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MOTIVATION

Radar Cross Section (RCS)
Analysis

C SURFACE WAVES

WAVEGUIDE )\ 0

MODES

EDGE DIFRACTION

Goal: Determine the RCS of a plane.

Waveguide Design

Goal: Determine electric field
intensity at the ports.

Modeling of a Logging While
Drilling (LWD) electromagnetic

measuring device

SIDEVIEW

/EM FIELD

DIFFERENT MATERIAL
LAYERS

Goal: Determine EM field at
the receiver antennas.
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MAXWELL'S EQUATIONS (FREQUENCY DOMAIN)

Variational formulation

The reduced wave equation in €2,
1 . . o
VX |-VXE)— (v —jwo)E =—jw"™P,
7!

A variational formulation:

Find E € Hp(curl; Q) such that

/1(VXE).(VxF)dm—/(w2e—jwo)E-de=
QM Q

—Jjw {/ JP . Fdx + Jfgmp . FdS} forall F € Hp(curl; ) .
Q

s
A stabilized variational formulation (using a Lagrange multiplier):

Find E € Hp(curl; Q),p € H}(£2) such that

1 _ _ _
/ “(V X E)(V x F)dz — / (w?€ — jwo)E - Fdx — / (w?€ — jwo)Vp - Fdx =
QM Q Q
—jw { / JP . Fde 4+ | JEP. FdS} VF € Hp(curl; Q)
Q 2

—/Q(we—ja)E-V(jdac: —j {/ﬂ J™P . VG dx + Jfgmp-VcidS} Vg € Hp(Q) .

T2
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HP-FINITE ELEMENTS

Different refinement strategies for finite elements:

Given initial grid

h-refined grid p-refined grid hp-refined grid
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THE FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Convergence comparison: orthotropic heat conduction

problem
10° ¢ _
Geometry Final hp-grid Y ety
hp-Adaptivity
E:;10
5
uZJlO —_—
k=5 E —
5 éw‘l
Equation: V(KVu) = f*
(k)
K — K(k) — Km 0 10_20 1(;00 80‘00 27(;00 64(;00 125‘000 216‘000 343‘000 512‘000
0 K?Sk) NUMBER OF DOF
K® = (25, 7, 5, 0.2, 0.05) Automatic hp-adaptivity: 2K d.o.f.

K?S’“) — (25, 0.8, 0.0001, 0.2, 0.05) A priori hp-adaptivity: 500K d.o.f.
Automatic h-adaptivity: >5000K d.o.f.
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THE FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Fully automatic hp-adaptive strategy

Coarse grids Fine grids
(hp) (h/2,p + 1)

global hp-refinement

o

global hp-refinement

/ SOL. METHOD ON FINE GRIDS:
A TWO GRID SOLVER

Supervisor: Leszek Demkowicz The University of Texas at Austin
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A TWO GRID SOLVER FOR ELECTROSTATICS

We seek x such that Ax = b. Consider the following iterative scheme:

rtD) = [T — o™ AS]r™)

where S is a matrix, and (™ is a relaxation parameter. o™ optimal if:

(A_lrr(n), Sr(n))A
(Sr(n)a ST("’))A

o™ = arg min || ™) — x ||4=

Then, we define our two grid solver as:

1 iteration with § = Sp = > A" +
1 iteration with § = S¢ = PcAZ'Rc¢
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis.

e Importance of the choice of
shape functions.

e Importance of the relaxation
parameter.

e Selection of patches for the block
Jacobi smoother.

Effect of averaging.

Error estimation.

Smoothing vs two grid solver.

Efficiency of the two grid solver.

e Guiding hp-adaptivity
with a partially converged fine
grid solution.

Error Reduction

| e+ |12 | (e, (Pc+ SrA)e) 4 |?
w2 = supll — 2 7]
| e™ |5 e | e |41l SrAe ||%
<C<1
Error reduction constant

Is independent of h and may depend
logarithmically upon p.




