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Motivation : aligning self-propelled particles 23
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The self-propelled particles model

System of coupled SDEs
Particles at positions Xx = R? (or a flat torus T), speeds Vi € S (unit sphere), 1 < k < N.

dX, = c Vdt
N
dVi = = X Yz Vy IV, = VilPdt + V20 P10 dBe k.
=

Careful : gradients on the sphere (for instance V,(u- v) = P,.u), Laplace Beltrami,
Stratonovich formulation for brownian motion on the sphere.
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Careful : gradients on the sphere (for instance V,(u- v) = P,.u), Laplace Beltrami,
Stratonovich formulation for brownian motion on the sphere.
Change scales : ¢ = o = 1. Assumption : vjx = K K(X; — Xk), [pe K(y)dy = 1.
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The self-propelled particles model

System of coupled SDEs

Particles at positions Xx = R? (or a flat torus T), speeds Vi € S (unit sphere), 1 < k < N.

dXx = c Vidt
N
dVi = = 3 vika Vy IV — VillPdt + V20 Py 0 dByk.
Jj=1

Careful : gradients on the sphere (for instance V,(u- v) = P,.u), Laplace Beltrami,
Stratonovich formulation for brownian motion on the sphere.
Change scales : ¢ = o = 1. Assumption : vjx = KK(X; — Xk), [pe K(y)dy = 1.

Empirical distribution ¥ = £ > 0x; ® 0.
J

dVi = PVkL(/T SK(x — X )vdfN(x, v))dt—l— \/EID\/‘(L o dB; «
X
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The self-propelled particles model

System of coupled SDEs
Particles at positions Xx = R? (or a flat torus T), speeds Vi € S (unit sphere), 1 < k < N.

dX, = c Vdt
N
dVi = = X Yz Vy IV = VilPdt + V20 P10 dBe k.
j=

Careful : gradients on the sphere (for instance V,(u- v) = P,.u), Laplace Beltrami,
Stratonovich formulation for brownian motion on the sphere.
Change scales : ¢ =0 = 1. Assumption : vjx = £ K(X; — Xk), [pe K(y)dy = 1.

Empirical distribution fN = £ 2 0x; ® 0y
J

dVi = PyiK % Jpn dt + V2Py1 0 dBy,

where for a measure f, its first moment (in v) is denoted Jr = [ vf(v)dv.
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The self-propelled particles model

System of coupled SDEs

Particles at positions Xx = R? (or a flat torus T), speeds Vi € S (unit sphere), 1 < k < N.
dXx = c Vidt

N
dVi = = X Yz Vy IV = VilPdt + V20 P10 dBe k.
=il

Careful : gradients on the sphere (for instance V,(u- v) = P,.u), Laplace Beltrami,
Stratonovich formulation for brownian motion on the sphere.
Change scales : ¢ =0 = 1. Assumption : vjx = £ K(X; — Xk), [pe K(y)dy = 1.

Empirical distribution fN = £ 2 0x; ® 0y
J

dVi = PyiK % Jpn dt + V2Py1 0 dBy,

where for a measure f, its first moment (in v) is denoted Jr = [ vf(v)dv.

Parameters : N, K, T, p (hidden in fN).
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The mean-field or moderate interaction limit

Mean-field limit # : convergence of £V to a density f, solution of a kinetic equation

Oef + V- Vif + V- (Pyo(K %y Je)f) = A .

4Bolley, Cafiizo, Carrillo, Appl. Math. Lett. 2012 [BCC12]
5
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The mean-field or moderate interaction limit

Mean-field limit # : convergence of £V to a density f, solution of a kinetic equation

Oef + V- Vif + V- (Pyo(K %y Je)f) = A .

How to get rid of K 7 Use %K(a) instead, with ey — 0 as N — oo (but €§,N — o).

d
N

4Bolley, Cafiizo, Carrillo, Appl. Math. Lett. 2012 [BCC12]
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The mean-field or moderate interaction limit

Mean-field limit # : convergence of £V to a density f, solution of a kinetic equation

Oef + V- Vif + V- (Pyo(K %y Je)f) = A .

How to get rid of K 7 Use %K(a) instead, with ey — 0 as N — oo (but €§,N — o).

d
N

Moderate interaction limit expected if the limit kinetic equation is well posed

Bef +v-Vif + V- (P,oJef) = A f.

