a new node in the miangulation
is created.

e A strict error reduction property up to data oscillationngsthe fixed fraction
marking for the estimator proposed by Dorfler [3].

e A strict oscillation reduction up to error reduction usinfped fraction marking
for data oscillation by Morin et al. [5], generalized by [2ica[4].

However, adaptive algorithms used in practice, like theidigtribution strategy de-
vised by BabuSka and Rheinboldt e.g. [1], seem to conveitf®ut an interior node
property, without a fixed fraction marking strategy, andhwitt treating data oscillation.
An adaptive algorithm using the equidistribution strategygiven by:

G ven tolerance TOL>0 and safety paraneter 6¢(0,1):

(1) Choose an initial nesh 9, set k:=0.

(2) Conmpute the discrete solution uc on 4.

(3) Conmpute the local indicators &(T) and the total
error estimate &(%). |If &(%) <TOL stop.

(4) Define

Fri= {Teﬁ(|£’k(T)26TOL|ﬁ<|’l/2}.
(5) Refine S into k1 by refining all elenents in i

by two bisections.
(6) Set k:=k+1 and goto (2).
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In this talk, we prove the convergence of the above algorithorbe more precise, we
prove that any given tolerandéL > 0 is reached in a finite number of steps. Note, that
no special marking for data oscillation is applied and tHimesent rule does not require
the creation of new nodes in the interior of marked elemeni& convergence proof is
based on the following results:

¢ The sequence of mesh-size functidig}yc s, converges to some limiting func-
tion he in L. (Q). Note, that in generdl., Z 0 holds.

e For any sequence of tolerance®Ly > 0 in thekth iteration of an adaptive pro-
cedure with lim_,., TOLk we prove that the limit of the elementresidual is 0. The
proof is based on an idea used by Siebert and Veeser for tiogttbe element
residual in a convergent algorithm for the elliptic obstgatoblem [8].

e Using the equidistribution strategy, the contribution ohrmarked elements to
the total estimate (%) satisfieséi( %\ k) < 6TOL. Contributions of marked
elements are controled via discrete local efficiency by thereeduction and the
element residual [3] which both converge to 0.

The presentation is part of ongoing research and it seerhthiharesented ideas can
also be used for proving convergence of other practical mgtrategies, like the popular
maximum strategy [1].
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Optimal Adaptive Finite Element Methods without Coarsening
ROB STEVENSON

Adaptive finite element methods for solving elliptic boundsalue problems have the
potential to produce a sequence of approximations to theisnlthat converges with a
rate that is optimal in view of the polynomial order that iphgd, also in the, common,
situation that finite element approximations with respeattiformly refined partitions
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exhibit a reduced rate due to a lacking (Sobolev) regulafithie solution. The basic idea
of an adaptive finite element method is, given some finite efermapproximation, to create
a refined partition by subdividing those elements wherd lar estimators indicate that
the error is large, and then, on this refined partition, to pota the next approximation,
after which the process can be repeated. Although, becdubkeipsuccess in practice,
during the last 25 years the use of these adaptive methodsigemore and more widely
spread, apart from results in the one-dimensional case by¥a and Vogelius ([1]),

their convergence was not shown before the work by Dorfedy,(fhat was later extended
by Morin, Nochetto and Siebert ([7]).

Although these results meant a break through in the theatethderstanding of adap-
tive methods, they do not tell anything about the rate of eogence, and so, in particular,
they do not show that adaptive methods are more effectire tireeven competitive with
non-adaptive ones in the situation that the solution haskirig regularity.

Recently, in [2], Binev, Dahmen and DeVore developed an tukafiinite element
method which they showed to be of optimal computational derity. Whenever for
somes > 0, the solution is in the approximation clasg’, meaning that there exists a
sequence of partitions of the domain imtelements such that the best finite element ap-
proximation with respect to this partition has an error iy norm of orden—5, then
the adaptive method produces a sequence of approximaliansdnverge with the same
rate, where, moreover, the cost of computing such an appation is of the order of
the number of elements in the underlying partition. A conakiom of the (near) charac-
terization of.</S in terms of Besov spaces from [3], and Besov regularity teesrfrom
[5, 4], indicate that under very mild conditions the valuesdg indeed only restricted by
the polynomial order. An additional condition was requimedthe right-hand side, the
discussion of which we postpone to the end of this abstract.