2 April 2004

David Pardo

A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis.

e Importance of the choice of
shape functions.

e Importance of the relaxation

parameter.

e Selection of patches for the block
Jacobi smoother.

Effect of averaging.

Error estimation.

Smoothing vs two grid solver.

Efficiency of the two grid solver.

e Guiding hp-adaptivity

with a partially converged fine
grid solution.

Different Sets of Shape Functions

—— Peano shape functions
—— Lobatto shape functions

,LOG ERROR
=
‘ e
L

~14Y/ -

-1 I I I ,
60 2000 4000 6000 8000
NRDOF

L-shape domain problem. Difference between
solutions obtained by two direct solvers using different
sets of shape functions.

Selection of shape functions is
important, and it affects conditioning.
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis.

e Importance of the choice of
shape functions.

e Importance of the
relaxation parameter.

e Selection of patches for the block
Jacobi smoother.

Effect of averaging.

Error estimation.

Smoothing vs two grid solver.

Efficiency of the two grid solver.

e Guiding hp-adaptivity
with a partially converged fine
grid solution.

Optimal Relaxation Parameter

Relaxation parameter=1 Relaxation parameter=0.9
2000 T 2000 m
12 elements 12 elements
—— 108 elements ~ —— 108 elements
2 1500 —— 300 elements 2 1500 ~_ —— 300 elements
-% 588 elements -% — — 588 elements
> —— 972 elements ot —— 972 elements
5 1000 ‘5 1000 Q’
T o |
£ £ I
2 500 2 500 |
L — _
0 0
2 3 4 5 6 2 3 4 5 6
Order of approximation Order of approximation
Relaxation parameter=0.8 Optimal relaxation parameter
2000 2000
12 elements 12 elements
—— 108 elements —— 108 elements
2 1500 T ~| — 300 elements |- 2 1500 —— 300 elements
-% 588 elements -% 588 elements
S —— 972 elements 5 —— 972 elements
5 1000 5 1000
9] 9]
£ £
3 500 3 500f o o
- -—_—
0 0 — —
2 3 4 5 6 2 3 4 5 6
Order of approximation Order of approximation

The optimal relaxation guarantees:
1. convergence, and

2. faster convergence than with any fixed
relaxation parameter.
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis.

e Importance of the choice of
shape functions.

e Importance of the relaxation

parameter.

e Selection of patches for the
block Jacobi smoother.

Effect of averaging.

Error estimation.

Smoothing vs two grid solver.

Efficiency of the two grid solver.

e Guiding hp-adaptivity

with a partially converged fine
grid solution.

Different Block Jacobi Smoothers

CgNVERGENCE USING TWO-GRID SOLVER ITERATIONS

—— Smoother 1
Smoother 2
—— Smoother 3

|
A
/

LOG EXACT ERROR
Ld
/

|
[¢)]

|
()]

10 20 30 40 50
NUMBER OF ITERATIONS

o

Block Jacobi smoother corresponding to span of
basis functions associated to an element stiffness

matrix is [MOle efflClen_t than _standard
block Jacobi smoothers, eSpeCIaIIy in the

preasymptotic regime.
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis.

e Importance of the choice of
shape functions.

e Importance of the relaxation
parameter.

e Selection of patches for the block
Jacobi smoother.

e Effect of averaging.
e Error estimation.
e Smoothing vs two grid solver.

e Efficiency of the two grid solver.

e Guiding hp-adaptivity
with a partially converged fine
grid solution.

Averaging Operator

NUMBER OF ITERATIONS
B N

|
00 6000 8000 10000 12000
NUMBER OF DOF IN THE FINE GRID

Number of iterations required by the two grid solver
with and without an averaging operator.

It 1s NOT useful to include an
averaging operator in the overlapping
block Jacobi smoother formulation.
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis. Error Estimation

e Importance of the choice of
shape functions.

[e™lla AT ™ [la | @™ Spr™ |la
e Importance of the relaxation | e® |4 || A7 |4 || a©@Ser©® |4
parameter.