— Only remaining parameters : the shape of T, and p (hidden in f).

4Bolley, Cafiizo, Carrillo, Appl. Math. Lett. 2012 [BCC12]
5Chaintron, Diez, Kinet. Relat. Models, 2022 [CD22]
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The mean-field or moderate interaction limit

Mean-field limit # : convergence of £V to a density f, solution of a kinetic equation

Oef + V- Vif + V- (Pyo(K %y Je)f) = A .

How to get rid of K 7 Use %K(a) instead, with ey — 0 as N — oo (but €§,N — o).

d
N

Moderate interaction limit expected if the limit kinetic equation is well posed

Bef +v-Vif + V- (P,oJef) = A f.

— Only remaining parameters : the shape of T, and p (hidden in f).

Theorem : (local in time) existence and uniqueness, initial condition fy in L>(RY x S).

There exists a unique weak solution in C([0, T], L*(R? x S)) for all T < m. It is
nonnegative and satisfies the following estimate (maximum principle):

vee[0. T, [[f()llee < folloo + (d — 1)/0 [[ 97 ($)lloo |1 ($)]l oo ds.

4Bolley, Cafiizo, Carrillo, Appl. Math. Lett. 2012 [BCC12]
5Chaintron, Diez, Kinet. Relat. Models, 2022 [CD22]
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The space-homegeneous setting : phase transition °

Fokker—Planck formulation via von Mises distributions, free energy

Define the von Mises distribution M,(v) = feevijv then
S
O0if ==V - (PuJef)+AfF =V, - (Mvav(i)) =V, - (fVy(Inf —v-J)).

Dissipation of the free energy F[f] = [ fInf — 2|J¢|? : Fisher information (w.r.t pM,,).

dt

d
—F=-D= f/\vv(m f—v-Jp)Pfdv = —Z(f|]pM,,).
S

SF, Liu SIAM J. Math. Anal., 2012 [FL12]
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The space-homegeneous setting : phase transition °

Fokker—Planck formulation via von Mises distributions, free energy

Define the von Mises distribution M,(v) = ij then

e Jdv/
S

f
M,

f

O0if ==V - (PuJef)+AfF =V, - (Mvav( )) =V, - (fVy(Inf —v-J)).
Dissipation of the free energy F[f] = [ fInf — 2|J¢|? : Fisher information (w.r.t pM,,).

d
SF=-D= f/wv(ln f— v Jp)PFdv = ~I(floM,,).
S

Criteria for steady states, compatibility equation.

D[f] = 0 & critical point of F under mass p & f = pM,, with J,n, = p(v)m, = J.

SF, Liu SIAM J. Math. Anal., 2012 [FL12]
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The space-homegeneous setting : phase transition °

Fokker—Planck formulation via von Mises distributions, free energy

Define the von Mises distribution M,(v) = ij then

e Jdv/
S

f
M,

f

O0if ==V - (PuJef)+AfF =V, - (Mvav( )) =V, - (fVy(Inf —v-J)).
Dissipation of the free energy F[f] = [ fInf — 2|J¢|? : Fisher information (w.r.t pM,,).

d
SF=-D= f/wv(ln f— v Jp)PFdv = ~I(floM,,).
S

Criteria for steady states, compatibility equation.
D[f] = 0 & critical point of F under mass p & f = pM,, with J,n, = p(v)m, = J.
" cos §er <00 sind =2 gdg

™ . .
fo ercosb sin=2 gdg

Compatibility equation : J = kQ with 2 € S and k = pc(k) for c(k) = =°

SF, Liu SIAM J. Math. Anal., 2012 [FL12]
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The space-homegeneous setting : phase transition °

Fokker—Planck formulation via von Mises distributions, free energy

Define the von Mises distribution M,(v) = ij then

e Jdv/
S

f
M,

f

O0if ==V - (PuJef)+AfF =V, - (Mvav( )) =V, - (fVy(Inf —v-J)).
Dissipation of the free energy F[f] = [ fInf — 2|J¢|? : Fisher information (w.r.t pM,,).

d
SF=-D= f/wv(ln f— v Jp)PFdv = ~I(floM,,).
S

Criteria for steady states, compatibility equation.

