Final Ph.D. Progress Report

Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics.

David Pardo

Supervisor: Leszek Demkowicz

Dissertation Committee: I. Babuska, L. Demkowicz, C. Torres-Verdin, R. Van de Geijn, M. Wheeler.

October 31, 2003

Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin

OVERVIEW

- 1. Overview.
- 2. Motivation.
- 3. Maxwell's Equations.
- 4. hp-Adaptivity.
- 5. The Fully Automatic hp-Adaptive Strategy.
- 6. A Two Grid Solver for SPD Problems.
- 7. A Two Grid Solver for Electromagnetics.
- 8. Performance of the Two Grid Solver.
- 9. Electromagnetic Applications.
- 10. Conclusions and Future Work.

The University of Texas at Austin

2. MOTIVATION

Radar Cross Section (RCS) Analysis

RCS=
$$4\pi^{rac{ ext{Power scattered to receiver per unit solid angle}}{ ext{Incident power density}}=\lim_{r o\infty}4\pi r^2 rac{|E^s|}{|E^i|}$$
 .

Goal: Determine the RCS of a plane.

2. MOTIVATION

Waveguide Design

Goal: Determine electric field intensity at the ports.

2. MOTIVATION

Modeling of a Logging While Drilling (LWD) electromagnetic measuring device

Goal: Determine EM field at the receiver antennas.

2. MOTIVATION

Modeling of a Logging While Drilling (LWD) electromagnetic measuring device

Goal: Determine EM field at the receiver antennas.

3. MAXWELL'S EQUATIONS

Time Harmonic Maxwell's Equations:

$$abla imes extbf{E} = -j\mu\omega extbf{H}$$

$$abla imes extbf{E} + \sigma extbf{E} + J^{imp}$$

Reduced Wave Equation:

$$\nabla \times \left(\frac{1}{\mu} \nabla \times \boldsymbol{E}\right) - (\omega^2 \epsilon - j\omega \sigma) \boldsymbol{E} = -j\omega \boldsymbol{J}^{imp}$$
,

Boundary Conditions (BC):

• Dirichlet BC at a PEC surface:

$$\mathbf{n} \times \mathbf{E}^s = -\mathbf{n} \times \mathbf{E}^{inc}$$

$$\mathbf{n} \times \mathbf{E} = 0$$

• Neumann continuity BC at a material interface:

$$\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E}^s = -\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E}^{inc}$$

$$\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E} = -j\omega \mathbf{J}_S^{imp}$$

• Silver Müller radiation condition at ∞ :

$$\mathbf{e}_r \times (\nabla \times \mathbf{E}^s) - jk_0 \times \mathbf{E}^s = O(r^{-2})$$

3. MAXWELL'S EQUATIONS

Variational formulation

The reduced wave equation in Ω ,

$$abla imes \left(rac{1}{\mu}
abla imes E
ight) - (\omega^2\epsilon - j\omega\sigma)E = -j\omega J^{imp} \,,$$

A variational formulation

$$\left\{ \begin{array}{l} \mathsf{Find} \ \mathrm{E} \in H_D(\mathrm{curl};\Omega) \ \mathsf{such} \ \mathsf{that} \\ \\ \int_{\Omega} \frac{1}{\mu} (\nabla \times \mathrm{E}) \cdot (\nabla \times \bar{F}) dx - \int_{\Omega} (\omega^2 \epsilon - j \omega \sigma) E \cdot \bar{\mathrm{F}} dx = \\ \\ - j \omega \left\{ \int_{\Omega} J^{imp} \cdot \bar{F} dx + \int_{\Gamma_2} J_S^{imp} \cdot \bar{F} dS \right\} \quad \mathsf{for all} \ F \in H_D(\mathrm{curl};\Omega) \ . \end{array} \right.$$

