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The desingularization of the Biot-Savart integral



1.- The Setting

One of the most fundamental elements in fluid mechanics are the
fluid filaments. These are structures around which vorticity w tends
to concentrate. Their formation, structure, and evolution has been
a central theme since the early days of fluid dynamics and the main
results bear the names of Helmholtz, Lord Kelvin, Kirchhoff, etc.

A vortex filament may be considered as a singular initial data for
the vorticity in the form

I'
w(x,0) = %(&T(S,O)
where 0,, is the Dirac delta measure supported in the curve x and

T(s,0) the tangent vector.



When a vortex filament is curved and its motion affected by the
velocity field created by itself,

v=V Xw V-v =0,

one could in principle think of a closed-form equation to describe
the evolution of the filament with the velocity field given by the
Biot-Savart law applied to the vorticity.

x — X’

1
v(x,t) = o /w(x’,t) X dx’.

x — x|

This yields a singular integral and an infinite velocity field at the
filament. By replacing the zero-thickness filament by a filament of
radius €, the singularity is removed and the velocity is given by

v —%ﬁ(s, H)(log £)b(s. 1) + O(e%)



e [' is the velocity circulation around the vortex filament (or
vortex filament strength),

e x(s,t) is the local curvature with s being the arc-length pa-
rameter,

e b(s,t) is the binormal vector.

By neglecting the O(g”) one introduces the celebrated localized
induction approximation (LIA) and to the so-called binormal flow
dynamics for the vortex filament (Da Rios in 1906)



A natural question is then what is the later evolution of the fila-
ment according to Navier-Stokes equations and whether there is
a connection (or not) with the binormal flow. Although solutions
are smooth at later times (Giga and Miyakawa, 1989; I' is suf-
ficiently small), one can expect them to be concentrated around a
curve at least for short enough times. What is the evolution
of such a curve? A natural candidate (joint work with M. A.
Fontelos) is the solution of the (normalized) binormal flow:

dx(s,t) r 1
- 1 ;
0:8) — L k(s 1) log(vt) (s, 1)

where I' is the vortex filament strength, x(s,t) the local curvature
and b(s,t) the binormal vector.

Using Frenet equations and after renormalizing the time we get the
binormal flow (BF /LIA)

Xt = Xs X Xss = Kb.















3.- The binormal curvature flow

(BF) ® Xt =Xs A Xss =cb c: curvature b : binormal

(SM) ® xs =T Schrodinger map T, =T N Ty

T, = cn
ne= —cl +7b
b = —Tn

Examples:
(i) Straight lines.
(ii) Circles.

(iii) Helices.



X(8.tpq) : tpg = 27.0/(M?q). M = 3.9 = 1260. 2() = —||(X1(0,1), X2(0,8))]| +iX5(0,8), ¢ € [0,27/M?)
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Evolution of an M-polygon with zero torsion for M = 15 2(t) = —[|(X3(0.8), X2(0.))]| + iX3(0.2).t € [0,27/M?)
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Evolution of a circle z(8) = —[[(X1(0,£), X2(0,t))|] + i X5(0, )
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Riemann’s function

o0

or(®) =3 W) (180

j2

j=1
e Hardy 1915 (H-Littlewood circle method)
e Gerver 1960 (Riemann was wrong)

At t,, =7mp/q p,q odd, the derivative exists and is —1/2

o0 ez'tj2
t) =
SOD( ) ; ’ij2

Duistermaat 1991

Fractal behavior of the graph.



e Graph on [0, 27| of Riemann’s function R(t) = > et —1,
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e R satisfies the multifractal formalism of Frisch-Parisi (Jaffard 96) is
intermittent (Boritchev-Eceizabarrena-Da Rocha 19), its graph has
no tangents (at the end Riemann was right!!) and has Haussdorf di-

mension < 3 (Eceizabarrena 19)

e The theorem gives a non-obvious non-linear geometric interpreta-
tion for Riemman’s function.



Multifractal formalism

Spectrum of singularities (of a function f):
ds(8) = H-dim Ej
Eg ={to €10,2] : fis B-Holder at to}
i e. sup{a : f € C*(fo)}
|£(t) — Pt —to)| < C|t — to|®

Example: Weierstrass functions

Weas(t) = Y a™ cos(b™t) a<l<ab
n#0

e Nowhere differentiable

e a=—1ga/lg(b) (monofractal)



e Antonia, Hopfinger, Gagne, and Anselment experiment 1984

e Frisch—Parisi: multifractal model

e Multifractal formalism (Frisch—Parisi conjecture)

dy(8) = inf (Bp — ns(p) +1)

ns(p) = sup{s : f e B;/p’oo}
e Jaffard: (1996)

d‘PR(B) — 4/8 — 2

N[+
IA
D
IA

AN

Multifractal formalism is true for g

sint(ck + d)?
, 5 sintlek + )

c,d € 7 Oskolkov 2013, Chamizo—Ubis 2013



Evolution of polygonal lines by the binormal flow

Theorem (Banica-V. 18).— Let xo(z) be a polygonal line
parametrized by arc length with corners located at * = k € Z,

of angles O s.t. {a)} defined by sin(%) = e~™ % belongs to 123,

Then there exists x(t) smooth solution of the binormal flow on R*,

solution in the weak sense on R with

IX(t, ) — xo(z)| < CVt, VzeR, |t <1



Refined analysis for some families of polygonal lines
Let n € N*, v €]0,1], © > 0.

