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e Vortex Filaments

e One corner (with V. Banica)

e Regular Polygon (with F. De la Hoz)
e The Talbot Effect

e Turbulence:

— (Pseudo) randomness
— Intermittency/multifractality

— Transfer of energy (cascade)

(): Has the Talbot effect anything to do with turbulence?












I, III, V : hairpin (braid) vortices
II, IV : deformed vortex rings

square vortex
sheet
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ABSTRACT

Noncircular jets have been the topic of extensive research in the last fifteen years.
These jets were identified as an efficient technique of passive flow control that
allows significant improvements of performance in various practical systems at
a relatively low cost because noncircular jets rely solely on changes in the ge-
ometry of the nozzle. The applications of noncircular jets discussed in this re-
view include improved large- and small-scale mixing in low- and high-speed
flows, and enhanced combustor performance, by improving combustion effi-
ciency, reducing combustion instabilities and undesired emissions. Additional
applications include noise suppression, heat transfer, and thrust vector control
(TVC).

The flow patterns associated with noncircular jets involve mechanisms of vor-
tex evolution and interaction, flow instabilities, and fine-scale turbulence aug-
mentation. Stability theory identified the effects of initial momentum thickness
distribution, aspect ratio, and radius of curvature on the initial flow evolution.
Experiments revealed complex vortex evolution and interaction related to self-
induction and interaction between azimuthal and axial vortices, which lead to
axis switching in the mean flow field. Numerical simulations described the de-
tails and clarified mechanisms of vorticity dynamics and effects of heat release
and reaction on noncircular jet behavior.
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FIG. 10. Axis switching of the jet cross section in terms of isocontours of
time-averaged streamwise velocity scaled with its local centerline value
(u/uy) for experimental (OU1) and simulated (SQ1) jets. Contour levels are
0.2, 0.4, 0.6, and 0.8. The geometry of the experimental nozzle is superim-

posed on each slice on the left; the initial half-width velocity cross section of
the simulated jets is superimposed on each slice on the right. The stream-
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Figure 6 Variation of momentum thickness with axial distance at the vertex and flat sides of the

triangular jet: (a) orifice jet, (b) pipe jet. Corresponding evolution of the jet cross-sections along
the axis: (c) orifice jet, (d) pipe jet. (Koshigoe et al 1989)
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Euler equations

u:  velocity field

w=-curlu =V A u: vorticity
w=17Tds T =X,

X = X(s,t) curvein R3 support of w
divu =0

w(P) = L/Z pf((j))__;g A T(s)ds

Examples: straight lines, vortex rings, helical vortices
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BINORMAL FLOW (Vortex Filament Flow)
Xt:XS A XSSZCb
e X =X(s,t) €R’

e c=c(s,t) curvature

e b=10(s,t) binormal
Examples:

a) circle

b) straight line

c¢) helix

Remark.— o X, =T IT'|* = constant

e Time reversible equation : X(s,t) = X(—s, —t)

e Rotation invariant
12



Non-linear equation(s)

Xt:XS/\XSSZCb

o X =X(s,t)€ R3
e c=c(s,t) curvature

o b=0(s,t) binormal
Tt =T A TSS — JDSTS ‘T’ — |
Hasimoto ’70 w(sj t) — C(S, t)e’b fos T(S/,t)ds/

ous(s,t) =i (020 £ S0P + A)w)  A() <R
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Conservation Laws (CLs)

Cubic NLS is a completely integrable system.

— No use of high order CLs.

— Rough initial conditions.

Kinetic energy [ c?ds = [ |¢]?ds = [ |Ts|?ds.

Total torsion [ 7ds (scaling invariant)

Linear Momentum (Impulse):

Angular Momentum:

/X/\Tds.

§/X/\(X/\T)ds.
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One corner

_|_
T(s,0) = {A s >0
A s <0
¥(s,0) = ad

(Q : How does the corner move?

Xt:Cb
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90. Vortices above an inclined triangular wing. Lines
of colored fluid in water show the symmetrical pair of vor-
tices behind a thin wing of 15° semi-vertex angle at 20°
angle of attack. The Reynolds number is 20,000 based on

chord. Although the Mach number is very low,
field is practically conical over most of the wing, quz==-=

being constant along rays from the apex. ONEZ~ -
graph, Werlé 1963

91. Cross section of vortices on a trizne
wing. Tiny air bubbles in warter shc
tex pair for the flow above in 2
trailing edge of the wing. ONERA s7ccs



One corner
X(s,t) = VG (s/\/%) T(s,t) =T (s/ﬁ)
Ty =T N Ty
Differentiating and making ¢t = 1
1 S / / /!
02— — b
G~ G =G NG (=cbh)

Frenet equations: T or
n = —cT +7b
b = —TN
—gcn = T A (n— AT + crb)
¢ =0 c=a T=25/2
Buttke’88

G(0) = 2ab(0)
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Theorem.— (Gutierrez, Rivas, V., '03) Given any two unit vectors
(A=, A1), A* = (AT, AT, AT) such that AT = 0, there exists a unique
G such that if

X(s,t) = VtGs/Vt) for t >0

then

At > ()
X, = X, A Xy X(S,O)Z{A‘Z Z;O

Moreover, for s — +o0o there exist unit vectors (B, B+) s.t.
(i) Go(s) = A* (5 + 2%2) —4%n, + O(ﬁ)
Te(s) = A* — 2240 1 O( {4),
(na _ iba)(S) _ B:I:ez'%—i—m2 lg | s| i O(L)

]

2

(A+7_A_) _ —TE AQ

(ii) sin 5 =e T2 ; sinp = Toa
(i) G§#0  lim |¢]|T§] =n, > 0.

