Desingularization of the Biot-Savart integral and the Localised Induction Approximation (LIA)

Luis Vega, BCAM-UPV/EHU (with V. Banica and M. A. Fontelos)

Bilbao, June 16, 2023

Summary

- 1.- The setting
- 2.- The movies
- 3.- The binormal flow (LIA) { Intermittency Multifractality

$$\psi(x,t) = c_M \sum_{k} e^{itk^2 + ikx}$$

4.- The desingularization of the **Biot-Savart** integral

1.- The Setting

One of the most fundamental elements in fluid mechanics are the fluid filaments. These are structures around which vorticity ω tends to concentrate. Their formation, structure, and evolution has been a central theme since the early days of fluid dynamics and the main results bear the names of Helmholtz, Lord Kelvin, Kirchhoff, etc.

A vortex filament may be considered as a singular initial data for the vorticity in the form

$$\omega(\mathbf{x},0) = \frac{\Gamma}{2\pi} \delta_{\chi} \mathbf{T}(s,0)$$

where δ_{χ} is the Dirac delta measure supported in the curve χ and $\mathbf{T}(s,0)$ the tangent vector.

When a vortex filament is curved and its motion affected by the velocity field created by itself,

$$\mathbf{v} = \nabla \times \omega \qquad \nabla \cdot \mathbf{v} = 0,$$

one could in principle think of a closed-form equation to describe the evolution of the filament with the velocity field given by the Biot-Savart law applied to the vorticity.

$$\mathbf{v}(\mathbf{x},t) = \frac{1}{4\pi} \int \omega(\mathbf{x}',t) \times \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^3} d\mathbf{x}'.$$

This yields a singular integral and an infinite velocity field at the filament. By replacing the zero-thickness filament by a filament of radius ε , the singularity is removed and the velocity is given by

$$\mathbf{v} = -\frac{\Gamma}{4\pi} \kappa(s, t) (\log \varepsilon) \mathbf{b}(s, t) + O(\varepsilon^{0})$$

- Γ is the velocity circulation around the vortex filament (or vortex filament strength),
- $\kappa(s,t)$ is the local curvature with s being the arc-length parameter,
- $\mathbf{b}(s,t)$ is the binormal vector.

By neglecting the $O(\varepsilon^0)$ one introduces the celebrated localized induction approximation (LIA) and to the so-called binormal flow dynamics for the vortex filament (Da Rios in 1906)

A natural question is then what is the later evolution of the filament according to **Navier-Stokes** equations and whether there is a connection (or not) with the binormal flow. Although solutions are smooth at later times (**Giga and Miyakawa**, 1989; Γ is sufficiently small), one can expect them to be concentrated around a curve at least for short enough times. What is the evolution of such a curve? A natural candidate (joint work with M. A. Fontelos) is the solution of the (normalized) binormal flow:

$$\frac{d\chi(s,t)}{dt} = -\frac{\Gamma}{4\pi}\kappa(s,t)\log(\nu t)^{\frac{1}{2}}\mathbf{b}(s,t)$$

where Γ is the vortex filament strength, $\kappa(s,t)$ the local curvature and $\mathbf{b}(s,t)$ the binormal vector.

Using Frenet equations and after renormalizing the time we get the binormal flow (BF/LIA)

$$\chi_t = \chi_s \times \chi_{ss} = \kappa \mathbf{b}.$$

3.- The binormal curvature flow

(BF) •
$$\chi_t = \chi_s \wedge \chi_{ss} = cb$$
 c : curvature b : binormal

(SM) •
$$\chi_s = T$$
 Schrödinger map $T_t = T \wedge T_{ss}$

$$T_s = cn$$
 $n_s = -cT + \tau b$
 $b_s = -\tau n$

Examples:

- (i) Straight lines.
- (ii) Circles.
- (iii) Helices.

Riemann's function

$$\varphi_R(t) = \sum_{j=1}^{\infty} \frac{\sin(tj^2)}{j^2} \qquad (\sim 1860)$$

- Hardy 1915 (H–Littlewood circle method)
- Gerver 1960 (Riemann was wrong)

At $t_{p,q} = \pi p/q$ p,q odd, the derivative exists and is -1/2

$$\varphi_D(t) = \sum_{j=1}^{\infty} \frac{e^{itj^2}}{ij^2}$$
 Duistermaat 1991

Fractal behavior of the graph.

• Graph on $[0, 2\pi]$ of Riemann's function $\Re(t) = \sum_{i \in \mathbb{Z}} \frac{e^{itj^2} - 1}{ij^2}$:

- \Re satisfies the multifractal formalism of Frisch-Parisi (Jaffard 96) is intermittent (Boritchev-Eceizabarrena-Da Rocha 19), its graph has no tangents (at the end Riemann was right!!) and has Haussdorf dimension $\leq \frac{4}{3}$ (Eceizabarrena 19)
- The theorem gives a non-obvious non-linear geometric interpretation for Riemman's function.