From now on we focus on particular classes of initial data: polygo-
nal lines x,,(0) with finite but many corners located at j € Z with
7| < n”, of same torsion wy and angles 6,, such that

lim n(r—60,) =06,

n—oo

and we suppose without loss of generality

0, 0,
Xn(0,0) — (07070)7 8:1:Xn(0,0:t) - (SiIl 7,:|:COS ?,0)



The initial data are the polygonal lines:

Xn(0) planar approximation of a line X»(0) planar approximation of a (multi-)loop

Xn(0) non-planar approximation of a line xn»(0) approximation of multi-turns of helices



Theorem (a Frish-Parisi multifractal behaviour)

For the previous solutions with torsion wg € m7QQ we have the follow-
ing description of the trajectory of the corner x,(t,0), uniformly

on (0,7): ) 3
nXa(t,0) — (0, R(R(1)), J(R(1) =3 0.

The function fR is multifractal, and its spectrum of singularities dg
satisfies the multifractal formalism of Frisch-Parisi:

dsy(B) := dimy{t, R € C ()} = inf(Bp — 15 (p) + 1),
ng(p) = sup{s, & € B},

a model for predicting the structure function exponents in turbu-

lent flows.
~ 2
In the torsion-free case R(t) = —@m(f:z ) where R(t) =
itj2
> ¢ t; j2_1 is a complex version of Riemann’s non-differentiable
JEZ

function.



4.- NS: The Assymptotics

Remember that x(¢) is the (closed) curve at time ¢. Under suitable
smoothness conditions on x(0) we can find a tube of radius R
sufficiently small (R < mink/2) around the filament x(¢), and
define at any given time (cilindrical) coordinates (s, p, @) for a point

X where
dist(x, x(t))
P = 1
(1)}
the coordinate s is the arclength at which the minimum distance
between x and x(s,t) is achieved, and @ is such that

Y

e, -n(s,t) = cosf.
Here n is the normal vector and

_ '
o — X x(s,1t)

— , €y :TXGT.
‘X o X(87t>|




We claim the following asymptotics

Claim. Let x(s,0) € C3. If L is sufficiently small, then there exists
T" > 0 such that for any given t < T, there exists R > 0 independent
of t and sufficiently small such that for any x with dist(x, x(s,t)) < 4
the vorticity can be written as

1 F p2 1 FK/ p2
t) = —sq-¢ *T(s1)— ~T (cos ) T(s,t
w(z,t) () 1-C (s,t) (Vt)% o Pe (cos ) T(s,t)
1 C S .
e (242 (0) (cos0) + 24P (p) (sn6)) T, 1)
(1)
+w(x,t)
with )
S,C F _ﬁ
01D (p)] < O (p+ )
and

T
1|72 (t)+(ut)1—25/0 ()21 | V|5, (H)dt' < C(vt) =20

where 0 < § < 1.



Desingularization of the Biot-Sarvat Integral

Recall that the distance of a given point x € R? to the filament
is uniquely well defined in a sufficiently small neighborhood of the
filament.

We introduce then the vortex tube

1
wo(x,t) = @Qo (p) nr(x)T P = (yt)l/Q’

with

_ P2
4

€

()
— 4 ,
P

p—d
|
QN

T

4r
T

27

and ngr a cut off.



Lemma. Let wy(x,t) be as before. Assume in addition that the (closed) filament
is smooth. Then, the induced velocity field given by the Biot-Savart law is, in the
tube of radius R around the filament, given by

1
Vo(p,e,s,t) — (I/t)% VO(:O)GG(S?t)

~4tot) (1og)} + 5 F(9) ) b, 0) + (D),

s

with F'(p) a smooth function such that F(s) ~ 2wlogs, as s — oo and F(0) =
m(2log2 — 7v) (v being Euler’s constant). At the center of the filament we have

vo(0,s,t) = %/{(s,t) (log(ut)_% + %(7 — 2log 2)) b(s,t)

+vi(s, t) + O((vt)? log(vt))

with

r t) —x'(s,t

vi(s,t) = — lim T(s',t) x X(s,t) =x'(s',1) ds' + k(s,t)b(s,t)loge | .

0 3
4 e—0 |s’ —s|>e |X(37 t) - X/(Sla t)|
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