A stabilized variational formulation (using a Lagrange multiplier):

$$\left\{ \begin{array}{l} \mathsf{Find} \ E \in H_D(\operatorname{curl};\Omega), p \in H^1_D(\Omega) \ \mathsf{such that} \\ \\ \int_{\Omega} \frac{1}{\mu} (\nabla \times E) (\nabla \times \bar{F}) dx - \int_{\Omega} (\omega^2 \epsilon - j\omega \sigma) E \cdot \bar{F} dx - \int_{\Omega} (\omega^2 \epsilon - j\omega \sigma) \nabla p \cdot \bar{F} dx = \\ \\ - j\omega \left\{ \int_{\Omega} J^{imp} \cdot \bar{F} dx + \int_{\Gamma_2} J^{imp}_S \cdot \bar{F} dS \right\} \quad \forall F \in H_D(\operatorname{curl};\Omega) \\ \\ - \int_{\Omega} (\omega^2 \epsilon - j\omega \sigma) E \cdot \nabla \bar{q} \ dx = - j\omega \left\{ \int_{\Omega} J^{imp} \cdot \nabla \bar{q} \ dx + \int_{\Gamma_2} J^{imp}_S \cdot \nabla \bar{q} dS \right\} \quad \forall q \in H^1_D(\Omega) \ . \end{array} \right.$$

The University of Texas at Austin

3. MAXWELL'S EQUATIONS

De Rham diagram

De Rham diagram is critical to the theory of FE discretizations of Maxwell's equations.

$$egin{aligned} R & \longrightarrow & W & \stackrel{f
abla}{\longrightarrow} & Q & \stackrel{f
abla}{\longrightarrow} & V & \stackrel{f
abla}{\longrightarrow} & L^2 & \longrightarrow & 0 \ & \downarrow id & & \downarrow \Pi & & \downarrow \Pi^{
m div} & & \downarrow P \ & R & \longrightarrow & W^{
m p} & \stackrel{f
abla}{\longrightarrow} & Q^{
m p} & \stackrel{f
abla}{\longrightarrow} & V^{
m p} & \stackrel{f
abla}{\longrightarrow} & W^{
m p-1} & \longrightarrow & 0 \,. \end{aligned}$$

This diagram relates two exact sequences of spaces, on both continuous and discrete levels, and corresponding interpolation operators.

4. HP-ADAPTIVITY

Different refinement strategies for finite elements:

Given initial grid

4. HP-ADAPTIVITY

Orthotropic heat conduction example

$$\begin{aligned} & \textbf{Equation: } \nabla(\mathbf{K}\nabla u) = f^{(k)} \\ & \mathbf{K} = \mathbf{K}^{(k)} = \begin{bmatrix} K_x^{(k)} & 0 \\ 0 & K_y^{(k)} \end{bmatrix} \\ & K_x^{(k)} = (25, \ 7, \ 5, \ 0.2, \ 0.05) \\ & K_y^{(k)} = (25, \ 0.8, \ 0.0001, \ 0.2, \ 0.05) \end{aligned}$$

Convergence history (tolerance error = 0.1 %)

Solution: unknown Boundary Conditions: $K^{(i)}
abla u \cdot n = g^{(i)} - lpha^{(i)} u$

Final hp grid

4. HP-ADAPTIVITY

Convergence comparison

Orthotropic heat conduction example

5. THE FULLY AUTOMATIC *HP*-ADAPTIVE STRATEGY

Fully automatic *hp*-adaptive strategy

5. THE FULLY AUTOMATIC *HP*-ADAPTIVE STRATEGY

Automatic *hp*-adaptivity delivers exponential convergence and enables solution of challenging EM problems