Multifractal formalism

Spectrum of singularities (of a function f):

$$d_f(\beta) = H$$
-dim E_{β}

$$E_{\beta} = \{t_0 \in [0,2] : f \text{ is } \beta\text{-H\"older at } t_0\}$$

i. e. $\sup \{\alpha : f \in \mathcal{C}^{\alpha}(t_0)\}\$

$$|f(t) - P(t - t_0)| < C|t - t_0|^{\alpha}$$

Example: Weierstrass functions

$$\mathcal{W}_{a,b}(t) = \sum_{n \neq 0} a^n \cos(b^n t) \qquad a < 1 < ab$$

- Nowhere differentiable
- $\alpha = -\lg a/\lg(b)$ (monofractal)

- Antonia, Hopfinger, Gagne, and Anselment experiment 1984
- Frisch-Parisi: multifractal model
- Multifractal formalism (Frisch-Parisi conjecture)

$$d_f(\beta) = \inf_p \left(\beta p - \eta_f(p) + 1 \right)$$
$$\eta_f(p) = \sup \left\{ s : f \in B_p^{s/p, \infty} \right\}$$

• Jaffard: (1996)

$$d_{\varphi_R}(\beta) = 4\beta - 2 \qquad \frac{1}{2} \le \beta \le \frac{3}{4}$$

Multifractal formalism is true for φ_R

•
$$\sum_{k} \frac{\sin t(ck+d)^2}{(ck+d)^2}$$
 $c,d \in \mathbb{Z}$ Oskolkov 2013, Chamizo-Ubis 2013

Evolution of polygonal lines by the binormal flow

Theorem (Banica-V. 18).— Let $\chi_0(x)$ be a polygonal line parametrized by arc length with corners located at $x = k \in \mathbb{Z}$, of angles θ_k s.t. $\{a_k\}$ defined by $\sin(\frac{\theta_k}{2}) = e^{-\pi \frac{a_k^2}{2}}$ belongs to $l^{2,3}$. Then there exists $\chi(t)$ smooth solution of the binormal flow on \mathbb{R}^* ,

solution in the weak sense on \mathbb{R} with

$$|\chi(t,x) - \chi_0(x)| \le C\sqrt{t}, \quad \forall x \in \mathbb{R}, |t| \le 1.$$

Refined analysis for some families of polygonal lines

Let $n \in \mathbb{N}^*$, $\nu \in]0,1]$, $\Theta > 0$.

From now on we focus on particular classes of initial data: polygonal lines $\chi_n(0)$ with finite but many corners located at $j \in \mathbb{Z}$ with $|j| \leq n^{\nu}$, of same torsion ω_0 and angles θ_n such that

$$\lim_{n\to\infty} n(\pi - \theta_n) = \Theta,$$

and we suppose without loss of generality

$$\chi_n(0,0) = (0,0,0), \quad \partial_x \chi_n(0,0^{\pm}) = (\sin\frac{\theta_n}{2}, \pm\cos\frac{\theta_n}{2}, 0).$$

The initial data are the polygonal lines:

 $\chi_n(0)$ planar approximation of a line

 $\chi_n(0)$ planar approximation of a (multi-)loop

 $\chi_n(0)$ non-planar approximation of a line

 $\chi_n(0)$ approximation of multi-turns of helices

Theorem (a Frish-Parisi multifractal behaviour)

For the previous solutions with torsion $\omega_0 \in \pi \mathbb{Q}$ we have the following description of the trajectory of the corner $\chi_n(t,0)$, uniformly on (0,T):

$$n \chi_n(t,0) - (0, \Re(\tilde{\Re}(t)), \Im(\tilde{\Re}(t))) \stackrel{n \to \infty}{\longrightarrow} 0.$$

The function $\tilde{\mathfrak{R}}$ is multifractal, and its spectrum of singularities $d_{\tilde{\mathfrak{R}}}$ satisfies the multifractal formalism of Frisch-Parisi:

$$d_{\tilde{\mathfrak{R}}}(\beta) := \dim_{\mathcal{H}} \{t, \tilde{\mathfrak{R}} \in \mathcal{C}^{\beta}(t)\} = \inf_{p} (\beta p - \eta_{\tilde{\mathfrak{R}}}(p) + 1),$$
$$\eta_{\tilde{\mathfrak{R}}}(p) := \sup\{s, \, \tilde{\mathfrak{R}} \in B_{p}^{\frac{s}{p}, \infty}\},$$

a model for predicting the structure function exponents in turbulent flows.

In the torsion-free case $\tilde{\Re}(t) = -\Theta \frac{\Re(4\pi^2 t)}{4\pi^2}$, where $\Re(t) = \sum_{j \in \mathbb{Z}} \frac{e^{itj^2}-1}{ij^2}$ is a complex version of Riemann's non-differentiable function.

