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Linear Schrodinger equation
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Geometric point of view: Binormal flow (VFE)

Oy is a “solution” of 1d-NLS

Transfer of energy

Simplified model: a—Lévy processes



The Talbot effect is a near-field diffraction effect first observed
in 1836 by Henry Fox Talbot. When a plane wave is incident
upon a periodic diffraction grating, the image of the grating
is repeated at regular distances away from the grating plane.
The regular distance is called the Talbot length, and the repeated
images are called self images or Talbot images. Furthermore, at
half the Talbot length, a self-image also occurs, but
. At one quarter of the Talbot length,
the self-image is halved in size, and appears with half the period
of the grating (thus twice as many images are seen). At
of the Talbot length, the period and size of the images
1S , and so forth creating a fractal pattern of sub
images with ever decreasing size, often referred to as a Talbot
carpet.






Intermittent behaviour is commonly observed in fluid flows that
are turbulent or near the transition to turbulence. In highly
turbulent flows, intermittency is seen in the irregular dissipa-
tion of kinetic energy [5] and the anomalous scaling of velocity
increments.[6] It is also seen in the irregular alternation between
turbulent and non-turbulent fluid that appear in turbulent jets
and other turbulent free shear flows. In pipe flow and other wall
bounded shear flows, there are intermittent puffs that are central
to the process of transition from laminar to turbulent flow.

Intermittency has several meanings in turbulence. (One of them)
is the tendency of the probability distributions of some quantities
in three-dimensional Navier-Stokes turbulence, typically gradients

or velocity differences, to develop long tails of very strong events.
J Jiménez, 2006



8.2 Self-similar and intermittent random functions
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Fig. 82. The Devil’s staircase: an intermittent function.
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Talbot effect and linear Schrodinger equation
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The generalized quadratic Gauss sums are defined by
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for given integers a, b, c, with ¢ # 0.

/

\/Qewm, if ¢ is odd,

G(—p,m,q) = +/2¢e’®™, if q is even and ¢/2 =m mod 2,

0, if ¢ is even and ¢/2 #m mod 2,

\

for a certain angle 6,,, that depends on m (and, of course, on p and
q, t0o).



The Talbot effect

tpg = (21/M?)(p/q)
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e Multifractal (Frisch—Parisi conjecture)



Riemann’s non—differentiable function

Integrating the Fourier series in time and evaluating at x = 0 we

et
S 6—47r27jk’2t 1

t
gb(t):i/O Boe (0, 7Y = 30

kez

which is essentially Riemann’s non—differentiable function.
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Figure: De la Hoz, Vega: Vortex filament equation for a reqular
polygon, Nonlinearity 27(2014), 3031-3057
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ABSTRACT

Noncircular jets have been the topic of extensive research in the last fifteen years.
These jets were identified as an efficient technique of passive flow control that
allows significant improvements of performance in various practical systems at
a relatively low cost because noncircular jets rely solely on changes in the ge-
ometry of the nozzle. The applications of noncircular jets discussed in this re-
view include improved large- and small-scale mixing in low- and high-speed
flows, and enhanced combustor performance, by improving combustion effi-
ciency, reducing combustion instabilities and undesired emissions. Additional
applications include noise suppression, heat transfer, and thrust vector control
(TVO).

The flow patterns associated with noncircular jets involve mechanisms of vor-
tex evolution and interaction, flow instabilities, and fine-scale turbulence aug-
mentation. Stability theory identified the effects of initial momentum thickness
distribution, aspect ratio, and radius of curvature on the initial flow evolution.
Experiments revealed complex vortex evolution and interaction related to self-
induction and interaction between azimuthal and axial vortices, which lead to
axis switching in the mean flow field. Numerical simulations described the de-
tails and clarified mechanisms of vorticity dynamics and effects of heat release
and reaction on noncircular jet behavior.



experiments (OU1) simulations (SQ1)
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FIG. 10. Axis switching of the jet cross section in terms of isocontours of
time-averaged streamwise velocity scaled with its local centerline value
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I, ITI, V : hairpin (braid) vortices
II, IV : deformed vortex rings

N
b square vortex
sheet









Xe

X(s2byg) : tpg = 27.0/(M?q), M = 3.q = 1260.
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Evolution of an M-polygon with zero torsion for M = 15 2(t) = =|(X3(0,), Xa(0,))]| + iXs(0,8).t € [0.27/M]
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Binormal How

(BF) ® Xt =Xz N Xaz = cb c: curvature b : binormal
(SM) e x, =T Schrodinger map Ty =T N Ty,

(NLS) e u Hasimoto wave function 1d NLS (cubic focusing)

x(0,x) :  skew polygonal line

T(0,z): sequence of points T; such that lim T; = A%
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We consider the IVP
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e Hasimoto transformation:
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e It is a “solution” of 1d—cubic NLS (INLS)

e It has a geometrical meaning:

Binormal Flow  (BF)

Schrodinger map (SM)

e (NL) Talbot effect:

e Intermittency

e Multifractality



Theorem (BV 2021)

Assume
{ a_1=a=ay; a#0

a; = 0 otherwise

Then there exists ¢ > 0

sup |To(&,8)|” > ¢/lgt| > 0.
§

e Colliander, Keel, Staffilani, Takaoka, Tao 2010

e Hani, Pausader, Tzvetkov,Visciglia 2015



e This cascade can be understood associated to a linear problem.

(T, e1,e2) orthonormal frame
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e This cascade can be understood associated to a linear problem.

(T, e1,e2) orthonormal frame

T, = ael + Bes
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M =3; ¢=120000; 1920000 freq.
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Figure 10: |\/§maxlpq ||7/’1:1(t,,,,)||°° —aln(q) — b|, for a = 0.258039752572419, b = 0.152992510344641.
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Figure 2: Plot of h, 5[F:,| when § = 0.25.
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Figure 3: Plot of Hs. Even though Hs has some symmetry, e.g. Hs(1l —t) =
cs — Hs(t—), the appearance of “unpredictable” large jumps resembles an a-Levy
process with small exponent a.
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