6. A TWO GRID SOLVER FOR SPD PROBLEMS

We seek x such that Ax = b. Consider the following iterative scheme:

$$egin{aligned} r^{(n+1)} &= [I - lpha^{(n)} AS] r^{(n)} \ x^{(n+1)} &= [I - lpha^{(n)} S] r^{(n)} \end{aligned}$$

where S is a matrix, and $\alpha^{(n)}$ is a relaxation parameter. $\alpha^{(n)}$ optimal if:

$$lpha^{(n)} = rg \| \min \| \| x^{(n+1)} - x \|_A = rac{(A^{-1}r^{(n)}, Sr^{(n)})_A}{(Sr^{(n)}, Sr^{(n)})_A}$$

Then, we define our two grid solver as:

1 Iteration with $S=S_F=\sum A_i^{-1} \quad + \,$ 1 Iteration with $S=S_C=PA_C^{-1}R$

6. A TWO GRID SOLVER FOR SPD PROBLEMS

Error reduction and stopping criteria

Let $e^{(n)}=x^{(n)}-x$ the error at step n, $\tilde{e}^{(n)}=[I-S_CA]e^{(n)}=[I-P_C]e^{(n)}$. Then:

$$rac{\parallel e^{(n+1)}\parallel_A^2}{\parallel e^{(n)}\parallel_A^2} = 1 - rac{\mid (ilde{e}^{(n)}, S_F A ilde{e}^{(n)})_A\mid^2}{\parallel ilde{e}^{(n)}\parallel_A^2\parallel S_F A ilde{e}^{(n)}\parallel_A^2} = 1 - rac{\mid (ilde{e}^{(n)}, (P_C + S_F A) ilde{e}^{(n)})_A\mid^2}{\parallel ilde{e}^{(n)}\parallel_A^2\parallel S_F A ilde{e}^{(n)}\parallel_A^2}$$

Then:

Supervisor: Leszek Demkowicz

$$rac{\parallel e^{(n+1)}\parallel_A^2}{\parallel e^{(n)}\parallel_A^2} \leq \sup_e [1-rac{\mid (e,(P_C+S_FA)e)_A\mid^2}{\parallel e\parallel_A^2\parallel S_FAe\parallel_A^2}] \leq C < 1$$
 (Error Reduction)

For our stopping criteria, we want: Iterative Solver Error \approx Discretization Error. That is:

$$rac{\parallel e^{(n+1)}\parallel_A}{\parallel e^{(0)}\parallel_A} \leq 0.01$$
 (Stopping Criteria)

A TWO GRID SOLVER FOR ELECTROMAGNETICS

We seek x such that Ax = b. Consider the following iterative scheme:

$$egin{aligned} r^{(n+1)} &= [I - lpha^{(n)} AS] r^{(n)} \ x^{(n+1)} &= [I - lpha^{(n)} S] r^{(n)} \end{aligned}$$

where S is a matrix, and $\alpha^{(n)}$ is a relaxation parameter. $\alpha^{(n)}$ optimal if:

$$lpha^{(n)} = rg \| \min \| \| x^{(n+1)} - x \|_B = rac{(A^{-1}r^{(n)}, Sr^{(n)})_B}{(Sr^{(n)}, Sr^{(n)})_B} ext{ (NOT COMPUTABLE)}$$

Then, we define our two grid solver for Electromagnetics as:

1 Iteration with $S = S_F = \sum A_i^{-1} \quad + \quad$

1 Iteration with $S = S_{
abla} = \sum G_i^{-1}$ +

1 Iteration with $S=S_C=PA_C^{-1}R$

A TWO GRID SOLVER FOR ELECTROMAGNETICS

A two grid solver for discretization of Maxwell's equations using $hp ext{-FE}$

Consider the following two problems:

Problem I: $\nabla \times \nabla \times \mathbf{E} - k^2 \mathbf{E} = \mathbf{J}$

Matrix form: Au = v

Two grid solver V-cycle:

Supervisor: Leszek Demkowicz

$$TG = (I - \alpha_1 S_F A)(I - \alpha_2 S_{\nabla} A)(I - S_C A_C)$$

Problem II: $\nabla \times \nabla \times \mathbf{E} + \mathbf{E} = \mathbf{J}$

Matrix form: $\hat{A}u=v$

Two grid solver V-cycle:

$$\widehat{TG} = (I - \alpha_1 \hat{S}_F \hat{A})(I - \alpha_2 \hat{S}_\nabla \hat{A})(I - \hat{S}_C \hat{A}_C)$$

Theorem: If h is small enough, then:

$$\parallel TGe^{(n)}\parallel \leq \parallel \widehat{TG}e^{(n)}\parallel + Ch$$

Notice that C is independent of h and p.