D[f] = 0 & critical point of F under mass p & f = pM,, with J,n, = p(v)m, = J.

f cos fer st sind=2 gdg

Compatibility equation : J = k2 with Q € S and k = pc(k) for c(k) = Ofﬂ Py
eKCOS sin
0

Behaviour : ﬁ N 400 as k — +oo, and \ pc = d as kK — 0.

SF, Liu SIAM J. Math. Anal., 2012 [FL12]
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Our main goal : around isotropic state, p < p. = d

Stability /instability for the space-homogeneous model

@ p < pc : only solution kK = 0. Isotropic state, stable (exponentially if p < p¢).
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Our main goal : around isotropic state, p < p. = d

Stability /instability for the space-homogeneous model
@ p < pc : only solution kK = 0. Isotropic state, stable (exponentially if p < p¢).

@ p > p. : either k = 0 (isotropic state, unstable), or a solution k(p) > 0. If Jro # 0,
exponential convergence of f to pMy(,)q.. for some (2, € S.
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Stability /instability for the space-homogeneous model

@ p < pc : only solution kK = 0. Isotropic state, stable (exponentially if p < p¢).

@ p > p. : either k = 0 (isotropic state, unstable), or a solution k(p) > 0. If Jro # 0,
exponential convergence of f to pMy(,)q.. for some (2, € S.

@ For the inhomogeneous model, the homogeneous steady states are the same. Can we
say something about their stability ?
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Our main goal : around isotropic state, p < p. = d

Stability /instability for the space-homogeneous model
@ p < pc : only solution kK = 0. Isotropic state, stable (exponentially if p < p¢).

@ p > p. : either k = 0 (isotropic state, unstable), or a solution k(p) > 0. If Jro # 0,
exponential convergence of f to pMy(,)q.. for some (2, € S.

@ For the inhomogeneous model, the homogeneous steady states are the same. Can we
say something about their stability ?

@ Interplay between transport and an operator relaxing in v only : hypocoercivity approach.
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Our main goal : around isotropic state, p < p. = d

Stability /instability for the space-homogeneous model

@ p < pc : only solution kK = 0. Isotropic state, stable (exponentially if p < p¢).

@ p > p. : either k = 0 (isotropic state, unstable), or a solution k(p) > 0. If Jro # 0,
exponential convergence of f to pMy(,)q.. for some (2, € S.

@ For the inhomogeneous model, the homogeneous steady states are the same. Can we
say something about their stability ?

Interplay between transport and an operator relaxing in v only : hypocoercivity approach.

@ We concentrate on p < p., write f = p+ g, with g small (of zero average if on T) :

0:g+ v -Vig—(p+g)(d—=1)v-Jyg+Jy-V,g=A7yg.
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Our main goal : around isotropic state, p < p. = d

Stability /instability for the space-homogeneous model
@ p < pc : only solution kK = 0. Isotropic state, stable (exponentially if p < p¢).

@ p > p. : either k = 0 (isotropic state, unstable), or a solution k(p) > 0. If Jro # 0,
exponential convergence of f to pMy(,)q.. for some (2, € S.

@ For the inhomogeneous model, the homogeneous steady states are the same. Can we
say something about their stability ?

@ Interplay between transport and an operator relaxing in v only : hypocoercivity approach.

@ We concentrate on p < p., write f = p+ g, with g small (of zero average if on T) :

0:g+ v -Vig—(p+g)(d—=1)v-Jyg+Jy-V,g=A7yg.

Main result (spoiler) : it is stable | In H*! norm (s derivatives in x, one in v).

Assume that s > d if d isodd or s > d + 1 if d is even. If gy € L®(RY x S) N H>}(RY x S) is
small, the solution is global. There exists an energy, equivalent to the H>*(R? x S) norm
of g, that decays in time. On T, the energy is exponentially decreasing.
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Our main goal : around isotropic state, p < p. = d

Stability /instability for the space-homogeneous model
@ p < pc : only solution kK = 0. Isotropic state, stable (exponentially if p < p¢).

@ p > p. : either k = 0 (isotropic state, unstable), or a solution k(p) > 0. If Jro # 0,
exponential convergence of f to pMy(,)q.. for some (2, € S.

@ For the inhomogeneous model, the homogeneous steady states are the same. Can we
say something about their stability ?

@ Interplay between transport and an operator relaxing in v only : hypocoercivity approach.