* C(n)

e Selection of patches for the block
Jacobi smoother.

e Effect of averaging.

LOG EXACT ERROR
!

e Error estimation.

e Smoothing vs two grid solver.

NNNNNNNNNNNNNNNNNN

e Efficiency of the two grid solver. Exact error vs error estimate | vs error estimate |I.

e Guiding hp-adaptivity | Ap  accurate error estimator was

with a partially converged fine designed and implemented
grid solution. |
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies
e Convergence analysis.

e Importance of the choice of

shape functions. Smoothing vs Two Grid Solver iterations
e Importance of the relaxation _
Example | Nrofdof | 1-1 3-1 || Only Smoothing
parameter.
L-shape | 1889 | 13/11 | 14/12 34 /14
e Selection of patches for the block L-shape | 11837 | 12/9 | 13/10 18 /13
Jacobi smoother. Shock 2821 5/6 6 /6 478 /295
_ Shock 12093 8 /7 9/7 326 /9
o Effect of averaging. Shock | 34389 | 12/9 | 13/10 18 /12
e Error estimation. Number of iterations needed for relative EXACT

ERROR / ERROR ESTIMATE < 0.01.

Smoothing vs two grid
solver. Both convergence properties AND

error estimation degenerates if only
smoothing iterations are used.

Efficiency of the two grid solver.

e Guiding hp-adaptivity
with a partially converged fine
grid solution.
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis.

e Importance of the choice of
shape functions.

e Importance of the relaxation
parameter.

e Selection of patches for the block
Jacobi smoother.

e Effect of averaging.
e Error estimation.

e Smoothing vs two grid solver.

e Efficiency of the two grid
solver.
e Guiding hp-adaptivity

with a partially converged fine
grid solution.

Efficiency for 3D problems

Speed = Coarse grid solve +O(p’N)

I PATCHINVERSION
B MATRIX VECTOR MULTIPLICATIQ
[ INTEGRATION

1 COARSE GRID SOLVE

Il ASSEMBLING

Ml OTHER

p=4

2.15 millions unknowns, p = 2. Total solve time: = 8
minutes

The two grid algorithm solves more
than 2 million unknowns (with p=2) in
only 8 minutes.
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A TWO GRID SOLVER FOR ELECTROSTATICS

Previously Presented Numerical and Theoretical Studies

e Convergence analysis.

e Importance of the choice of
shape functions.

e Importance of the relaxation
parameter.

e Selection of patches for the block
Jacobi smoother.

e Effect of averaging.
e Error estimation.
e Smoothing vs two grid solver.

e Efficiency of the two grid solver.

e Guiding hp-adaptivity with
a partially converged fine
grid solution.

Guiding hp-refinements

It Is possible to guide hp-
refinements with partially
converged solutions,
requiring only about ten
two grid solver iterations
per grid.
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A TWO GRID SOLVER FOR ELECTROSTATICS

Integration of the fully automatic hp-adaptive strategy with
the two grid solver

3D shock like solution example Scales: ERROR VS TIME.

b T T 17 [ O

-

17
Supervisor: Leszek Demkowicz The University of Texas at Austin
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A TWO GRID SOLVER FOR ELECTROSTATICS

Edge diffraction example(Baker-Hughes): Electrostatics

TR e Sur e e er A
'll— L g Lt : LB | FF;' |! |.".I..!'_','_-l'.}'._l_' ||Fq !
R BE:
WL 'II 4 s /_ -,"_.. y ll' =l ?i
3 ; Z’_ } — L- ;f
Dirichlet Boundary Conditions ) ) )
u(boundary)=-In r, r=sqrt (x*x+y*y) Final hp-grid

18
Supervisor: Leszek Demkowicz The University of Texas at Austin
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A TWO GRID SOLVER FOR ELECTROSTATICS

Edge diffraction example: final hp grid

2Dhp90: A Pully sutomatic ho-adaptive Finite Blement code. 2Dhp90: A Pully autormatic ho-adaptive, Finite Blemeat code. 2Dhp90: A Puly sutomatic ho-adaptive Finite Elemeat code.

