Shell interactions for Dirac operators:
selfadjointeness, point spectrum, and confinement
(with N. Arrizabalaga and A. Mas)

Cumpleanos de Carlos, HA&PDE

Luis VEGA, BCAM-UPV/EHU

eman ta zabal zazu

(bcam) Ly

enter for applied mathematics

CHICAGO, September 21st, 2014




Fo
- St'
.-‘ O‘
n Electro
_ o)

(W

"‘

G
am
ma rays

l: "ll 1 !
: nmarda
ysS

\\'.
- &

-

P
ositron *
(D) :
Elec-‘vé‘
ron



Free Dirac operator in R’

Definition.— H : C°(R3)* — CX(R?)* free Dirac operator in

R3,
( m 0 —203 —82 — z@l \
o . o 0 m (92 — 281 7,63
H=—avimB=1" 0 _9,—io, -m 0
\ 82 — i@l iag 0 —1m )

Remarks.—

e 1st order symmetric differential operator.

e Local version of vV—A+m?2: H? = (—-A+m?)I,.
e Dirac (1928)



Coupling with a singular potential

First Question.—

() C R? bounded regular domain,
> = 0f), o surface measure on .,
V potential L?(o)*-valued.

To find D C L?(R>)* such that H +V defined on D is self-adjoint.

Motivation.—

e (Quantum Physics requires self-adjointness.

o ﬁ critical (scaling) for H, Al <1 (Dolbeault, Esteban,

Sere, '00; Hardy Inequality, Uncertainty Principle).

o H+\d|,—1 (and other critical V’son S?) (Dittrich, Exner &
Seba ’89; Spherical Harmonics. Albeverio, Gesztesy, Hoegh-

Krohn & Holden 88 -’05).

e Previous results on —A + A\dx: for Lipschitz surfaces >. Sub-
critical /Critical.



Initial Approach

First Question.—

To find D C L?(R3)* such that H 4+ V defined on D is self-adjoint.

Our Approach.—

Take ¢ € D,
V potential L?(0)*valued = V(p) = —g for some g € L*(0)*.
(H+V)(p) € L*(R*)* = (H+V)(¢) = G for some G € L*(R?)*.

H(p) = G + g in the sense of distributions.
Therefore ¢ =¢* (G +g) and
(H+V)(p) =G,  Vip)=—y

where ¢ is the fundamental solution of H = —ia - V 4+ mp3,

—m|z|

€ X

(mﬁ + (1 4+ m|z|)ic - ) for z € R?\ {0}.

]2

¢(z) =

4r|x|



Self-adjointness of H + V

Property.— If G € L?(R?)%, then ¢ * G € W12 (R3)* and
(¢ %G|z € L*(0)*.

Theorem (Self-adjointness).— Given A : L?*(0)* — L?(0)?
bounded, self-adjoint and with closed range, define
D={¢*(G+g): (pxG)ls =Ag)} C L*(R’)".

If V(gb x (G + g)) = —g, then H + V defined on D is essentially
self-adjoint.

Remarks.—

e Under more assumptions on A, H + V is self-adjoint. Posili-
cano '08-"09.

e Other differential operators and measures are considered.

e Other relations between (¢ *x (G)|s; and g are considered.



Resolvent of H

Resolvent.— Given a € (—m,m), let ¢* be the fundamental solu-
tionof H —a = —ia-V +mp — a,

<a+mﬁ+(1+\/m2—a2|az|) i — )

|2

6—\/m2—a2|ac|

47| x|

¢ (x) =

Our Setting.— Q. C R? bounded regular domain, Q_ = R3\ Q_,
>, = 024, o surface measure on >, N normal vector on > w.r.t.

Q..
Properties.— If g € L?(0)%, then (H — a)(¢® x g) = 0 in X¢. For
x € X, set
Cig(z) = lim (¢"xg)(y), Cgg(z)=pu.(¢"*g)(x).
Qiayn—m:’
Then,

e Ct =FL(a-N)+C% (Plemelj-Sokhotski jump formulae),

(o)

e (C%(a-N))*=-1



Point spectrum and confinement for H +V

Our Setting.— Set D = {¢ = ¢ % (G +g) : (¢ *x Q)]s = Alg)}
and H+V : D C L*(R?)* — L?(R3)?* defined by V(p) = —¢g and
(H+V)(p) =G for ¢ € D.

Our Theorem (Point Spectrum).— Given a € (—m,m),
Ker (H+4+V —a) # () iff Ker (A + C, — C?%) £ 0.