@ We concentrate on p < p., write f = p+ g, with g small (of zero average if on T) :

0:g+ v -Vig—(p+g)(d—=1)v-Jyg+Jy-V,g=A7yg.

Main result (spoiler) : it is stable | In H*! norm (s derivatives in x, one in v).

Assume that s > d if d isodd or s > d + 1 if d is even. If gy € L®(RY x S) N H>}(RY x S) is
small, the solution is global. There exists an energy, equivalent to the H>*(R? x S) norm
of g, that decays in time. On T, the energy is exponentially decreasing.

@ Related work” for BGK instead of Fokker-Planck : 8;f + v - Vf = psM,, — f.
"Merino-Aceituno, Schmeiser, Winter ArXiv 2024 [MASW24]
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Back to basics : one particle (Velocity Spherical Brownian Motion!?)

A single self-propelled particle exploring around, no interaction.

dX = Vvdt
X € RY (or T), VeS,{dV . B Its law satisfies O:f + v - Vf = A, f.
= fyas o t-

8
9

10Baudoin, Tardif, KRM 2018 [BT18]

Amic Frouvelle Hypocoercivity for self-propelled particles June 2024



Back to basics : one particle (Velocity Spherical Brownian Motion!?)

A single self-propelled particle exploring around, no interaction.

dX = Vvdt
X € RY (or T), VeS,{dV . B Its law satisfies O:f + v - Vf = A, f.
= fyas o t-

Looks simple, can't we do a la Villani® ? Define an energy equivalent to the square of the H!
norm (if B < ay) : F = ||f||3 + ||V, fl3 + 28(V,f, Vif) +7||V«f|3, and then get

d
4 = 2|V, f|? + 2a(V,f, V, (A, F)) + 25HPVLVXICH% + 29(Vf, Vi (A,f)) (good terms)

dt
—2a(V,f, V) =28[(d = 1)(V,f, Vi) = 2(V,f, Vy(A,f))]. (bad terms)

Trouble or not ?

8Villani, 2009 [Vil09]
9

10Baudoin, Tardif, KRM 2018 [BT18]
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Back to basics : one particle (Velocity Spherical Brownian Motion!?)

A single self-propelled particle exploring around, no interaction.

dX = Vvdt
X € RY (or T), VeS,{dV . B Its law satisfies O:f + v - Vf = A, f.
= fyas o t-

Looks simple, can't we do a la Villani® ? Define an energy equivalent to the square of the H!
norm (if B < ay) : F = ||f||3 + ||V, fl3 + 28(V,f, Vif) +7||V«f|3, and then get

d
4 = 2|V, f|? + 2a(V,f, V, (A, F)) + 25HPVLVXICH% + 29(Vf, Vi (A,f)) (good terms)

dt
—2a(V,f, V) =28[(d = 1)(V,f, Vi) = 2(V,f, Vy(A,f))]. (bad terms)

Trouble or not ? Good terms are indeed equivalent to H? norm (for a mean-zero function f),
but that’s not trivial to recover the missing ||v - V,f||3.

8Villani, 2009 [Vil09]
9

10Baudoin, Tardif, KRM 2018 [BT18]
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Back to basics : one particle (Velocity Spherical Brownian Motion!?)

A single self-propelled particle exploring around, no interaction.

dX = Vvdt
X € RY (or T), VeS,{dV . B Its law satisfies O:f + v - Vf = A, f.
= fyas o t-

Looks simple, can't we do a la Villani® ? Define an energy equivalent to the square of the H!
norm (if B < ay) : F = ||f||3 + ||V, fl3 + 28(V,f, Vif) +7||V«f|3, and then get

d
4 = 2|V, f|? + 2a(V,f, V, (A, F)) + 25HPVLVXICH% + 29(Vf, Vi (A,f)) (good terms)

dt
—2a(V,f, V) =28[(d = 1)(V,f, Vi) = 2(V,f, Vy(A,f))]. (bad terms)

Trouble or not ? Good terms are indeed equivalent to H? norm (for a mean-zero function f),
but that’s not trivial to recover the missing ||v - V,f||3.

Furthermore, if we want a quantitative regularising estimate for short times a la Hérau® (that
is (a,B,7) replaced by (at, Bt yt3) it does not work. Why ?

