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2. MOTIVATION

Radar Cross Section (RCS) Analysis

SURFACE WAVES MULTIPLE
F3L ECTIONS

WAVEGUIDE { |\ (|

MODES i
EDGE DIFRACTION

= lim, _ 4777“2@.
B

RCS:47TPower scattered.to receiver per 1.1nit solid angle
Incident power density

Goal: Determine the RCS of a plane.




31 October 2003 David Pardo

2. MOTIVATION

Waveguide Design

Goal: Determine electric field intensity at the ports.

3




31 October 2003 David Pardo

2. MOTIVATION

Modeling of a Logging While Drilling (LWD) electromagnetic measuring device

SIDEVIEW .-

\I . :
7/ EM FIELD

DIFFERENT MATERIAL
LAYERS

Goal: Determine EM field at the receiver antennas.
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2. MOTIVATION

Modeling of a Logging While Drilling (LWD) electromagnetic measuring device

——

Coi |
Recei ver

Cor et i on Simplest case:
_ ONE COIL TRANSMITTER

Coi |
Transmi tter

h
v

yd N

N Mud /

Goal: Determine EM field at the receiver antennas.
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3. MAXWELL'S EQUATIONS

Time Harmonic Maxwell’'s Equations:

VX E=—juwH
V x H = jweE + oE + J/P

Reduced Wave Equation:

V x (iV X E) — (WP — jwo)E = —juJ ™
Boundary Conditions (BC):

e Dirichlet BC at a PEC surface:
nx E°=—nx E"™ nx E=0
e Neumann continuity BC at a material interface:

1 1 . 1 i
nx —VxE=-nx—-Vx E" nx -V xE=—jwld"
u u u

e Silver Muller radiation condition at oco:
e, X (V x E®) — jko x ES = O(r~?)




3. MAXWELL'S EQUATIONS
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Variational formulation

The reduced wave equation in €2,
1 . . o
VX |-VXE)— (v —jwo)E =—jw"™P,
7!

A variational formulation

Find E € Hp(curl; Q) such that

/1(VXE).(VxF)dm—/(w2e—jwo)E-de=
QM Q

—Jjw {/ JP . Fdx + Jfgmp . FdS} forall F € Hp(curl; Q) .
Q

s
A stabilized variational formulation (using a Lagrange multiplier):

Find E € Hp(curl; Q),p € HE () such that
1 — — _
/ —(V x E)(V x F)dz — / (w?€ — jwo)E - Fdx — / (w?e — jwo)Vp - Fdx =
QMp Q Q
—jw {/ JP . Pdx +
Q

—/(wze—jwa)E-thd:cz—jw {/ JP . Vg dx +
Q Q

JEP. FdS} VF € Hp(curl; )
T2

Jime. qus} Vg € H5 ().

I
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3. MAXWELL'S EQUATIONS

De Rham diagram

De Rham diagram is critical to the theory of FE
discretizations of Maxwell’'s equations.

R—)WLQBVE L2 — o0

l[ia |m  |mem |mav P

A\ V X Vo

R — Wr — QpF — S5 VP —5 WPl 0.

This diagram relates two exact sequences of spaces, on both continuous and discrete levels, and
corresponding interpolation operators.
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4. HP-ADAPTIVITY

Different refinement strategies for finite elements:

4

Given initial grid

4

h-refined grid p-refined grid hp-refined grid

Supervisor: Leszek Demkowicz The University of Texas at Austin
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4. HP-ADAPTIVITY

Orthotropic heat conduction example

k=5

~ I .