The key to obtain the optimal computational complexity tesas the addition of a
so-called coarsening or derefinement routine to the metiooa 7], that has to be applied
after each fixed number of iterations, as well as, in view efdbst, to replace the exact
Galerkin solvers by inexact ones. Thanks to the linear cgyarece of the method from
[7], and the fact that after this coarsening, the underlyiadition can be shown to have,
up to some constant factor, the smallest possible cartiinalielation to the current error,
optimal computational complexity could be shown.

The result of [2] is of great theoretical importance, but dldaptive method may not
be very practical. The implementation of the coarsening@dare is not trivial, whereas,
moreover, numerical results indicate that coarseningtisieeded for obtaining an opti-
mal method. In this talk, we will present a proof of this fast¢ [8]). We construct an
adaptive finite element method, that, except that we solv&thlerkin systems inexactly,
is very similar to the one from [7], and show that it has optiotenputational complexity.

As in [2, 7], we restrict ourselves to the model case of thes§wi equation in two
space dimensions, linear finite elements, and partitioasate created by newest vertex
bisection. Our results, however, rely on three ingredientg, two dealing with residual
based a posteriori error estimators, and one dealing witndiog the number of bisec-
tions needed to find the smallest conforming refinement oftitioa. The two results on a
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posteriori error estimators extend to more general secooet elliptic differential opera-
tors, to more space dimensions, and to higher order finiteei¢s. It can be expected that
also the result about newest vertex bisection extends te smace dimensions, which,
however, has to be investigated.

To solve a boundary value problem on a computer, it is indispble to be able to
approximate the right-hand side by some finite represemtatithin a given tolerance.
As (implicitly) in [7, 2], we use piecewise constant appioztions, but, in particular for
higher order elements, by a modification of the adaptive eefient routine, piecewise
polynomial approximations of higher order can be appliedvell. Our aforementioned
result concerning optimal computational complexity isidzalnly under the additional
assumption that if the solutiom € <75, then for anyn we know how to approximate
the right-hand sidd by a piecewise constant function with respect to a partibn
elements such that the error in the dual norm is of ordér Fors e (0, %], which is
the relevant range for piecewise linear elements, we camethat ifu € 7%, then such
approximations for the corresponding right-hand sidetewisich, however, is something
different than knowing how to construct them. Foe L,(Q), however, the additional
assumption is always satisfied, where for constructing ppraximations of the right-
hand side we may even rely on uniform refinements.

The adaptive methods from [7, 2] apply onlyfie Lo(Q). Our additional assumption
on the right-hand side is weaker than that of [2], butffar H=1(Q) not inL»(Q), it has
to be verified for the right-hand side at hand.

At the end of the talk we discuss some work in progress. Weepte extension of
our results for solving the Stokes equations, and discussssille application for goal
oriented adaptivity.
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Convergent Adaptive Finite Elements for Rough and Conforming Obstacles
ANDREASVEESER
(joint work with Kunibert G. Siebert)

There has been recent progress in the analysis of adaptite élement methods for
linear elliptic problems, addressing also the issues dftglity, convergence rates, and
complexity. For an overview of these results, we refer todtieer contributions of this

report and the references therein.

This contribution concerns adaptive finite elements anid to@vergence for the ellip-
tic variant of the obstacle problem. The obstacle problem beaconsidered as a model
case for variational inequalities — a problem class thatigjuitous and includes, e.g.,
contact and phase transition problems. Important feaifréise obstacle problem are
described by the following properties of its resolution i@ter: nonlinearity, nondiffer-
entiability, and loos of information.