8Villani, 2009 [Vil09]
9Hérau, JFA 2007 [Hé07]
10Baudoin, Tardif, KRM 2018 [BT18]
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The trouble is the sphere — but there is a nice algebraic framework

We want to write our equation as 8;f 4+ Tf = A?f.

Fancy decomposition of the Laplace-Beltrami on the sphere

Write Ajj = [ei - Vy, € - V] (in coordinates where v = cos@w + sin 8(cos p; je; + sin @; je;)
with w € S,w L &, w L ¢, it reads A;; = J,,,). Then, writing A> = 3~ A7, -
i<
@ A, ; is antiselfadjoint on S, and commutes with A2, and Aijvikc = 0jkVi — dixV;.
o If f,g e CI(S), then V,f-V,g=> A fA ;g. Consequently A,f = A%f.

i<j
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The trouble is the sphere — but there is a nice algebraic framework

We want to write our equation as 8;f 4+ Tf = A?f.

Fancy decomposition of the Laplace-Beltrami on the sphere

Write Ajj = [ei - Vy, € - V] (in coordinates where v = cos@w + sin 8(cos p; je; + sin @; je;)
with w € S,w L &, w L ¢, it reads A;; = J,,,). Then, writing A> = 3~ A7, -
i<j
@ A, ; is antiselfadjoint on S, and commutes with A2, and Aijvikc = 0jkVi — dixV;.
o If f,g e CI(S), then V,f-V,g=> A fA ;g. Consequently A,f = A%f.

i<j
b

Evolution of quadratic quantities and commutators

Write T = v - V. If X is a smooth differential operator and Qx = fRdxs f Xf dxdv,
then %Qx = Qo(x), Where the operator ®(X) goes as follows:

D(X) = A’X + XA? 4 [T, X] = 2AXA + [A[A, X]] + [T, X].

v

Villani's chain of commutators : start from Cy = A and then C;y; = [T, (], hoping to get all
the missing “directions”. Here it stops at C; = [T, A] :=S = —v A V4, since then [T,S] = 0.
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The trouble is the sphere — but there is a nice algebraic framework

We want to write our equation as 8;f 4+ Tf = A?f.

Fancy decomposition of the Laplace-Beltrami on the sphere

Write Ajj = [ei - Vy, € - V] (in coordinates where v = cos@w + sin 8(cos p; je; + sin @; je;)
with w € S,w L &, w L ¢, it reads A;; = J,,,). Then, writing A> = 3~ A7, -
i<j
@ A, ; is antiselfadjoint on S, and commutes with A2, and Aijvikc = 0jkVi — dixV;.
o If f,g e CI(S), then V,f-V,g=> A fA ;g. Consequently A,f = A%f.

i<j

Evolution of quadratic quantities and commutators

Write T = v - V. If X is a smooth differential operator and Qx = fRdxs f Xf dxdv,
then %Qx = Qo(x), Where the operator ®(X) goes as follows:

| A\

D(X) = A’X + XA? 4 [T, X] = 2AXA + [A[A, X]] + [T, X].

v

Villani's chain of commutators : start from Cy = A and then C;y; = [T, (], hoping to get all
the missing “directions”. Here it stops at C; = [T, A] :=S = —v A V4, since then [T,S] = 0.

— Hoérmander theory : commute as you can ! We get [A,S] = (d — 1)T. And we are happy

since T2 4+ 52 = A,.
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Good hypoellipticity functional a la Hérau

Weights of operators

We will always take operators X composed thanks to A (weight 3), S (weight %) and Ay
(weight 4). Weights of compositions are the sum of weights.

11
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Good hypoellipticity functional a la Hérau

We will always take operators X composed thanks to A (weight 3), S (weight 2) and A,
(weight 4). Weights of compositions are the sum of weights.

.

Theorem : a good H* energy for short-time estimates.

Set Fo = Q4. .7:1(7', ) = aTQ_p2 +ﬁT2QSA+AS = ’Y’TaQ,Sz ar 6T4Q_AX.

Then there exists coefficients a, 3, 7y such that F(t) = Fo + Fi(min(t, 1), f) is decreasing in
time. Furthermore, on T, this quantity is equivalent to the H' norm of f if f has mean zero,
and is controlled by its dissipation at positive time, leading to an exponential decay.