Equation: V(KVu) = f)

K=K® = K0
0 Kz(/k) Solution: unknown
Ka(ck) = (25, 7, 5, 0.2, 0.05) Bpundary Conqlitions;
K{® = (25, 0.8, 0.0001, 0.2, 0.05) KOVu-n=g® —ady

39.00Q9sror

21.364 SCALES: nrdof0.33, log(error)

11.702

6.4105

3511

1.923

1.053

0.577p:

0315

0173

0.094

nrdof
45 [ 278 T 860 [ 1946 173697 176269 19822 114513 120502

N<

Convergence history Final hp grid
(tolerance error = 0.1 %)
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4. HP-ADAPTIVITY

ERROR IN THE RELATIVE ENERGY NORM (%)

10

10

10

10

10

Convergence comparison

Orthotropic heat conduction example

—— h—-Adaptivity
—— A priori hp—adaptivity
hp—Adaptivity
1 1 1 1 1 1 1 J
(0] 1000 8000 27000 64000 125000 216000 343000 512000

NUMBER OF DOF

11
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5. THE FULLY AUTOMATIC HP-ADAPTIVE
STRATEGY

Fully automatic hp-adaptive strategy

% global hp-refinement %

% global hp-refinement %

o«
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5. THE FULLY AUTOMATIC HP-ADAPTIVE
STRATEGY

Automatic hp-adaptivity delivers exponential convergence
and enables solution of challenging EM problems

¢

Coarse Grid
hp-grid

Fine Grid
h/2,p+1-grid

|

—_—

|

Next optimal coarse grid

i

NEED FOR A TWO GRID SOLVER

Minimization of the

projection based
interpolation error
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6. A TWO GRID SOLVER FOR SPD PROBLEMS

We seek x such that Ax = b. Consider the following iterative scheme:

rnt) — [T — o™ AS]r™
2+ = [ — o™ §]p®)

where S is a matrix, and (™ is a relaxation parameter. o™ optimal if:

(A_lfr»(n), Sr(n))A
(Sr(), Sr() 4

o™ = arg min || ™) — x ||4=

Then, we define our two grid solver as:

1 lteration with § = Sp = > A;'  +
1 lteration with § = S¢ = PAZ'R
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6. A TWO GRID SOLVER FOR SPD PROBLEMS

Error reduction and stopping criteria

Let (™) = 2™ — x the error at step n, ¢ = [I — ScAle™ = [I — Pcle™. Then:

e o [ (@™, SrAeM)a 2 | (™, (P + SpA)E™)4 |7
[ e™ |3 | €™ |14]| SpAE™ |3 | €M 141 SpAe™ |1
Then:
e(nt1) |2 e, (P, SrA)e) 4 |? -
I gA < sup[l — | (e, ( C2+ rA) )2A | ]<c <1 (Error Reduction)
| et |I% e I e ll4all SrAe [I%

For our stopping criteria, we want: Iterative Solver Error = Discretization Error. That is:

| e™ b ]la

< 0.01 (Stopping Criteria)

I'el® ||a
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A TWO GRID SOLVER FOR ELECTROMAGNETICS

We seek x such that Ax = b. Consider the following iterative scheme:

rtD) = [T — o™ AS]r™
2+ — [T — o S

where S is a matrix, and (™ is a relaxation parameter. a(™ optimal if:

(A_lfr(n), Sr(n))B
(Sr(m, Srim) 4

a™ =arg min || ™) — 2 ||g= (NOT COMPUTABLE)

Then, we define our two grid solver for Electromagnetics as:

1 lteration with § = Sp = > A;'  +
1 lteration with § = Sy =>.G;' +
1 lteration with § = S¢ = PAZ'R
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A TWO GRID SOLVER FOR ELECTROMAGNETICS

A two grid solver for discretization of Maxwell’'s equations
using hp-FE

Consider the following two problems:

Problem1: V X V X E — k’E =] Probleml: VX VX E+E =]
Matrix form: Au = v Matrix form: Au = v

Two grid solver V-cycle: Two grid solver V-cycle:

TG = (I — a1SrA)(I — aaSvA)(I — ScAc) TG = (I — a18rA)(I — as8vA)(I — ScAc)

Theorem: If h is small enough, then:

| TGe™ ||<|| TGe™ || +Ch

Notice that C is independent of h and p.
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A TWO GRID SOLVER FOR ELECTROMAGNETICS

A two grid solver for discretization of Maxwell’'s equations
using hp-FE

Helmholtz decomposition:

Hp(curl; Q) = (Ker(curl)) @ (Ker(curl))*

We define the following subspaces (T' =grid, K =element, v =vertex, e =edge):