€] =00
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Corollary.— As before,

AT s>0

T(s,t) =T%s/Vt) ; T(s,0)= {A s < 0.

Then, for ¢t > 0,
@) ITC I = 1T,

> HT(,O) ;/2 +77c27, > HT(vO)HQBUQ

2
2,

(ii)/X A Tds = t/G“ A Tos = t(AT — A7) = 2te™ ™7 .
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Theorem.— (with V. Banica) The self-similar solutions are stable.
In particular, the creation/annilihation of a corner is stable.
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V. Banica 2008-2014

Conformal transformation of 1): existence of wave operator
and asymptotic completeness.

The right space of functions.

Long range potential: Cubic NLS with the Dirac—delta as
initial condition is ill-posed.

The recipe to go beyond ¢t = 0: Blow—up argument to
“capture” the selfsimilar solution

The characterization of the selfsimilar solutions plays a fun-
damental role.

S. (Gutiérrez, J. Rivas 2003
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A REGULAR POLYGON (with F. de la Hoz)

2 S (o),

k:—oo

e Galilean Transformations
D(s,t) = PRty (s — 2kt 1), Vk,teR.
MM (5,0) = (s,0) Vj €L

v =1 VkeZ.
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‘Z (0,2pq) Z o~ {(ME)*2mp/(M?q)+iMks

k=—o00

w (87 tPQ)

_ @/D\(Oatpq) Z 6—27ri(p/q)k:2—l—iMks

k=—0o0
g—1 oo
_ ?Z (O, tpq) S‘ e—27r7l(p/q)(qk—l—l)2—|—iM(qk—|—l)s
[=0 k=—o0
q—1 o0

= D (0,tyy) YRR/ ML N7 iMaks,
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The generalized quadratic Gauf3 sums are defined by

c| -1

Z 2mi(al®+bl)/c
€ Y
1=0

for given integers a, b, ¢, with ¢ # 0.

[ Jqe,  if ¢ is odd,

G(—p,m,q) =< /2qe?~, if q is even and ¢/2=m mod?2,

0, if ¢ is even and ¢/2 % m mod?2,

\

for a certain angle 6,, that depends on m (and, of course, on p and
q, t00).
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O Y M - M -7
e1 (m ) ko Mp_1- 1 Mo | e (0 )T
ok T + Co (O_)
\ e (57)
MMq_l-MMq_Q'... MlMOEI

Let us define
M=DM;_1-Mg_2-... M; M.

e M is an M—th root of the identity matrix.
e M is a rotation matrix that induces a rotation of 27w /M de-
grees around a certain rotation axis.

2T
Tr(M)=1+2 —
() = 1+ 2¢08 (37).
(M) = {17627Ti/M’6—27ri/M} .

2cos?/9 (n /M) —1, if ¢ is odd,

cos(p) =
2cos?/q (/M) —1, if q is even,
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The generalized quadratic Gaufl sums are defined by

lc|—1

Z 27m(al2—|—bl)/c

for given integers a, b, c, with ¢ #£ 0.

( Jqe,  if q is odd,

G(—p,m,q) =< +/2qe?n, if ¢ is even and ¢/2=m mod2,

0, if ¢ is even and ¢/2 % m mod 2,

\
with

Oy =7 2mi 2B (2m, + 1)
d(p) = (4p)~" mod ¢

(Explicit inversive congruential generators, Eichenaber-Herrmann, '93
29
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Thum versus Ty, for M = 3, at T1 3 = o 7 appears in blue,

T5 in green, 15 in red. In T,,,, the Gibbs phenomenon is clearly
visible. The black circles denote the points chosen for the compar-
1sons.
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e Jaffard

e Multifractal (Frisch—Parisi conjecture)
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Berry and Goldberg, Talbot Effect 88,
Duistermaat 91,

Oskolkov 92,

Jaffard, multifractal 96,

Kapitanski, Rodnianski '99,

Olver 10,

Erdogan, Tzirakis '13,

Chousionis, Erdogan, Tzirakis ’15.
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at t =

Figure 8: Xgig and Ty,
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tion of the right-hand side of Figure 8.
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Pseudo-random numbers

Theorem.— Let us consider the triple product of three consecutive
tangent vectors, and the scalar product of a tangent vector and the
second next one. Then, these quantities depend exclusively on ¢(p):

( (4p)~! mod ¢, if ¢ =1 mod 2,
d(p) = ¢ p~ ! mod (¢/2), if ¢ =2mod 4,
—1
p
\

mod g, if ¢ = 0 mod 4.