June 2024 9/14
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Good hypoellipticity functional a la Hérau

We will always take operators X composed thanks to A (weight 3), S (weight 2) and A,
(weight 4). Weights of compositions are the sum of weights.

.

Theorem : a good H* energy for short-time estimates.

Set Fo = Q4. .7:1(7', ) = aTQ_p2 +ﬁT2QSA+AS = ’Y’TaQ,Sz ar 6T4Q_AX.

Then there exists coefficients a, 3, 7y such that F(t) = Fo + Fi(min(t, 1), f) is decreasing in
time. Furthermore, on T, this quantity is equivalent to the H' norm of f if f has mean zero,
and is controlled by its dissipation at positive time, leading to an exponential decay.

v

Remark : Fo = || - |3, and Fi(T,-) = aT||[V, |3 + 2872(V, | V) + Y73 P, Vi3 + 674 V|3
We then get that the H! norm is controlled by 2 ||fl|> for short times (to compare with -
t2

for usual kinetic Fokker-Planck equations).
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Good hypoellipticity functional a la Hérau

We will always take operators X composed thanks to A (weight 3), S (weight 2) and A,
(weight 4). Weights of compositions are the sum of weights.

.

Theorem : a good H* energy for short-time estimates.

Set Fo = Q4. .7:1(7', ) = aTQ_p2 +ﬁT2QSA+AS = ’Y’TaQ,Sz ar 6T4Q_AX.

Then there exists coefficients a, 3, 7y such that F(t) = Fo + Fi(min(t, 1), f) is decreasing in
time. Furthermore, on T, this quantity is equivalent to the H' norm of f if f has mean zero,
and is controlled by its dissipation at positive time, leading to an exponential decay.

v

Remark : Fo = || - |3, and Fi(T,-) = aT||[V, |3 + 2872(V, | V) + Y73 P, Vi3 + 674 V|3
We then get that the H! norm is controlled by 2 ||fl|> for short times (to compare with -
t2

for usual kinetic Fokker-Planck equations).
Higher order (in x only) : Fi(T,) = e 74*=1 S (Y7 (1,0).

Im|=k—1

1 Coti-Zelati, Dietert, Gérard-Varet, Annals of PDE, 2023 [CZDGV23]
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Good hypoellipticity functional a la Hérau

We will always take operators X composed thanks to A (weight 3), S (weight 2) and A,
(weight 4). Weights of compositions are the sum of weights.

.

Theorem : a good H* energy for short-time estimates.

Set Fo = Qu, F1(7,-) = a7Q_p2 + B7?Qsatas + 173 Q_s2 + 67 Q_4, .

Then there exists coefficients a, 3, 7y such that F(t) = Fo + Fi(min(t, 1), f) is decreasing in
time. Furthermore, on T, this quantity is equivalent to the H' norm of f if f has mean zero,
and is controlled by its dissipation at positive time, leading to an exponential decay.

v

Remark : Fo = || - |3, and Fi(T,-) = aT||[V, |3 + 2872(V, | V) + Y73 P, Vi3 + 674 V|3
We then get that the H! norm is controlled by 2 ||fl|> for short times (to compare with -
t2

for usual kinetic Fokker-Planck equations).
Higher order (in x only) : Fi(T,) = e 74*=1 S (Y7 (1,0).
Im|=k—1
In the case of the torus in space (and d = 3), see also the recent work on the model of
Saintillan—Shelley model**.

1 Coti-Zelati, Dietert, Gérard-Varet, Annals of PDE, 2023 [CZDGV23]
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Back to our model, another nice algebraic view

Our equation on the perturbation g (f = p+g) :

6t9+V'vxg_(p+g)(d_1)V'Jg+Jg'vv9:Avg-
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Our equation on the perturbation g (f = p+g) :

6t9+V'vxg_(p+g)(d_1)V'Jg+Jg'vvg:Avg-

A new operator (not differential)

We define U; jg = d(vj e - Jg — vj & - Jg) (or in condensed form Ug = dv A Jy). We have
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A new operator (not differential)
We define U; jg = d(vj e - Jg — vj & - Jg) (or in condensed form Ug = dv A Jy). We have
o Ug=—(d—1)dv-Jy
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Back to our model, another nice algebraic view

Our equation on the perturbation g (f = p+g) :

6t9+V'vxg_(p+g)(d_1)V'Jg+Jg'vvg:Avg-

A new operator (not differential)