A TWO GRID SOLVER FOR ELECTROMAGNETICS

A two grid solver for discretization of Maxwell's equations using $hp ext{-FE}$

Helmholtz decomposition:

$$H_D(\operatorname{curl};\Omega) = (Ker(\operatorname{curl})) \oplus (Ker(\operatorname{curl}))^{\perp}$$

We define the following subspaces (T = grid, K = element, v = vertex, e = edge):

$$\Omega_{k,i}^v = \operatorname{int}(\bigcup\{ar{K} \in T_k : v_{k,i} \in \partial K\}) \;\; ; \;\; \Omega_{k,i}^e = \operatorname{int}(\bigcup\{ar{K} \in T_k : e_{k,i} \in \partial K\})$$

Domain decomposition

$$M_{k,i}^v = \{u \in M_k : \operatorname{supp}(u) \subset \Omega_{k,i}^v\} \;\; ; \;\; M_{k,i}^e = \{u \in M_k : \operatorname{supp}(u) \subset \Omega_{k,i}^e\}$$

Nedelec's elements decomposition

 $W^v_{k,i} = \{u \in W_k : \operatorname{supp}(u) \subset \Omega^v_{k,i}\} \; \; ; \; \; W^e_{k,i} = \{u \in W_k : \operatorname{supp}(u) \subset \Omega^e_{k,i}\} = \emptyset$

Polynomial spaces decomposition

Hiptmair proposed the following decomposition of M_k :

$$M_k = \sum_e M_{k,i}^e + \sum_v
abla W_{k,i}^v$$

Arnold et. al proposed the following decomposition of M_k :

$$M_k = \sum_v M_{k,i}^v$$

8. PERFORMANCE OF THE TWO GRID SOLVER

Numerical Studies

2002

- Importance of the choice of shape functions.
- Importance of the relaxation parameter.
- Selection of patches for the block Jacobi smoother.
- Effect of averaging.
- Error estimation.
- Smoothing vs two grid solver.
- Guiding hp-adaptivity with a partially converged fine grid solution.

2003

- Guiding hp-adaptivity with a partially converged fine grid solution for EM problems.
- Efficiency of the two grid solver.
- Number of elements per wavelength required by the two grid solver to converge.
- Control of the dispersion error.
- Applications to real world problems.

8. PERFORMANCE OF THE TWO GRID SOLVER

Orthotropic heat conduction example

$$\begin{aligned} & \textbf{Equation: } \nabla(\mathbf{K}\nabla u) = f^{(k)} \\ & \mathbf{K} = \mathbf{K}^{(k)} = \begin{bmatrix} K_x^{(k)} & 0 \\ 0 & K_y^{(k)} \end{bmatrix} \\ & K_x^{(k)} = (25, \ 7, \ 5, \ 0.2, \ 0.05) \\ & K_y^{(k)} = (25, \ 0.8, \ 0.0001, \ 0.2, \ 0.05) \end{aligned}$$

Convergence history (tolerance error = 0.1 %)

Solution: unknown Boundary Conditions: $K^{(i)}
abla u \cdot n = g^{(i)} - lpha^{(i)}u$

Final hp grid

8. PERFORMANCE OF THE TWO GRID SOLVER

Guiding automatic hp-refinements

Orthotropic heat conduction. Guiding hp-refinements with a partially converged solution.