O, = int(J{K € Ty : vg,; € 0K}) ; g = int(J{K € Tk : ex,i € 0K}) Domain decomposition
My, = {u € M : supp(u) C Q;} 5 Mg, = {u € M :supp(u) C Qf ;} Nedelec's elements decomposition
Wy, ={u € Wi :supp(u) C Qf;} ;5 Wg, ={u € Wi:supp(u) C Qg ;} =90 Polynomial spaces decomposition

Hiptmair proposed the following decomposition of M:

M, =>_, M;:,i + 2, VW’:)J

Arnold et. al proposed the following decomposition of Mj:

Mk — Zv Ml::;,z
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8. PERFORMANCE OF THE TWO GRID SOLVER

Numerical Studies

2002 2003
e Importance of the choice of shape ¢ GUIC_lIng hp—adaptIVItY W'th_a
functions. partially converged fine grid

solution for EM problems.
e Importance of the relaxation

parameter. e Efficiency of the two grid

. solver.
e Selection of patches for the block

Jacobi smoother. e Number of elements per
wavelength required by the
two grid solver to converge.

e Effect of averaging.

e Error estimation. _ _
e Control of the dispersion
e Smoothing vs two grid solver. error.

problems.

converged fine grid solution.




31 October 2003 David Pardo

8. PERFORMANCE OF THE TWO GRID SOLVER

Orthotropic heat conduction example

~ I

Equation: V(KVu) = f*)

K=K® = K0
0o K@ Solution: unknown
Kg(ck) = (25, 7, 5, 0.2, 0.05) Bpundary Conqlitions;
K® = (25, 0.8, 0.0001, 0.2, 0.05) KOVu-n=g® —au

oogaﬁgggtﬂ!‘im
e
813 15 13 1B 18 18 1213 18 I8
5 & & R -

N

Convergence history Final hp grid
(tolerance error = 0.1 %)
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8. PERFORMANCE OF THE TWO GRID SOLVER

Guiding automatic hp-refinements

Orthotropic heat conduction. Guiding hp-refinements with a partially converged

solution.
? 2 i
10 ¢ 10°: 150
03 03 0.3
— 01 0 — 01
0.01 001 " 0.01
N 0001 .l 0001 5 0,001
5101 7 —— Frontal Solver Z — Frontal Solver E 10
e 4
0 \ 0
: \ : ?
M ﬁo“— L
W u 0
> N > L
ol 5 5 50
m o ~ 2
| | Z WMA/
! ! ! | | ] 10'2 | | | | | | 00 é 1‘0 1‘5
0 15l 3B K00 165 700 0 125 1000 TR R0 15625 27000 NUMBER OF DOF INTHE FINEGRD ¢

Energy error estimate Discretization error estimate Number of iterations
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8. PERFORMANCE OF THE TWO GRID SOLVER

Plane Wave incident into a screen (diffraction problem)

Screen

Second component of electric field
Geometry

R =<

SCALES: nrdof~0.33, log(error)

Convergence history Final hp-grid
(tolerance error = 0.1 %)
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Numerical Results

Guiding automatic hp-refinements

Diffraction problem. Guiding hp-refinements with a partially converged solution.

20r
2 - 8? 03
il i
— Frontal Solver -
161
o . 141
8 z
p 2.
2ol
1
9 &
x i
i E
] T 10k
4 o}
g f
<10 2 sl
& 3
& z
6 |
al
107
oL
L L 1 1 | | | 0 ! L 1 1 L | |
512 1000 1728 2744 4096 5832 8000 10648 0 05 1 15 2 25 3 35
NUMBER OF DOF NUMBER OF DOF IN THE FINE GRID 10"

Discretization error estimate Number of iterations
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8. PERFORMANCE OF THE TWO GRID SOLVER

Waveguide example

w I

<

Convergence history Final hp-grid
(tolerance error = 0.5 %)

24
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8. PERFORMANCE OF THE TWO GRID SOLVER

Guiding automatic hp-refinements

Waveguide example. Guiding hp-refinements with a partially converged solution.