4.- NS: The Assymptotics

Remember that $\chi(t)$ is the (closed) curve at time t. Under suitable smoothness conditions on $\chi(0)$ we can find a tube of radius R sufficiently small $(R < \min \kappa/2)$ around the filament $\chi(t)$, and define at any given time (cilindrical) coordinates (s, ρ, θ) for a point \mathbf{x} where

$$\rho = \frac{dist(\mathbf{x}, \chi(\mathbf{t}))}{(\nu t)^{\frac{1}{2}}},$$

the coordinate s is the arclength at which the minimum distance between \mathbf{x} and $\chi(s,t)$ is achieved, and θ is such that

$$\mathbf{e}_r \cdot \mathbf{n}(s,t) = \cos \theta.$$

Here **n** is the normal vector and

$$\mathbf{e}_r = \frac{\mathbf{x} - \chi(s, t)}{|\mathbf{x} - \chi(s, t)|}, \qquad \mathbf{e}_\theta = \mathbf{T} \times \mathbf{e}_r.$$

We claim the following asymptotics

Claim. Let $\chi(s,0) \in C^3$. If $\frac{\Gamma}{\nu}$ is sufficiently small, then there exists T > 0 such that for any given t < T, there exists R > 0 independent of t and sufficiently small such that for any \mathbf{x} with $dist(\mathbf{x}, \chi(s,t)) < \frac{R}{2}$ the vorticity can be written as

$$\omega(x,t) = \frac{1}{(\nu t)} \frac{\Gamma}{4\pi} e^{-\frac{\rho^2}{4}} \mathbf{T}(s,t) - \frac{1}{(\nu t)^{\frac{1}{2}}} \frac{\Gamma \kappa}{8\pi} \rho e^{-\frac{\rho^2}{4}} (\cos \theta) \mathbf{T}(s,t) + \frac{1}{(\nu t)^{\frac{1}{2}}} \left(\Omega_1^{c(2)}(\rho) (\cos \theta) + \Omega_1^{s(2)}(\rho) (\sin \theta) \right) \mathbf{T}(s,t) + \widetilde{\omega}(\mathbf{x},t)$$

with

$$\left|\Omega_1^{s,c(2)}(\rho)\right| \le C \frac{\Gamma^2}{\nu} (\rho + \rho^2) e^{-\frac{\rho^2}{4}}$$

and

$$\|\widetilde{\omega}\|_{L^{2}}^{2}(t) + (\nu t)^{1-2\delta} \int_{0}^{T} (\nu t')^{2\delta-1} \|\nabla \widetilde{\omega}\|_{L^{2}}^{2}(t') dt' \leq C(\nu t)^{1-2\delta}$$

where $0 < \delta \ll 1$.

Desingularization of the Biot-Sarvat Integral

Recall that the distance of a given point $\mathbf{x} \in \mathbb{R}^3$ to the filament is uniquely well defined in a sufficiently small neighborhood of the filament.

We introduce then the vortex tube

$$\omega_0(\mathbf{x}, t) = \frac{1}{(\nu t)} \Omega_0(\rho) \eta_R(\mathbf{x}) \mathbf{T} \qquad \rho = \frac{r}{(\nu t)^{1/2}},$$

with

$$\Omega_0(\rho) = \frac{\Gamma}{4\pi} e^{-\frac{\rho^2}{4}}$$

$$V_0(\rho) = \frac{\Gamma}{2\pi} \frac{1}{\rho} \left(1 - e^{-\frac{\rho^2}{4}} \right),$$

and η_R a cut off.

Lemma. Let $\omega_0(\mathbf{x}, t)$ be as before. Assume in addition that the (closed) filament is smooth. Then, the induced velocity field given by the Biot-Savart law is, in the tube of radius R around the filament, given by

$$\mathbf{v}_{0}(\rho, \theta, s, t) = \frac{1}{(\nu t)^{\frac{1}{2}}} V_{0}(\rho) \mathbf{e}_{\theta}(s, t)$$
$$-\frac{\Gamma}{4\pi} \kappa(s, t) \left(\log(\nu t)^{\frac{1}{2}} + \frac{1}{2\pi} F(\rho) \right) \mathbf{b}(s, t) + O(1),$$

with $F(\rho)$ a smooth function such that $F(s) \sim 2\pi \log s$, as $s \to \infty$ and $F(0) = \pi(2\log 2 - \gamma)$ (γ being Euler's constant). At the center of the filament we have

$$\mathbf{v}_{0}(0, s, t) = \frac{\Gamma}{4\pi} \kappa(s, t) \left(\log(\nu t)^{-\frac{1}{2}} + \frac{1}{2} (\gamma - 2 \log 2) \right) \mathbf{b}(s, t) + \mathbf{v}_{0}^{*}(s, t) + O((\nu t)^{\frac{1}{2}} \log(\nu t))$$

with

$$\mathbf{v}_{0}^{*}(s,t) = \frac{\Gamma}{4\pi} \lim_{\varepsilon \to 0} \left(\int_{|s'-s| > \varepsilon} \mathbf{T}(s',t) \times \frac{\mathbf{x}(s,t) - \mathbf{x}'(s',t)}{|\mathbf{x}(s,t) - \mathbf{x}'(s',t)|^{3}} ds' + \kappa(s,t) \mathbf{b}(s,t) \log \varepsilon \right).$$

THANK YOU FOR YOUR ATTENTION