Point spectrum and confinement for H +V

Definition.— V generates confinement w.r.t. H and X iff
supp (e #HTVI(f)) C Q4 for all f € L?(24)* and all ¢ € R.
This is equivalent to require that xqo, ¢ € D for all p € D.

Theorem (Confinement).— Assume that H + V is self-adjoint

on D.
Then, V generates confinement w.r.t. H and X if

{Cy(a-N),A(a-N)} = —(A(a- N))=.




Some applications.

Electrostatic shell potentials

Theorem.— Let A € R\ {0} and a € (—m,m).
Take A = —(1/A+C5), D = {90 =¢x(G+g): (¢xG)[s = A(g)}7
and Vy(¢) = 4 (o4 +¢—) (p+ n.t. boundary values of  on ).

e H + V) defined on D is self-adjoint for all A £ +£2.

o Ker(H + V) —a) # 0 iff Ker (1/XA+ C2) # 0.

e H+Vyand H+V_y/ have the same eigenvalues in (—m,m).
o If [N\ & [1/||C%],4]C%]|]], then Ker (H + V) —a) = 0.

o If [\ € [1/C,4C], where C' = sup,¢(_p, m) IC5|| < 0o, then

H + V) has no eigenvalues in (—m, m).

Theorem.— Let H + V) be as above. If {)_ is connected, then
H + V) has no eigenvalues in R \ [—m, m)].




Some applications.
Electrostatic plus Lorentz scalar shell potentials

Theorem.— Let A\.,\; € R be such that A2 — \2 #£ 0,4. Take
)\85 o )\e

A=

D={p=0+(G+g): (6+C)ls =Alg)}, and

Ves(0) = 2(Xe + AsB8) (o4 + o)  (¢x n.t. boundary values of o).

e H+ V., defined on D is self-adjoint.

o V., generates confinement w.r.t H and X iff \2 — A\ = —4.



Some applications.
Electrostatic plus Lorentz scalar shell potentials

Remarks.—

e That V., generates confinement means that the particles
modelized by the evolution 0; + ¢(H + V.s) never cross X
over time, i.e., 2. becomes impenetrable.

e The impenetrability condition A2 — A\ = —4 was known for
Y ={z € R’:|z| = R}, R > 0 (Dittrich-Exner-Seba).



Uncertainty Principle on the sphere S“

We focus on H + V), for X = 5% = {x e R° : |z| = 1}

Definition.— Let ¢ = (01, 02, 03) be the family of Pauli matrices.
Given a € (—m,m), define

Y {4
k(x) = pp I and

Y ] N
w(z) = ppupE (1 +v/m? — aﬂx\) i0 -

For f € L?*(0)? and = € S?, set

Kf(x) = (k% + f)(x) and W9(f) = p.v.(w** f)(z).



Uncertainty Principle on the sphere S*

Remarks.—

e K% and W* are bounded operators in L?(c)?.

e K is a positive operator.



Uncertainty Principle on the sphere S?

Theorem.— Let A\ > 0 and a € (—m, m). The operator

1L/ A+ (m+a)K*

is invertible in L?(0)?.

Furthermore, for any f € L*(0)? and any ¢ > 0,

PR < g | A+ (m o+ @) V() - W) do

5 o _
537 [ WA+t K (3 -N)f)- G- N)f do,
(1)

where M 1is a constant depending only on m and a.
Moreover, M > % e—Vm?P—a?, /9 _ o—2vm?>—a?

For suitable §’s, the inequality (1) is sharp and the equality can be
attained.



Uncertainty Principle on the sphere S2.
Consequences

Definition (2-dimensional Riesz transform).— Given a finite

Borel measure v in R?, h € L?(v) and © € R?, one defines the
2-dimensional Riesz transform of h as

: r—Y
R, (h)(z) = lim h(y) dv(y),
€0 |lz—y|>e€ ’LE - y‘g

whenever the limit makes sense.



Uncertainty Principle on the sphere S2.
Consequences

Corollary.— 27||h||z2(5) < |[[Ro(h)||12(0)s for all real-valued

h € L*(0), and the inequality is sharp.
Hofmann, Marmolejo-Olea, Mitrea, Pérez-Esteva, & Michael Tay-

lor 09

e For suitable elections of A, a, and §, the minimizers of (1)
give rise to eigenfunctions of H + V) with eigenvalue a.

e The set of \’s for which H+ V) has a non-trivial eigenfunction
contains an interval.
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