— 03 251
0.3
0.1
— 01
ga 0.01
i — Frontal Solver :
100
201
S 2
z ¢}
g 2 15-
g i
i E
Y 6
>
E x
g ]
b Q10F
x 3
) - M
10° b
51
| | | | | | | | ] 0 ! ! L 1 1
512 1000 1728 2744 4096 5832 8000 10648 13824 17576 0 1 2 3 4 5 6 7 8
NUMBER OF DOF NUMBER OF DOF IN THE FINE GRID X 104

Discretization error estimate Number of iterations
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8. PERFORMANCE OF THE TWO GRID SOLVER

Efficiency of the two grid solver

We studied scalability of the solver with respect h and p.

Speed = Coarse grid solve +O(p’N)

We implemented an efficient solver.

e Fast integration rules.
e Fast matrix vector multiplication.
e Fast assembling.

e Fast patch inversion.

e Fast construction of prolongation/restriction operator.
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8. PERFORMANCE OF THE TWO GRID SOLVER

3D shock like solution example

Equation: —Au = f

Geometry: unit cube Solution: u = atan(20 * /1 — /3))

r=(x—.25) %2 4+ (y — .25) * %2 + (z — .25) * %2
Dirichlet Boundary Conditions

ST T
y i,
""'IIIA"' A
RN
S
\\\\\\\‘&‘“‘
ity
W
%

11111

Convergence history Final hp grid
(tolerance error = 1%)
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8. PERFORMANCE OF THE TWO GRID SOLVER

Performance of the two grid solver

3D shock like solution example

350
— — TOTAL TIME
PATCH INVERSION
MATRIX VECTOR MULTIPLICATION
300 | — INTEGRATION
COARSE GRID SOLVE
—— OTHER
250 |-
wn
2
g 200
O
LLl
w
=
L —
Y 150
|_
100 -
50 -

Il
2 4 6 8 10 12 14

NUMBER OF DOF x 10%

In core computations, AMD Athlon 1 Ghz processor.
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8. PERFORMANCE OF THE TWO GRID SOLVER

Performance of the two grid solver
3D shock like solution problem

B PATCHINVERSION
B MATRIX VECTOR MULTIPLICATION
] INTEGRATION

] COARSE GRID SOLVE
B ASSEMBLING

B OTHER

82%

Nrdofs =~ 2.15 Million Nrdofs =~ 0.27 Million Nrdofs =~ 2.15 Million
Total time =~ 8 minutes Total time ~ 10 minutes Total time ~ 50 minutes
Memory* = 1.0 Gb Memory* = 2.0 Gb Memory* =~ 3.5 Gb
p=2 p=8 p=4

*Memory = memory used by nonzero entries of stiffness matrix
In core computations, IBM Power4 1.3 Ghz processor.

29
Supervisor: Leszek Demkowicz The University of Texas at Austin
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8. PERFORMANCE OF THE TWO GRID SOLVER

Convergence history

3D shock like solution example.
Scales: ERROR VS TIME.

30

RELATIVE ERROR IN % (LOGARITHMIC SCALE)

1 1 1 1 1 1 1 1
5 10 19 32 52 80 119 172 243 336
TIME IN SECONDS (ALGEBRAIC SCALE)
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9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example (Baker-Hughes): Electrostatics

Dirichlet Boundary Conditions
u(boundary)=—In r, r=sqgrt (X*x+y*y)

31
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9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: final hp-grid, Zoom =1

2Dhp90: A Fully automatic hp-adaptive Finite Element code

AR et e e e

fit
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9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: final hp-grid, Zoom = 10"

2Dhp90: A Fully automatic hp-adaptive Finite Element code

33
Supervisor: Leszek Demkowicz The University of Texas at Austin
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9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at
distances 0.01-1 from the singularity

18.385059
16.854529
15.323999
13.7
12.2¢
10.7:
9.20
7.67
650819
4.610289
3.079759
1.549229
0.018699
-1E1831
-3.042361
4572891
-6.103421 X
-1.007193 [ -1.096212 | -1.185230 | -1.274248 | -1.363267 | -1.452285 | -1.541303 | -1.630322 | -1.719340
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9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at
distances 0.0001-0.01 from the singularity