8. PERFORMANCE OF THE TWO GRID SOLVER

Plane Wave incident into a screen (diffraction problem)

Convergence history (tolerance error = 0.1 %)

Second component of electric field

Final hp-grid

Numerical Results

Guiding automatic hp-refinements

Diffraction problem. Guiding hp-refinements with a partially converged solution.

8. PERFORMANCE OF THE TWO GRID SOLVER

Waveguide example

Module of Second Component of Magnetic Field

Convergence history (tolerance error = 0.5 %)

Supervisor: Leszek Demkowicz

Final hp-grid

8. PERFORMANCE OF THE TWO GRID SOLVER

Guiding automatic hp-refinements

Waveguide example. Guiding hp-refinements with a partially converged solution.

8. PERFORMANCE OF THE TWO GRID SOLVER

Efficiency of the two grid solver

We studied scalability of the solver with respect h and p.

Speed = Coarse grid solve
$$+\mathcal{O}(p^9N)$$

We implemented an efficient solver.

- Fast integration rules.
- Fast matrix vector multiplication.
- Fast assembling.

- Fast patch inversion.
- Fast construction of prolongation/restriction operator.

8. PERFORMANCE OF THE TWO GRID SOLVER

3D shock like solution example

Equation: $-\Delta u = f$ Geometry: unit cube

Solution:
$$u = atan(20*\sqrt{r} - \sqrt{3}))$$
 $r = (x - .25)**2 + (y - .25)**2 + (z - .25)**2$ Dirichlet Boundary Conditions

Final hp grid

8. PERFORMANCE OF THE TWO GRID SOLVER

Performance of the two grid solver

3D shock like solution example

In core computations, AMD Athlon 1 Ghz processor.

8. PERFORMANCE OF THE TWO GRID SOLVER

Performance of the two grid solver

3D shock like solution problem

^{*}Memory = memory used by nonzero entries of stiffness matrix In core computations, IBM Power4 1.3 Ghz processor.

8. PERFORMANCE OF THE TWO GRID SOLVER

Convergence history

3D shock like solution example. Scales: ERROR VS TIME.

9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example (Baker-Hughes): Electrostatics

Dirichlet Boundary Conditions u(boundary)=—ln r, r=sqrt (x*x+y*y)

9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: final *hp*-grid, Zoom = 1

9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: final hp-grid, Zoom = 10^{13}

9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at distances 0.01-1 from the singularity

9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at distances 0.0001-0.01 from the singularity

9. ELECTROMAGNETIC APPLICATIONS

Edge diffraction example: Comparison between exact and approximate solution at distances 0.000001-0.0001 from the singularity

9. ELECTROMAGNETIC APPLICATIONS

Time Harmonic Maxwell's Equations

$$\nabla \times \mathbf{E} = -j\mu\omega\mathbf{H}$$
$$\nabla \times \mathbf{H} = j\omega\epsilon\mathbf{E} + \sigma\mathbf{E}$$

Supervisor: Leszek Demkowicz

Reduced Wave Equation:

$$\nabla \times \left(\frac{1}{\mu}\nabla \times E\right) - (\omega^2 \epsilon - j\omega\sigma)E = -j\omega J^{imp}$$

Boundary Conditions (BC):

Dirichlet BC at a PEC surface:

$$\mathbf{n} \times \mathbf{E} = 0$$
 on $\Gamma_2 \cup \Gamma_4$

Neumann BC's:

$$\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E} = -j\omega \ on \ \Gamma_1$$

$$\mathbf{n} \times \frac{1}{\mu} \nabla \times \mathbf{E} = 0 \ on \ \Gamma_3$$

9. ELECTROMAGNETIC APPLICATIONS

Battery example: Convergence history

2Dhp90: A Fully automatic hp-adaptive Finite Element code

9. ELECTROMAGNETIC APPLICATIONS

Battery example: final *hp*-grid, Zoom = 1

9. ELECTROMAGNETIC APPLICATIONS

Why the optimal grid is so bad?

