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Outline

• Type of Problems Our Technology Can Solve.

• Methodology (Main Features of Our Technology).

• Introduction to Tri-Axial Induction.

• Previous Numerical Results:

• Measurements in Deviated Wells.

• New Numerical Results for Borehole Eccentered Tools:

• Verification of the 3D Method.

• Measurements for Different Resistivity Tools.

• Conclusions.
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Type of Problems Our Technology Can Solve

Main Application Borehole Measurements

Spatial Dimensions 2D 3D

Well Type Vertical Well Deviated Well Eccentered Tool

Logging
Instruments

LWD/MWD Normal/Laterolog Dual-Laterolog

Induction
Dielectric 

Instruments
Cross-Well

Frequency 0 ~ 10 GHz

Materials Isotropic Anisotropic

Physical
Devices

Magnetic Buffers Insulators Casing

Casing 
Imperfections

Displacement
Currents

Combination of All

Sources

Finite Size
Antennas

Dipoles 
in Any Direction

Solenoidal 
Antennas

Toroidal Antennas Electrodes Combination of All

Invasion Water Oil etc.
Other Applications Marine Controlled Source EM and etc.

MOST (OIL-INDUSTRY) GEOPHYSICAL PROBLEMS
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Methodology (Main Features of Our Technology)

Combination of:

1. A Self-Adaptive Goal-Oriented hp-FEM for 
AC problems.

2. A Fourier Series Expansion in a New System 
of Coordinates.

3. Parallel Implementation.
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Self-Adaptive Goal-Oriented hp-FEM

We vary locally the
element size h and the
polynomial order of
a p p r o x i m a t i o n p
throughout the grid.

Optimal gr ids are
a u t o m a t i c a l l y
generated by the hp-
adaptive algorithm.

The self-adaptive goal-oriented hp-FEM 
provides exponential convergence rates 
in terms of the CPU time vs. the error in 
a user prescribed quantity of interest.
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3D Deviated Well

Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (z1, z2, z3)
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3D Deviated Well

Constant material coefficients in the quasi-azimuthal direction z2

in the new non-orthogonal system of coordinates!!!!

Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (z1, z2, z3)
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3D Problem of Tool Eccentricity

Cartesian system of coordinates: (x1, x2, x3)
New system of coordinates: (z1, z2, z3)

Subdomain 3Subdomain 1 Subdomain 2
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3D Problem of Tool Eccentricity

Constant material coefficients in the quasi-azimuthal direction z2

in the new system of coordinates!!!!

Cartesian system of coordinates: (x1, x2, x3)
New system of coordinates: (z1, z2, z3)
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Tri-Axial Induction Tool

: dip angle

a: tool orientation angle
Hxy
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3D Sources and Receivers

2. Properly Oriented Dipoles for 3D source Mx or My .

M(φ)=δ(φ-φ0) H(ρ-ρ0) H(z-z0), where φ0 is the 
azimuthal direction of the source ( 0 for Mx ; 
90 for My ).

1. Solenoidal Coil (Jf ) for Mz .

It becomes a 2D source in (, f, z)

3. Similar Implementation for Receivers Hx , Hy , and Hz .
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3D Sources and Receivers
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Previous Work: Description of Tool

Operating frequency: 20 kHz
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Previous Work: Deviated Wells (0, 30 & 60°)
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Previous Work: Hzz in Deviated Wells with Anisotropy
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Previous Work: Hxx in Deviated Wells with Anisotropy
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Previous Work: Hyy in Deviated Wells with Anisotropy
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Previous Work: Hxx at 20 KHz and 2 MHz in Vertical Well
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Description of the Tri-Axial Tool

Vertical locations and operating 
frequencies followed those of a 

commercial tool

Short offset

Long offset

Resistive Mandrel (RM): 

106 ohm-m, μ=μ0

Conductive Mandrel (CM): 

10-6 ohm-m, μ=100μ0
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Verification of the 3D hp-FE Method

Good agreement 
between the two 

different numerical 
methods
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Model for Numerical Experiments

Deepwater Gulf of Mexico

Six layers: 
100, 1, 300, 1, 0.1, and 
1 ohm-m from top to bottom.

Borehole: 
0.1 m in radius.
1/1000 ohm-m in resistivity
(conductive/resistive BH).

Eccentered distances:
1.8, 3.0 and 4.2 cm.
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Short Offset: Conductive Borehole (Hxx)
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Long Offset: Conductive Borehole (Hxx)
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Short Offset: Conductive Mandrel (Hxx)
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Short Offset: Resistive Mandrel (Hxx)
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Long Offset vs. Short Offset (Hzz)
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With and Without Bucking Coil (Hxx)
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Conclusions

• We have successfully simulated tri-axial induction
measurements (including the logging tool).

• Effects of borehole-eccentered tools on Hxx are:

• Larger for a short offset than for a long offset.

• Highly affected by the presence of a bucking coil.

• Larger when using a conductive mandrel rather than a
resistive mandrel.

• Effects of borehole-eccentered tools on Hzz are:

• Observed in the presence of short transmitter-
receiver offsets.
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