38.328379

22.106964
20.859163
19.611362
18.363561 X

| -1.000072 | -1.000962 [ -1.001852 [ -1.002742 | -1.003633 | -1.004523 | -1.005413 [ -1.006303 | -1.007193
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9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at
distances 0.000001-0.0001 from the singularity

58.199630
56.956577
55.713524

X
-1.000001 [ -1.000010 | -1.000019 | -1.000027 [ -1.000036 | -1.000045 | -1.000054 | -1.000063 | -1.000072
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9. ELECTROMAGNETIC APPLICATIONS

Time Harmonic Maxwell’'s Equations

V xE=—juvH
V x H = jweE + cE

Reduced Wave Equation:

Nl

1 .
V x (—V X E> — (w?e — jwo)E = —jwJ™P
o

w

B Boundary Conditions (BC):
I = | Dirichlet BC at a PEC surface:

nx E=0on I'yUI'y

d=0.01m

N

>
d=0.01 m
Neumann BC'’s:

1
E nx—-VxFE=—jwon I
1

z D d=2m
L 1
" nx —-VxFE=0on I;
L
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9. ELECTROMAGNETIC APPLICATIONS

Battery example: Convergence history

2Dhp90: A Fully automatic hp-adaptive Finite Element code

SCALES: nrdof~0.33, log(error)

nrdof
27 [ 183 [ 579 [ 1325 | 2534 [ 4317 | 6786 [ 10053 | 14229
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9. ELECTROMAGNETIC APPLICATIONS

Battery example: final hp-grid, Zoom =1

2Dhp90: A Fully automatic hp-adaptive Finite Element code

1
I
!

39
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9. ELECTROMAGNETIC APPLICATIONS

Why the optimal grid is so bad?

Optimization is based on minimization of the ENERGY
NORM of the error, given by:

| error ||*= / | error |? —I—/ | V X error |?

Interpretation of results:

e The grid is optimal for the selected refinement criteria,

e but our refinement criteria is inadequate for our pourposes.
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9. ELECTROMAGNETIC APPLICATIONS

Waveguide example with five iris

Geometry of a cross section of the rectangular waveguide

| H-plane five resonant iris filter.
| Dominant mode (source): T E;p—mode.

1 Dimensions =~ 20 x 2 x 1 cm.

Is,,| (@B)

Operating Frequency =~ 8.8 — 9.6 Ghz

1 Cutoff frequency =~ 6.56 Ghz

88 8.9 9 91 92 93 94 95 96
Frequency (Ghz)

Return loss of the waveguide structure

41
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9. ELECTROMAGNETIC APPLICATIONS

FEM solutlon for frequency = 8.72 Ghz
B : _

| He |

| Hy |

VIH >+ Hy[?

9 9.1 9.2 9.3 9.4 9.5 9.6
Frequency (Ghz)

42
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9. ELECTROMAGNETIC APPLICATIONS

FEM solution for frequency = 8.82 Ghz
——— AT L o

I | | 1
:.-F

| H |

| Hy|

VIH >+ Hy[?

9 9.1 9.2 9.3 9.4 9.5 9.6
Frequency (Ghz)

43
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9. ELECTROMAGNETIC APPLICATIONS

FEM solution for frequency = 9.58 Ghz

| H |

| Hy|

VIH >+ Hy[?