Optimization is based on minimization of the ENERGY NORM of the error, given by:

$$\parallel error \parallel^2 = \int \mid error \mid^2 + \int \mid \mathbf{
abla} imes error \mid^2$$

Interpretation of results:

- The grid is optimal for the selected refinement criteria,
- but our refinement criteria is inadequate for our pourposes.

9. ELECTROMAGNETIC APPLICATIONS

Waveguide example with five iris

Geometry of a cross section of the rectangular waveguide

Supervisor: Leszek Demkowicz

Return loss of the waveguide structure

H-plane five resonant iris filter.

Dominant mode (source): TE_{10} -mode.

Dimensions $\approx 20 \times 2 \times 1$ cm.

Operating Frequency $\approx 8.8 - 9.6$ Ghz

Cutoff frequency pprox 6.56 Ghz

FEM solution for frequency = 8.72 Ghz

FEM solution for frequency = 8.82 Ghz

FEM solution for frequency = 9.58 Ghz

FEM solution for frequency = 9.71 Ghz

9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Our refinement technology incorporates:

An hp-adaptive algorithm Low dispersion error Small h is not enough Large p required Wavequide example: $p \approx 3$

Supervisor: Leszek Demkowicz

A two grid solver Convergence of iterative solver Insensitive to p-enrichment ($1 \le p \le 4$) Coarse grid sufficiently fine Waveguide example: $\lambda/h \approx 9$

Limitations of the hp-strategy for wave propagation problems: We need large p and small h.

9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Does convergence (or not) of the two grid solver depends upon h and/or p? How?

Convergence of two grid solver	p=1	p=2	p=3	p=4
Nr. of elements per $\lambda=7,13$	YES	YES	YES	YES
Nr. of elements per $\lambda=7,11$	NO	NO	NO	YES
Nr. of elements per $\lambda=6,13$	NO	NO	NO	NO

Convergence (or not) of the two grid solver is (almost) insensitive to p-enrichment.

9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Convergence history for different initial grids

Conclusion: We need to control the dispersion error.

9. ELECTROMAGNETIC APPLICATIONS

Griding Techniques for the Waveguide Problem

Convergence history for different initial grids

Conclusion: Do we need to control the dispersion error?

10. CONCLUSIONS AND FUTURE WORK

- Exponential convergence is achieved for real world problems by using a fully automatic hp-adaptive strategy.
- Multigrid for highly nonuniform hp-adaptive grids is an efficient iterative solver.
- ullet It is possible to guide hp-adaptivity with partially converged solutions.
- There is a compromise between large p and small h on the design of the initial grid.
- This numerical method can be applied to a variety of real world EM problems.

10. CONCLUSIONS AND FUTURE WORK

Completed tasks

- Designed and implemented a 2D and 3D version of the two grid solver for elliptic problems.
- Studied numerically the 2D and 3D versions of the two grid solver.
- Designed, studied and implemented a two grid solver for 2D Maxwell's equations.
- Studied and designed an error estimator for a two grid solver for Maxwell's equations.
- Studied performance of different smoothers (in context of the two grid solver) for Maxwell's equations.
- Designed, studied, and implemented a flexible CG/GMRES method that is suitable to accelerate the two grid solver for Maxwell's equations.
- Developed a convergence theory for all algorithms mentioned above.
- Applied the hp-adaptive strategy combined with the two grid solver in order to solve a number of problems related to waveguide filters design, and modeling of LWD electromagnetic measuring devices.

Future Tasks Completion date

- ullet Solve the 3D Fickera problem using hp-adaptivity and the two grid solver.
- NOV 2003

- Implement and study a two grid solver for 3D Maxwell's equations.
- DEC 2003

- Utilize this technology to solve a 3D model problem related to Radar Cross Section (RCS) analysis.
- JAN 2004

- Write and defend dissertation.
- MAR 2004