19
Supervisor: Leszek Demkowicz The University of Texas at Austin
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A TWO GRID SOLVER FOR ELECTROSTATICS

Edge diffraction example: final hp grid, zoom = 10

2Dhpd0: A Pully autormatic hp-adaptive Finite Elernent code

20
Supervisor: Leszek Demkowicz The University of Texas at Austin




2 April 2004 David Pardo

A TWO GRID SOLVER FOR ELECTROSTATICS

Fickera problem. Final hp-grid.
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

To solve iteratively | V x V x E — k’E = J | has two difficulties

(1) Consider the auxiliary problem:
VXV XE+EKE=1]

2) Apply the following result (Cai and Widlund).

Indefiniteness ; Theorem. If the coarse grid is fine enough, then:

Convergence properties of the two grid solvers
associated to the original and auxiliary problems
are equal up to a constant times h.

( 1) Consider the following hp-FE spaces:
M C H(curl), W C H!

Ker(curl) is large ¢ 2) Notice that: Ker(VxM) = VW

3) Hiptmair: M = > _M.,+ >, VW,
4) Arnold: M =) M,

\
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

We seek x such that Ax = b. Consider the following iterative scheme:

rtD) = [T — o™ AS]r™

where S is a matrix, and (™ is a relaxation parameter. a(™ optimal if:

(A_lfr(n), Sr(n))B
(Sr(m, Srim) 4

a™ =arg min || ™) — 2 ||g= (NOT COMPUTABLE)

Then, we define our two grid solver for electrodynamic problems as:

1 iteration with § = Sp = > A +
1 iteration with § = Sy = > G;* +
1 iteration with § = S¢ = PcAZ'Rc
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

Plane wave incident into a screen (diffraction problem)

Screen

Second component of electric field
Geometry

R =<

SCALES: nrdof~0.33, log(error)

Convergence history final hp grid
(tolerance error= 0.1 %)
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

Guiding automatic hp-refinements

Diffraction problem. Guiding hp-refinements with a partially converged solution.

100 F

=
o
N

RELATIVE ERROR IN %

[N
o
c)

107

— 03
01
0.01
— Frontal Solver

512

I
1000

I I I I I ]
1728 2744 4096 5832 8000 10648
NUMBER OF DOF

Discretization error

20r

18-

16+

=
~
T

NUMBER OF ITERATIONS

=2
T

-
N
T

=
o
T

©
T

03
— 01
0.01

N

I I I I I I J
0 05 1 15 2 25 3 35
NUMBER OF DOF IN THE FINE GRID x 10"

Number of iterations
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

3D EM Model Problem

. EEC [ [ .

Maxwell’s equations
Boundary Conditions: Dirichlet, Cauchy Solution: Plane wave

26
Supervisor: Leszek Demkowicz The University of Texas at Austin
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

Selection of patches (for block Jacobi smoother)

Coarse Grid Fine Grid

- T .

Three examples of patches (blocks) for the Block Jacobi smoother:

Example 1. span of basis functions corresponding to an element stiffness matrix.
Example 2: span of basis functions with support contained in the support of a fine grid vertex node basis function.
Example 3: span of basis functions corresponding to element stiffness matrices for all elements adjacent to a vertex.

27
Supervisor: Leszek Demkowicz The University of Texas at Austin
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

Performance of different smoothers
3D EM Model Problem

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

ONLY SMOOTHER 2 CONVERGES

28
Supervisor: Leszek Demkowicz The University of Texas at Austin
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A TWO GRID SOLVER FOR ELECTRODYNAMICS

A two grid solver for discretization of Maxwell’'s equations
using hp-FE

Both Arnold and Hiptmair algorithms are based on Helmholtz decomposition

Hp(curl; Q) = (Ker(curl)) @ (Ker(curl))*

Arnold vs Hiptmair

1. In 3D, Arnold’s approach is approximately:

e 4 times more expensive in terms of memory and CPU time needed for a
matrix-vector multiplication than Hiptmair’s approach, and

¢ 500 times more expensive in terms of CPU time needed for construction of the
block Jacobi smoother than the one needed for construction of each of the two
Hiptmair’'s smoothers.