Furthermore, taking the first quantity as the real part and the
second quantity as the imaginary part of a complex number 2, ,,, (p)
that lies on a circumference of center icos?(p) and radius sin*(p),
tor all p:

y

. 9 . 9 2mig(p)(2m—+1) 1
_Jre, s, exp q )’ it g #2mod 4,
Zqm (D) = < .9 .2 2mig(p)m if g =2 mod 4
LG TP T2 ) BAm s
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Inversive congruential generators (ICGs), (Eichenauer 1986)

aT, +bmodgq, x,>1, T=x "
Tpy1 = n 20,

b, Ty =0, -

with ¢ prime, a Z 0 mod g¢:

e Absence of any lattice structure,

e Computational generation is not so efficient as with the Lin-
ear Congruential Generators.
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Explicit inversive congruential generators (EICGs), (1993
Eichenauer—-Herrmann):

Ty, =an+bmodg, n >0,

with ¢ prime, a # 0 mod ¢; (full period i.e., {zg,..., 241} = Z,).

e u, = T,/q passes the uniformity test for equidistribution in
0,1).

e Behave very well in parallel and vector computations, as
shown by Niederreiter: “eminently suitable for the generation
of parallel streams of pseudorandom numbers with desirable

- 29
properties’ . 40



e statistical independence properties; the discrepancy:

for a given dimension £ > 2 and for N arbitrary points
(&o,...,&€n—1) € [0,1)", to consider their discrepancy, which
is defined as

DN(€07 see 7€N—1) — Sl}p |FN(‘]) o V(J)‘7

where the supremum is extended over all the subintervals J
of [0,1)%;: Fx(J) is N~! times the number of terms among
o, ..., En—1 falling into J; and V(J) denotes the volume of
J.
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Eeichenauer(1993): given a sequence of numbers (uy,)n,>0 oOb-
tained with an EICG, the k-dimensional points

un:(un+n17"°7un+nk) S [Oal)ka 0<n<p,

is considered, for nq,...,ny arbitrary integers satisfying 0 =
np < ...<ng <p, and the abbreviation

ngk) — Dp(u(), P up—l)

being used for their discrepancy.

For EICG, p~1/2 < D](?k) < p~1/2(logp)*.

Versus p~1/ 2(log log p)l/ 2 for p independent and uniformly
distributed points taken from [0, 1)*.

Behave very well in parallel and vector computations, as
shown by Niederreiter: “eminently suitable for the generation
of parallel streams of pseudorandom numbers with desirable
properties” . 0
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NUMERICAL SIMULATION OF NON-CIRCULAR JETS

R. S. MILLER, C. K. MADNIA and P. Givit

Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo,
NY 14260-4400, U.S.A.,

(Received 3 January 1994; in revised form 16 May 1994)

Abstract—Results are presented of numerical simulations of spatially developing, three-dimensional jets
issued from circular and non-circular nozzles of identical equivalent diameters. Elliptic, rectangular and
triangular jets are considered with aspect-ratios of 1:1 and 2:1. Flow visualization © Its show that large
scale coherent structures are formed in both cornered and non-cornered jets—The axis-switching
phenomenon is captured in all non-unity aspect-ratio jets and also in the equilateral triangular jet. The

44









47



HHOOOOC
LOOOOO
LO0OOC
yaYaleiviviv

NOOTTT

Fig. 8. Axis switching as depicted by {U, > contours. Contours are in increments of x* = [. (a) Run 2,
{(b) Run 3. (¢) Run 4, {d) Run 35, (¢) Run 6. 48



Theorem 2.1. (]9]) Given a > 0 then the family of curves

Xa(t,z) = VEGa (%) ,

with G, given in (23) (i.e. the Frenet frame (Tg,nq,bs) at x = 0 is the canon
thonormal basis of R® ) is a solution of the binormal flow which is real analytic fo
Moreover, there exist AX and BF such that

()

IXa(t,z) — At e 1[0,00[(17) —A" 1]—00,0] (z)| < a\/Z,
(ii) The following asymptotics hold, for s — *oo:

2a? 4 2§
Gals) = A (s+i) —S—;‘naw(—s),

S S

2a 1
To(s) = AX — ?ba-l-o (g) ;

F
(na —iba)(s) = Bg: et ew2 e (l> )
s
(iii) The real vectors Az = (Ail,Aiz,Ai‘,Q are unitary and
+ = el + - - — £ £
Aa,l = Aa,l =g Ay Aa,2 = T 449,29 Aa,3 = T{1g.3 Aa 1 Ba )
(iv) The complex vectors Bx = (Bifl, Bf,:_,,B;Eﬁ) verify |[RBE| = |3Bz| =1 and
(25) Bfy=-B;,, Bj,=B;, Bj;=Bgs,
(v) The angle of the corner of x4(0) is determined by
oy r
sin (4% —a7) — Ail —e "5
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