We define U; jg = d(vj e - Jg — vj & - Jg) (or in condensed form Ug = dv A Jy). We have
o Ug=—(d—1)dv-Jy
@ UA = AU = U?, and therefore A2 — U? = (A — U)2.
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Back to our model, another nice algebraic view

Our equation on the perturbation g (f = p+g) :

6t9+V'vxg_(p+g)(d_1)V'Jg+Jg'vvg:Avg-

A new operator (not differential)

We define U; jg = d(vj e - Jg — vj & - Jg) (or in condensed form Ug = dv A Jy). We have
o Ug=—(d—1)dv-Jy
@ UA = AU = U?, and therefore A2 — U? = (A — U)2.
o AU? = U2A = A2U = UA2 = U3 = —(d — 1)U.
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Back to our model, another nice algebraic view

Our equation on the perturbation g (f = p+g) :

6t9+V'vxg_(p+g)(d_1)V'Jg+Jg'vvg:Avg-

A new operator (not differential)
We define U; jg = d(vj e - Jg — vj & - Jg) (or in condensed form Ug = dv A Jy). We have
o Ug=—(d—1)dv-Jy
@ UA = AU = U?, and therefore A2 — U? = (A — U)2.
o AU? = U2A = A2U = UA2 = U3 = —(d — 1)U.
° Jy-Vig= %Z,‘q Ui jgAi 9.
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Back to our model, another nice algebraic view

Our equation on the perturbation g (f = p+g) :

6tg+V'vxg_(p+g)(d_1)V'J9+Jg'vvg:Avg-

A new operator (not differential)

We define U; jg = d(vj e - Jg — vj & - Jg) (or in condensed form Ug = dv A Jg). We have
o U2g=—(d—1)dv-J,
@ UA = AU = U?, and therefore A2 — U? = (A — U)2.
o AU? = U2A = A2U = UA2 = U3 = —(d — 1)U.
@ J;-Vyg= %Z,‘q Ui jgAi 9.

A

We then get

Pty

1 0 1
Org+Tg=~Ag— J U?g — —UgAg = (A2 — 5U2)9 — —(A(gUg)).

To simplify notations, we note L =A — (1 — /1= &) U, so that L? = A® — 5U2.
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Back to our model, nonlinear part

1
Org+Tg=L%g— -(A(gUg)).

Same functional F(T, g(t,-)), new terms in the dissipation.

4
dt
DP(X) = A2X + XA — d( 2X + XU?) + [T, X] = L2X + XL2 + [T, X],

Qx = Qae(x) + Rx, where this time

and where the non-linear term produces

Rx(g) = %/Rd S(AXg)(Ug)gvdX-
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Qx = Qae(x) + Rx, where this time

and where the non-linear term produces

Rx(g) = %/Rd S(AXg)(Ug)gvdX-

Control of the quadratic terms : exactly the same job !
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Back to our model, nonlinear part

1
Org+Tg=L%g— -(A(gUg)).

Same functional F(T, g(t,-)), new terms in the dissipation.

4
dt
DP(X) = A2X + XA — d( 2X + XU?) + [T, X] = L2X + XL2 + [T, X],

Qx = Qae(x) + Rx, where this time

and where the non-linear term produces

Rx(g) = %/Rd S(AXg)(Ug)gvdX-

Control of the quadratic terms : exactly the same job !

Control of the cubic terms : a little bit more painful. We control them by v FD. This time,
no short-time regularity, we need really high order norms, but only with one derivative in v.
This allows to get the nonlinear stability.
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Back to our model, nonlinear part

1
Org+Tg=L%g— -(A(gUg)).

Same functional F(T, g(t,-)), new terms in the dissipation.

4
dt
DP(X) = A2X + XA — d( 2X + XU?) + [T, X] = L2X + XL2 + [T, X],

Qx = Qae(x) + Rx, where this time

and where the non-linear term produces

Rx(g) = %/Rd S(AXg)(Ug)gvdX-

Control of the quadratic terms : exactly the same job !

Control of the cubic terms : a little bit more painful. We control them by v FD. This time,
no short-time regularity, we need really high order norms, but only with one derivative in v.
This allows to get the nonlinear stability.

Special case : if f only depends on one space variable. Then, by small time regularity, we
have stability in L2 N L.
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