2. Hiptmair algorithm involves a more complex implementation, and requires
implementation of the discrete embedding of gradients of potentials into H (curl).
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THE MAIN ACCOMPLISHMENT

Design,
Implementation,
theoretical study,
and numerical study

of an efficient two grid solver,

Integrated with the automatic hp-adaptive strategy,
suitable for highly nonuniform Ap-grids,

for solution of general electromagnetic problems
In the frequency domain.
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LIMITATIONS AND FUTURE WORK

Limitations of the numerical technique for real world EM applications

Limitation |
Size of the fine grid problem may be about 30 times larger
than size of the corresponding coarse grid problem.

Limitation I
For wave propagation problems, convergence of the two
grid solver is only guaranteed if the coarse grid is fine
enough.

Limitation [l
For a number of electromagnetic applications, a
refinement strategy based on minimization of the energy
norm is inadequate.
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LIMITATIONS AND FUTURE WORK

Limitations of the numerical technique for real world EM applications

Limitation |
Size of the fine grid problem may be about 30 times larger
than size of the corresponding coarse grid problem.

Limitation Il
For wave propagation problems, convergence of the two
grid solver is only guaranteed if the coarse grid is fine
enough.

Limitation Il
For a number of electromagnetic applications, a
refinement strategy based on minimization of the energy
norm is inadequate.
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LIMITATIONS AND FUTURE WORK

Size of the fine grid problem may be about 30 times larger
than size of the corresponding coarse grid problem.

Coarse grids Mark elements to be refined Fine grids

Error estimation hp-refinement

hp-refinement

F o r
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LIMITATIONS AND FUTURE WORK

Limitations of the numerical technique for real world EM applications

Limitation |
Size of the fine grid problem may be about 30 times larger
than size of the corresponding coarse grid problem.

Limitation I
For wave propagation problems, convergence of the two
grid solver is only guaranteed if the coarse grid is fine
enough.

Limitation Il
For a number of electromagnetic applications, a
refinement strategy based on minimization of the energy
norm is inadequate.
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LIMITATIONS AND FUTURE WORK

For wave propagation problems, convergence of the two grid solver is
only guaranteed if the coarse grid is fine enough.

Geometry of a cross section of the rectangular waveguide

H-plane six resonant iris filter.

| Dominant mode (source): T Eg—mode.

S,/ (@B)

1 Dimensions = 20 X 2 X 1 cm.
Operating Frequency = 8.8 — 9.6 Ghz

1 Cutoff frequency =~ 6.56 Ghz

88 8.9 9 91 92 93 94 95 96
Frequency (Ghz)

Return loss of the waveguide structure

35
Supervisor: Leszek Demkowicz The University of Texas at Austin
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LIMITATIONS AND FUTURE WORK

For wave propagation problems, convergence of the two grid solver is
only guaranteed if the coarse grid is fine enough.

Does convergence (or not) of the two grid solver depends upon h
and/or p? How?

Convergence of the two grid solver =1|p=2|p=3|p=4
Nr. of elements per A = 7,13 YES | YES | YES | YES
Nr. of elements per A = 7,11 NO NO NO | YES
Nr. of elements per A = 6,13 NO NO NO NO

Convergence (or not) of the two grid solver is (almost) insensitive to
p-enrichment.

We need about 10-12 elements per wavelength on the coarse grid to
guarantee convergence of the two grid solver

36
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LIMITATIONS AND FUTURE WORK

For wave propagation problems, convergence of the two grid solver is
only guaranteed if the coarse grid is fine enough.
e Length of main diagonal of

the cube varying from 1 to 50
wavelengths.

e Stopping criterion: relative
energy norm error below 5%.