Let Q c RY, d = 2,3, be a polyhedral Lipschitz domain arfice Lo(Q) a load term.
The lower obstacle is given by a finite sequence of pgiKs, ¢ )} ; such that
(1) eachK; C Qis a nondegenerata-simplex,me {d—1,d},
(2) their interiors (with respect to the induced topologsg pairwise disjoint,
(3) eachyy is an affine function ove; satisfyingy < 0 ondQNK;.
Notice that this covers continuous, piecewise affine olestduut allows also for (combi-
nations of) discontinuous and ‘singular’ obstacles.
Letu be the typically unknown minimizer of the ‘inhomogeneous@ilet energy’

1[v] ::/ 3|0v)2 - fv
o

in the set

F:={ve H}Q)|v>y onkK;fori=1,...,n},
which is nonempty, convex, and closed thanks to the tracer¢ne Such minimizer
exists, is unique, and is characterized by the variatioregjuality

Yve.# (Ou,0(—u)) > (f,v—u),

where(-,-) indicates thd_,-scalar product. We are interested in both the computdtiona
approximation of the minimum pointand the minimum valugu.

To this end, we design an adaptive algorithm with contindmesar finite elements.
The algorithm is based upon an iteration of the followingmsteps:

solve— estimate— mark— refine

i.e., solve for the minimunuy of | in the current finite element subsé of .#% and
estimate its error to test if it already meets a prescribétdace. If not, mark certain
elements and refine them in order to obtain a new, enlargedetitsfeasible sefy., 1.

The realization of the steps ‘estimate’ and ‘mark’ involveeav a posteriori estimator
& for the error in the energy minimuhfuy] — I [u]. Although it is somehow related to the
hierarchical estimator (see, e.g., [2]), it differs frorh@t previous ones in various aspects,
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e.g. error notion, accumulation of indicators, and rangeovered obstacles. Our main
result about the estimatdj; is as follows.

Theorem 1 (Upper bound) The estimatogi bounds the error in the energy minimum,
] — 1[u] < max{ 3&2, &}

The hidden constant depends @nthe shape regularity of the initial mesh, and, only if
there are isolated contact nodes, in addition on the load fesind the lower obstacle.

The proof is based upon the inequality
1) Pr(—%k) < 6k
where the quantity
Pu(—Zk) = sup{(— %, 9) | § € Hp(Q) sth. | 09| < 1, uc+ ¢ € F}

is a modification of theH ~1(Q)-norm of the residual or the derivative of | in the
current approximate minimizex, i.e.

V9 €HG(Q) (% 9) = (Due, 09) — (f,6).
Notice thatox(— Zk) combines the usuéb-constraint for the gradient of the test function
with a constraint of pointwise nature. The special form & thpper bound arises from
the relationship [uy] — 1]u] < max{%pk(—@k)z,pk(—gk)}, which is a generalization of
the unconstrained case.
Important ingredients of the proof of (1) are the conceptulifdontact introduced in
[1] and an adaptation of the projection operators on staji3]in

The upper bound in Theorem 1 is accompanied by appropriatr loounds such that,
exploiting the technique in [5], one can derive the followiesult.

Theorem 2 (Convergence) Suppose that the initial triangulation is subordinatechi t
lower obstacle.

Then the indicated algorithm converges in a finite numberteps or produces an
infinite sequence of approximate miniffia }ken such that

lud —1u] and u—uin HY(Q) (k— ).

The algorithm has been implemented within the frameworkeffinite element tool-
box ALBERTA [4]. Our numerical results corroborate and complement lieeretical
results. In particular, they indicate that typicalljy] — 1[u] ~ %gkz and that the con-
vergence rate in terms of the number of unknowns coincidke #i¢ one of nonlinear
approximation ofu.

As an illustration, we present an example with a discontirsuand ‘singular’ ob-
stacle, the exact solution of which has singularities thatralated to reentrant corner
singularities for the linear Poisson equation. Figure lictepa corresponding finite
element minimizer on the left and the decay &f versus the number of degrees of
freedom in a log-log scale on the right. In this particulaample, our theory ensures
%||D(uk— u)||? < Hug] — 1u] =~ %é"k and so the shown estimator decay rate implies an al-
most maximum decay rate for linear finite elements inkHenorm, which here cannot
be reached by uniform refinement.
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FIGURE 1. Example with a discontinuous and singular obstacle: a
finite element minimizer (left) and estimator versus nunifategrees

of freedom with maximum decay rate for linear finite elemeént®g-

log scale (right).
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