Summer Project. Overview.

An hp-Adaptive Finite Element (FE) Method for Solving Electromagnetic (EM) Problems with Special Emphasis in Petroleum Engineering Applications.

David Pardo

Supervisor: Alexandre Bespalov

Jun 19, 2003

OVERVIEW

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

PETROLEUM ENGINEERING EM APPLICATIONS

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method \parallel

hp-Adaptivity

Numerical Results

Conclusions

Future Work

MAXWELL'S EQUATIONS

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

MAXWELL'S EQUATIONS

Time Harmonic Maxwell's Equations:

$$\nabla \times \mathbf{E} = -j\mu\omega\mathbf{H}$$
$$\nabla \times \mathbf{H} = j\omega\epsilon\mathbf{E} + \sigma\mathbf{E} + \mathbf{J}^{imp}$$

Reduced Wave Equation:

$$\nabla \times \left(\frac{1}{\mu}\nabla \times \boldsymbol{E}\right) - (\omega^2 \epsilon - j\omega\sigma)\boldsymbol{E} = -j\omega \boldsymbol{J}^{imp}$$

Electrostatics and Magnetostatics —> Easier eq. to solve
Axisymmetric problems —> Dimension reduction
Harmonic problems in spatial variable z —> Dimension reduction

VARIATIONAL FORMULATION

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

VARIATIONAL FORMULATION

Derivation of the Variational Formulation

First, we multiply the reduced wave equation by the complex conjugate of test function F. Then, we integrate over computational domain Ω . Finally, integration by parts yields to the following formula:

$$\int_{\Omega} \{ \frac{1}{\mu} (\boldsymbol{\nabla} \times \mathbf{E}) (\boldsymbol{\nabla} \times \bar{\boldsymbol{F}}) \} dx + \int_{\partial \Omega} \mathbf{n} \times (\boldsymbol{\nabla} \times \mathbf{E}) \bar{\boldsymbol{F}}_t dS = -j\omega \int_{\Omega} \boldsymbol{J}^{imp} \bar{\boldsymbol{F}} dx$$

Observations:

- The theory of Sobolev Spaces can be substituted by the statement "everything makes sense", and viceversa.
- Special features of a problem may and should be incorporated into the variational formulation.

THE hp-FINITE ELEMENT METHOD

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

THE hp-FINITE ELEMENT METHOD

Different refinement strategies for finite elements:

THE hp-FINITE ELEMENT METHOD

Exponential convergence rates

for a number of regular and SINGULAR problems

for optimal hp-grids in the asymptotic range (theoretical and numerical results), and in the pre-asymptotic range (numerical results).

Smaller dispersion (pollution) error

as p increases.

More geometrical details captured

as h decreases.

A FULLY AUTOMATIC hp-ADAPTIVE STRATEGY

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

A FULLY AUTOMATIC hp-ADAPTIVE STRATEGY

Supervisor: Alexandre Bespalov

A FULLY AUTOMATIC hp-ADAPTIVE STRATEGY

Automatic *hp*-adaptivity delivers exponential convergence and enables solution of challenging EM problems

PRELIMINARY NUMERICAL RESULTS

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

PRELIMINARY NUMERICAL RESULTS

Edge diffraction example: final *hp*-grid, Zoom = 1

PRELIMINARY NUMERICAL RESULTS

Battery example: final *hp*-grid, Zoom = 10

2Dhp90: A Fully automatic hp-adaptive Finite Element code

CONCLUSIONS

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

CONCLUSION

The fully automatic hp-adaptive strategy produces a grid which resolves singularities.

FUTURE WORK

Petroleum Engineering EM applications

Maxwell's Equations

Variational Formulation

The hp-Finite Element Method

hp-Adaptivity

Numerical Results

Conclusions

Future Work

FUTURE WORK

Implement a goal-oriented hp-adaptive strategy.

Implement a robust hp-two grid solver.