Supervisor: Leszek Demkowicz The University of Texas at Austin
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9. ELECTROMAGNETIC APPLICATIONS

FEM solution for frequency = 9.71 Ghz

| He |

rg..:!?
LIS
1

| Hy |

i
1il
=

VIH >+ Hy[?

| (@B)

9 9.1 9.2 9.3 9.4 9.5
Frequency (Ghz)

45
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9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Our refinement technology incorporates:

An hp-adaptive algorithm A two grid solver
Low dispersion error Convergence of iterative solver
Small h is not enough Insensitive to p-enrichment (1 < p < 4)
Large p required Coarse grid sufficiently fine
Waveguide example: p =~ 3 Waveguide example: A\/h ~ 9

B
R
pasdilali]
Bl
T
il
il
i
R
LT
B

g
iz
b
T
it
(R ) B
gy
AR
i
B
I

L

LT = e ]

01616 3o FEEET

1 BT
IRER AR AR

iREEaE s A

[ | N
S i e D P S A

R o P P

A )

ERERaE E

G e

P B
1861 o s AL

{REREETE ) | |

BERE0 2 Ry
[ i

T FE= LT

Limitations of the hp-strategy for wave propagation problems:
We need large p and small h.
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9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Does convergence (or not) of the two grid solver depends
upon h and/or p? How?

Convergence of two gridsolver [ p =1 p=2 p=3|p=4
Nr. of elements per A =7,13 | YES | YES | YES | YES
Nr. of elements per A = 7, 11 NO NO NO | YES
Nr. of elements per A = 6,13 NO NO NO NO

Convergence (or not) of the two grid solver is
(almost) insensitive to p-enrichment.
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9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

10

B =
@) @)

Estimate of the relative error (%)
H
o

10

Convergence history for different initial grids

N
-

[

o

-1

, 1620 Initial grid elements
, 1620 Initial grid elements
, 1620 Initial grid elements
27 Initial grid elements
27 Initial grid elements |
27 Initial grid elements
27 Initial grid elements

|

|
T OOTOOTDO
(e
PONPWONE

125

1000

3375 8000 15625 27000 42875 64000 91125
Number of unknowns (algebraic scale)

Conclusion : We need to control the dispersion error.




31 October 2003 David Pardo

9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Convergence history for different initial grids

10 I I I T B
——p=1, 1620 Initial grid elements |
——p=2, 1620 Initial grid elements |
p=3, 1620 Initial grid elements ||
—~ 5k . - - -p=1, 27 Initial grid elements
S 10" - - - -p=2, 27 Initial grid elements
5 T p=3, 27 Initial grid elements|]
£ \ ]
) O
G>J I \\ £\
— (I NN -
% 101 - h _ -
(5]
=
S
2 (0]
< i ]
£ 10 :
D
Ll
10"

125 1000 3375 8000 15625 27000 42875 64000 91125
Number of unknowns (algebraic scale)

Conclusion : Do we need to control the dispersion error?




10. CONCLUSIONS AND FUTURE WORK

e Exponential convergence is achieved for real world
problems by using a fully automatic hp-adaptive
strategy.

e Multigrid for highly nonuniform hp-adaptive grids is an
efficient iterative solver.

e It is possible to guide hp-adaptivity with partially
converged solutions.

e There is acompromise between large p and small h on
the design of the initial grid.

e This numerical method can be applied to a variety of real
world EM problems.

The University of Texas at Austin
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10. CONCLUSIONS AND FUTURE WORK

Completed tasks

Designed and implemented a 2D and 3D version
of the two grid solver for elliptic problems.

Studied numerically the 2D and 3D versions of the
two grid solver.

Designed, studied and implemented a two grid
solver for 2D Maxwell’s equations.

Studied and designed an error estimator for a two
grid solver for Maxwell’s equations.

Studied performance of different smoothers (in
context of the two grid solver) for Maxwell’s
equations.

Designed, studied, and implemented a flexible
CG/GMRES method that is suitable to accelerate
the two grid solver for Maxwell’s equations.

Developed a convergence theory for all
algorithms mentioned above.

Applied the hp-adaptive strategy combined with
the two grid solver in order to solve a number
of problems related to waveguide filters design,
and modeling of LWD electromagnetic measuring
devices.

Future Tasks

Solve the 3D
Fickera problem using hp-
adaptivity and the two grid
solver.

Implement and study a
two grid solver for 3D
Maxwell’'s equations.

Utilize this technology to
solve a 3D model problem
related to Radar Cross
Section (RCS) analysis.

Write and defend

dissertation.

Completion
date

e NOV
2003

e DEC
2003

e JAN
2004

¢ MAR
2004