L
p=1 p=2 p=3 p=4 p=5
20 3 2 1 1
40K 946 1033 308 548
3 15 1 1
6427 2764 2226 4109
1.25 1 0.75
12K 14K 12K
8 A/h 0.625
D.O.F. 51K
50 A/h
D.O.F.

Large p (with only few elements per wavelength) is needed to solve problems with
domain size larger than 5-10 wavelengths.

37
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LIMITATIONS AND FUTURE WORK

For wave propagation problems, convergence of the two grid solver is
only guaranteed if the coarse grid is fine enough.

Summary

e We need 10-12 elements per wavelength (on the coarse
grid) to guarantee convergence of the two grid solver.

e If domain size is larger than 5-10 wavelengths, then
elements with large p are needed.

Conclusion

e A multigrid with less restrictive conditions over the
coarse grid is needed. Otherwise, multigrid algorithms
will only be useful for problems with domain size up to 5
wavelengths.
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LIMITATIONS AND FUTURE WORK

Limitations of the numerical technique for real world EM applications

Limitation |
Size of the fine grid problem may be about 30 times larger
than size of the corresponding coarse grid problem.

Limitation Il
For wave propagation problems, convergence of the two
grid solver is only guaranteed if the coarse grid is fine
enough.

Limitation [l
For a number of electromagnetic applications, a
refinement strategy based on minimization of the energy
norm is inadequate.
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LIMITATIONS AND FUTURE WORK

For a number of electromagnetic applications, a refinement strategy
based on minimization of the energy norm is inadequate

h
Reduced Wave Equation: V X (iV X E) — (w%€ — jwo)E = —jwJ™P
| Boundary Conditions (BC):

[

- - .
1 ] ’ Dirichlet BC at aPEC surface:n X E =0 on I'xyUTI,
Gl Neumann BC'’s:

=)

1 1
g nX —-VXE=—jwonlI;y ; nX-VXE=0on I';s
H H
2Dhp90: A Fully autometic hp-adaptive Finite Element code 2DhpY0: A Fully autometic hp-adaptive Finite Element code

SCALES: nrdof”0.33, log(error)

40
Supervisor: Leszek Demkowicz The University of Texas at Austin
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LIMITATIONS AND FUTURE WORK

For a number of electromagnetic applications, a refinement strategy
based on minimization of the energy norm is inadequate

Optimization is based on minimization of the ENERGY
NORM of the error, given by:

| error ||*= / | error |? —I—/ | V X error |?

Interpretation of results:

e The grid is optimal for the selected refinement criteria,

e but our refinement criteria is inadequate for our pourposes.

We need an hp goal-oriented refinement strategy
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LIMITATIONS AND FUTURE WORK

Future Work

e Error estimators for wave propagation problems

e A multigrid method for wave propagation problems that
overcomes the restriction on the maximum coarse grid
element size.

e A fully automatic goal-oriented hp-adaptive algorithm.

1. Supported by L. Tabarovski (Baker-Hughes), C. Torres-Verdin, and L.
Demkowicz.

2. Starting date: April 5, 2004.
3. Expected completion date of the 2D version: May 31, 2005.
4. Expected completion date of the 3D version: May 31, 2006.




CONCLUSIONS AND FUTURE WORK

e For electromagnetic problems it is possible to guide optimal
hp-refinements with partially converged solutions only.

e By combining the fully automatic hp-adaptive algorithm with the
two grid solver, it is possible to obtain accurate solutions for a
variety of electromagnetic problems.

e There is a conflict between large p (required to control dispersion
error) and small h (needed to guarantee convergence of multigrid
methods) for problems with high frequency.

e For a variety of electromagnetic applications, a goal-oriented
hp-algorithm is needed.

The University of Texas at Austin




